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1. Introduction

Due to the almost unlimited resource space on the web, efficient search engines and recom-
mender systems have become a key element for users to find resources corresponding to their
needs. Recommender systems aim at helping users in this task by providing them some per-
tinent resources according to their context and their profiles, by applying various techniques
such as statistical and knowledge discovery algorithms.
Recommender systems are usually classified into content-based recommendation and collab-
orative filtering. Content-based recommendations (Balabanović & Shoham, 1997; Zhang et al.,
2002) are performed by identifying resources similar to the ones a user appreciated, based on
their content. One of the main limitations of these systems is that the efficiency is highly de-
pendent on the domain. Indeed, it is very efficient for textual resources but not for resources
such as pictures, videos, etc. Another limitation is that only resources similar to already rated
resources can be recommended. Collaborative Filtering (Das et al., 2007; Goldberg et al., 1992),
consists in recommending to users resources other users with similar tastes liked in the past.
The content of the resources does not need to be considered, and the aforementioned lim-
itations are not present. However, collaborative filtering has its own limitations, the most
important being data sparsity and cold start (Park et al., 2006; Schein et al., 2002). Most of
recommender systems only use ratings to predict if a user will appreciate some resource, and
to provide recommendation lists by selecting the highest ratings predicted, or the most similar
resources to resources a user already rated (Adomavicius & Tuzhilin, 2005). The quality of the
recommendations may thus be enhanced by using other criteria.
Such a criterion is the context, which can be geographical, meteorological, social, cultural, etc.
For instance, a user may like to eat his favorite dish at home but not in a restaurant, or at
lunch but not at breakfast. The importance of using context for recommendations have been
studied on a movie rating dataset in (Adomavicius et al., 2005). Among with the ratings, users
were asked when, where and with whom the movie was seen. Results showed that using
a combined form of a reduction-based collaborative filtering method to include contextual
information in the model, the accuracy could be significantly outperformed compared to a
standard memory-based collaborative filtering algorithm.
The order in which users consult or consume resources, which is referred to as sequences of
consultations, is such a contextual criterion. For instance, one usually must have seen the
first episodes of a television series to appreciate the last ones. In this chapter we focus on
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this particular form of context. The question is thus: how to take advantage of sequences to
recommend the best possible resource?
The appropriateness of considering sequences is domain dependent: for instance, it seems of
little help in domains such as on-line movie stores, in which user transactions are barely se-
quential; however it is especially appropriate for domains such as web navigation, which has a
sequential structure. This was shown in (Zimdars et al., 2001), in which several techniques are
used to transform sequences into a representation that can be used by traditional collabora-
tive filtering algorithms. This representation makes the resulting model almost equivalent to
a Markov model. A decision tree model has been used to perform tests on a browsing dataset.
Results show a clear enhancement of the results using a sequential configuration instead of a
classical collaborative filtering configuration.
Predicting future surfing paths is useful for many purposes such as web page research (Tan &
Kumar, 2002), web page recommendations (Nakagawa & Mobasher, 2003), latency reduction
(Schechter et al., 1998) or arrangement of the links among a website (Chi et al., 1998). That is
why it has been widely studied. Such studies do not necessarily include ratings, for instance
sequential patterns (Nakagawa & Mobasher, 2003) or Markov models (Borges & Levene, 2005;
Deshpande & Karypis, 2004; Eirinaki & Vazirgiannis, 2007; Pitkow & Pirolli, 1999), although
some other do (Trousse, 2000).
Web predictive modeling usually attempts to provide a tradeoff between accuracy, space and
time complexity, and coverage (Deshpande & Karypis, 2004; Pitkow & Pirolli, 1999). However,
few of these models possess features able to provide robustness to noise. Noise can occur
when users do navigation mistakes, parallel navigations, open pages in new tabs, return to
previous pages, etc. The amount of noise may vary depending on the domain. For instance,
a website designed by an experimented webmaster usually induces less navigation mistakes
than personal web pages within a web hosting service.
A study of statistical language modeling allowed us to notice that several similarities exist
between web navigation and natural language (Boyer & Brun, 2007). Many statistical lan-
guage models have been studied in the past decades with success, and most of them take into
account the order of the words. We thus propose to draw inspiration from these models to
compute recommendations.
We propose a new model inspired from the n-gram skipping model of statistical language
modeling (Goodman, 2001) to compute recommendations in the frame of web navigation.
This model exhibits several advantages: (1) It is robust to noise, (2) It has both a low time
and a low space complexity while providing a full coverage, (3) Weighting schemes are used
to alleviate the importance of distant resources, (4) A significant improvement of accuracy
compared to state of the art models is provided.
In the first section, we will address the general issue of applying statistical language modeling
to web navigation. The second section presents our Skipping-Based Recommender or SBR
model. Tractability is then discussed in the third section, and robustness to noise in the fourth
section. Last, we conclude the chapter.

2. Modeling Web Navigation as a Natural Language

In this section, we provide a detailed study of web navigation and natural language to ex-
plicit their similarities. We first provide an overview of web predictive modeling and natural
language modeling. We then show similarities and differences between both domains, and
present a discussion about which statistical language models seem to be the most appropriate
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for web navigation, and which adaptations seem necessary to maximize their efficiency for
this domain.

2.1 Web Predictive Modeling

Recommending resources to users in the frame of web navigation is one of the most important
tasks of web usage mining. Web usage mining can be defined as “the process of applying data
mining techniques to the discovery of usage patterns from web data” (Srivastava et al., 2000).
In this domain, recommending resources to users is referred to as predictive user modeling
(Nakagawa & Mobasher, 2003) or predictive modeling (Pitkow & Pirolli, 1999).
The data processed usually consists in two sets: a set of distinct resources R = {r1, ..., r|R|}

and a set of sessions S = {s1, ..., s|S|} where each si is a sequence of resources from R, i.e.

si = (ρi
1, ..., ρi

|si |
) with ρi

j ∈ R.

Two approaches are predominant: sequential patterns and Markov models. We thus present
them in this section.

2.1.1 Sequential Patterns

One way of exploiting the order of past actions to predict future ones, is the use of sequential
patterns (Agrawal & Srikant, 1995; Lu et al., 2005), which is the sequential form of association
rules. Association Rules have been initially used for mining supermarket basket (Agrawal
et al., 1993) to extract information about purchased items dependencies. An association rule
is made up of items commonly purchased together in a transaction, where a transaction is a
set of items.
An association rule is an expression of the form X → Y, where X and Y are sets of items. X
is called the antecedent and Y the consequent. An association rule means that, in one transac-
tion, when users have purchased all resources in X then there is a high probability that they
will purchase Y. Using association rules in the frame of web usage modeling thus enables to
take into account non-ordered sets of resources in the history. Sequential patterns are more
constrained than association rules due to the order taken into account. They thus represent
more accurate information about user behavior. The sequences considered can be ordered
lists of sets of resources (e.g. ({a, b}, {c, d, e})). However in this chapter, we only focus on
sequences of single resources (e.g. (a, b, c, d, e)).
Usually, the consequents considered in sequential patterns have a size of 1 (Nakagawa &
Mobasher, 2003). So, a sequential pattern can be denoted by X ◦Y, where X ◦Y is the concate-
nation of X and Y, X is a sequential antecedent of any size, and Y a consequent of size 1.
Both models are first built by browsing a training corpus and counting the sets of resources
or sequences of resources. Then, during the recommendation step, all possible antecedents
in current user’s navigation history are compared to the antecedents in the model. If some
antecedents match, then the corresponding consequents are recommended. However, several
antecedents of different sizes may match the history, which raises the question of combin-
ing the rules. A score can be assigned to each consequent according to each corresponding
matching antecedent. This can be done in several ways:

• Maximum confidence policy: only the rule having the highest confidence is used (Sar-
war et al., 2000; Wang et al., 2005);

• Sum policy: the sum of the confidences is computed and associated to the correspond-
ing consequents. Then, the consequent having the highest value is recommended (Kim
& Kim, 2003);
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• Maximum length policy: the rules having the longer antecedent are used to provide
the recommendations (Nakagawa & Mobasher, 2003). This scheme is analogous to the
all-kth-order Markov model (cf. next section). It can be combined with maximum confi-
dence policy or sum policy.

There are two types of sequential patterns: closed and open (Mobasher, 2007). Closed se-
quential patterns (Jianyong et al., 2007) identify contiguous sequences, while open sequential
patterns (Ayres et al., 2002) identify non contiguous sequences. Looking for open sequences
of unlimited sizes induces a huge amount of combinations. So the step of pattern discovery
has to limit the size of the patterns to discover. Thus a sliding window with a fixed size is
usually used during the pattern discovery step as well as during the recommendation step.
However, the time complexity induced is still high. As they induce less combinations, the
time complexity of closed sequential patterns is lower, but still high.
Space complexity can be reduced by integrating only the rules with a high support and confi-
dence in the model. This was already the case for association rules, and was coped using the
Apriori algorithm, which is an incremental algorithm (Agrawal et al., 1993). This algorithm
has first been adapted to sequential patterns by (Srikant & Agrawal, 1996) and is referred to
the Generalized Sequential Pattern algorithm or GSP algorithm. It is based on incremental
pruning of low support and confidence patterns. Given a set of sessions S = {s1, ..., s|S|}, the
support of a pattern X ◦ Y is defined as:

supp(X ◦ Y) = |{σ ∈ S|X ◦ Y ⊆ σ}|

where each σ is a subsequence of size D in S. The confidence of the sequential pattern X ◦ Y
is defined as:

con f (X ◦ Y) =
supp(X ◦ Y)

supp(X)

The algorithm first counts all sequences of size 1, and prunes the less frequent ones. It then
builds sequences of size 2 using the remaining sequences of size 1, computes the correspond-
ing counts and prunes the less frequent sequences. The algorithm continues until the se-
quences reach some maximum length. The supports thresholds used are usually the same
whatever is the length of the considered sequence.
Selecting high confidence and support rules induces a lower space complexity and a higher
accuracy; however, it induces a lower coverage of longer patterns too. Indeed, although a
recommendation can always be provided using sequential patterns of size 1 (antecedent of
size 0 and consequent of size 1), selecting few rules induces that longer antecedent match
more rarely the previous user actions (Nakagawa & Mobasher, 2003).
In (Nakagawa & Mobasher, 2003), an empirical study comparing association rules, closed and
open sequential patterns is provided. Results show that association rules and open sequential
patterns are more suitable for short sessions and sites with a high degree of connectivity, while
closed sequential patterns are more suitable for longer sessions. However the experiments
have been done using small window sizes (3 and 4), and it is possible that higher window
sizes lead to a different conclusion.

2.1.2 Markov models

Markov chains (Rabiner, 1989) model relationships between resources based on an indepen-
dence assumption between past states and the present state. In the frame of web navigation
they are used to predict the next resource according to the present state (the k previously
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browsed resources), which is referred to as Markov models of order k or kth-order Markov
models. Although simple, Markov models provide surprisingly accurate recommendations.
Markov models are built the same way sequential patterns are, i.e. by browsing a training
corpus and counting sequences of resources of size k + 1. The recommendation step is similar
to the one of sequential patterns too: the previous actions are compared to the states in the
model, and if some state matches, then the corresponding resource is recommended.
The use of Markov models usually involves a tradeoff between accuracy and coverage (Pitkow
& Pirolli, 1999). Coverage is the percentage of cases where a state matching current history
can be found in the model to recommend a resource. By pruning the less frequent elements,
a better precision can usually be reached; however, the more elements are pruned, the less
matching histories can be found during the recommendation step, which results in a lower
coverage. Notice that contrary to sequential patterns, the number of possible states is low
enough to perform a straightforward pruning, after having performed the training step.
Another way to enhance the accuracy is to increase the value of k. Indeed, a state having
a higher length contains more information about user’s past actions. However, above some
value it becomes difficult to find a large enough training data to build the model. If the train-
ing dataset is too small, the resulting model will cover fewer cases and may even provide a
lower accuracy; if a large enough training data can be found, the model may have a too high
space complexity. That is why the length of the states is usually low.
One way to provide both accuracy and coverage is to use various Markov models having
various orders. For example, one can try to provide a recommendation using a Markov model
of order 3, and if no matching history can be found, try a Markov model of order 2, and so
on, until a recommendation can be provided. In the worst case, a Markov model of order 0 is
used, which corresponds to the overall probability of one single resource, without considering
previous resources. Using such a scheme, a full coverage can be reached, while providing a
good accuracy in the recommendations. This scheme is called the all-kth-order Markov model
(Pitkow & Pirolli, 1999), and is one of the best performing predictive models of the state-
of-the-art. Notice that under the same pruning conditions, it is similar to closed sequential
patterns.
Several studies have been done to cope with space complexity. In (Deshpande & Karypis,
2004), three pruning schemes are used to alleviate the state complexity: a support pruning
scheme in which the same threshold is used for all of the Markov models, a confidence prun-
ing scheme in which states are discarded if the difference of probability between the two most
prominent resources is not statistically significant and an error pruning scheme using a vali-
dation dataset. (Borges & Levene, 2005) propose to transform first-order Markov models into
a single model representing Markov models of variable orders by using cloning operations.
This lowers time and space complexity while providing a full coverage and a good accuracy.
Instead of trying to deal with tradeoffs between accuracy, space and time complexity and
coverage, some studies simply combine Markov models with some standard recommendation
models to enhance the precision of the recommendations. In (Trousse, 2000), a case-based
model is used to predict users’ navigation behavior. The main feature of the model is the
inclusion of past sequences in the cases, which is referred to as time-extended situations. Two
sequential features are used to represent the cases. The first one corresponds to the last three
browsed pages. The second is the sequence of the past pages having a high implicit rating. The
main drawback of such a model is the coverage. Indeed, using the last three browsed pages is
similar to the present states of a Markov model of order 3. As said previously, in such a case
the number of possible states is generally high, and usually results in a low coverage. Besides,
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a maximum coverage of 50% is reached in their experimentations. In (Eirinaki & Vazirgiannis,
2007), a PageRank-based model that includes a usage based personalization vector has been
experimented. The personalization vector used is similar to a Markov model of order 1 whose
transition values are computed according to websites’ actual structures. Two variants of the
model are put forward. The first one is called l-UPR (localized Usage-based PageRank) and
consists in using current user’s sessions to compute the personalization vector. The second is
called h-UPR (hybrid Usage-based PageRank) and is a combination of the UPR model with a
standard Markov model. In such a configuration, recommendations are based both on current
users’ usage data and actual website structure.

2.2 Statistical Language Modeling

The issue of Language Modeling is to compute the probability of a word wi given its history
h = (w1, ..., wi−1). The data processed usually consists in two sets: a set of distinct words
called the vocabulary V = {v1, ..., v|V|} and a set of sentences S = {s1, ..., s|S|} where si =

(wi
1, ..., wi

|si |
) with wi

j ∈ V. For complexity and feasibility reasons, the vocabulary is usually

previously fixed.
As too long histories are computationally intractable, all existing statistical language modeling
techniques assume some form of independence among different portions of the data. This
results in approximated probabilities which can be calculated statistically using a training data
(Rosenfeld, 2000). Surprisingly, statistical techniques have been shown to definitely perform
better than linguistic rule-based techniques (Banko & Brill, 2001; Fleischman et al., 2003; Och
& Ney, 2001).
The two predominant statistical models are the n-gram model and the trigger model, which
are presented in the following.

2.2.1 n-gram model with skipping

Markov models are also used in the domain of statistical language modeling, in which they
are referred to as n-gram models (an n-gram model is similar to a Markov model of order
n − 1). n-grams even represent the cornerstone of statistical language modeling (Rosenfeld,
2000).
As for web usage mining, in practice, n = 3 or 4, rarely 5. As well, the coverage problem is
present too. An experiment performed in the 1970s by IBM puts forward this phenomenon. In
this experiment, a text containing one thousand distinct words (the vocabulary) was divided
into a training set of 1, 500, 000 words and a test set of 300, 000 words. Then a trigram model
built on the training set only covered 77% of the test set.
Many techniques have been used to enhance their efficiency, among which smoothing, clus-
tering, mixture, etc. (Goodman, 2001). One of these improvements is skipping and is based on
the fact that the larger the n-grams, the less matching histories can be found (due to the size
of the training dataset). Skipping simply consists in not considering a resource: the resource
is skipped. For example, given the sequence (a, b, x, y, z, c, d) and n = 3, instead of consider-
ing only contiguous raw triplets as (a, b, x) or (y, z, c) (as standard n-gram models), skipping
allows to also consider triplets as (a, x, d), (a, b, c) or (b, c, d).
There are two ways of using skipping: by interpolating submodels (Goodman, 2001), and by
merging the counts.
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� Interpolation of submodels
The first way of using skipping consists in interpolating skipping submodels. For instance,
the probability of a word wi given the history h can be given by the following equation:

P(wi|h) = αP(wi|wi−2, wi−1) + βP(wi|ww−3, wi−1) + γP(wi|wi−3, wi−2) (1)

where 0 � α � 1, 0 � β � 1, 0 � γ � 1 and α + β + γ = 1. Using such a scheme thus allows
to handle an over probability of a 4-gram-like model using trigram models, and to find more
matching histories than would find a raw 4-gram model. The configuration corresponding
to P(wi|wi−3, wi−2) is also known as a distance-2 trigram, i.e. a long-distance n-grams with
n = 2. Such models were studied in (Huang et al., 1993) and did not provide significant
improvements. In (Goodman, 2001) however, it has been shown that skipping of trigrams
(skipping involving 3 elements) represents a good technique to use if the training data is small.
The interpolation of submodels has the advantage of allowing an accurate weighting of the
respective skipping configurations. Indeed, as separate submodels are built, it is possible to
estimate the importance and usefulness of each skipping configuration on the recommenda-
tion process. The major drawback of interpolating submodels is that it implies a larger number
of n-grams. This last problem becomes worse when considering an even larger history: the
larger the history, the larger the number of submodels.

� Merging the counts
The second way of using skipping is to merge all skipped n-grams occurrences so that they
are all stored in the same list. This has the advantage of lowering the space complexity. For in-
stance, given the training sequence (a, x, b, c, a, b, y, c), it is possible to detect three occurrences
of the trigram (a, b, c). Such counts can then be stored in the same trigram counts in one single
list. However, once stored in the list, it is impossible to determine if a n-gram has often been
encountered in a contiguous configuration, or if it was almost always encountered in another
particular skipping configuration. The interpolation of mixed submodels thus represents a
more accurate modeling.
Another advantage of merging counts is that it allows some skipped n-grams of the model to
be used by other skipping configurations. For example, given a trigram (a, b, c). It is possible
that this trigram is found several times in some parts of the training data together with some
noise resources xi between a and b: (a, xi, b, c). Then, when making recommendations, it is
possible that a and b are found in the history before some other noise resource y: (a, b, y). In
that case, during the training step, skipping is performed on the second resource (xi) whereas
during the recommendation step it is performed on the third (y), and the resource c can be
recommended, which is not possible using the interpolation presented above. This feature is
interesting because it induces a better coverage; however it represents a less accurate model-
ing of the data.

2.2.2 Trigger model

One of the first introduction of trigger models is (Rosenfeld, 1994). It was designed based on
the observation that some information exists beyond the usual scope of contiguous n-grams.
Trigger models are made up of highly correlated pairs of words, the first one being the trigger,
and the second one the triggered word.
The selection of the trigger pairs is usually performed using the mutual information that mea-
sures the quantity of information provided by a trigger word A to a triggered word B. It is
usually evaluated as follows:
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MI(A, B) = p(A, B) log
p(B|A)

p(B)
+ p(A, B) log

p(B|A)

p(B)

+ p(A, B) log
p(B|A)

p(B)
+ p(A, B) log

p(B|A)

p(B)

(2)

where A denotes the presence of A, A denotes the absence of A, P(A) the probability of A,
p(A, B) the probability that A and B are found together and p(B|A) the conditional probability
of B given A. This selection is usually performed using a fixed size sliding window.
Once the triggers have been selected, they are used to refine n-gram models (Chen & Chan,
2003; Rosenfeld & Huang, 1992). However, several triggers may match the history and have
to be combined. This can be done in several ways that provide similar results : choosing only
the trigger pair having the highest mutual information, adding the mutual information values
of the trigger pairs, etc. (Rosenfeld & Huang, 1992).
As well, the way triggers are integrated in the n-gram model has to be determined. This can be
done by using an interpolation, by enhancing the probabilities of the corresponding n-gram
when a word is triggered, etc. (Rosenfeld & Huang, 1992).
Such models usually take into account only relationships between two words, although they
can be applied to longer triggers, which could lead to more accurate models (for the same
reason a higher order Markov model is more accurate). In (Chen & Chan, 2003) a model
called the multi-word trigger model is studied. In this model, the triggering elements consist
in pairs of words and here again, only the most correlated triplets of words are integrated
using the mutual information. However, this did not lead to significant improvements.

2.3 Web navigation and Natural Language Similarities

In several points, web navigation predictive modeling is similar to statistical language mod-
eling. This is particularly obvious when focusing on the respective corpus features.

• Words can be considered as being similar to resources (ignoring the content, just con-
sidering them as identifiers);

• Statistical language models use a vocabulary made up of words which can be viewed
as being similar to the set of distinct resources of the web or a website.

• A sentence can be considered as being similar to a session;

• The presence of a word in a sentence depends on its previous words, as well as the
consultation of a resource depends on the preceding resource consultations.

• Both domains provide large datasets that can be used to train statistical models.

• As can be noticed in the previous sections, both domains have been efficiently modeled
using n-grams (n-gram models are equivalent to Markov models of order n − 1). Thus
both domains seem to allow a similar independence assumption.

Given these similarities, we can naturally think of exploiting statistical language modeling
techniques for web recommendation. Statistical language modeling was studied far previ-
ously to web recommendation, and a lot of efficient models have been studied, it thus pro-
vides interesting perspectives.
However, two main differences exist between natural language and web navigation: (1) it is
possible to have several web navigations overlapped, which would correspond to mixed sen-
tences in natural language which does not exist, (2) natural language is governed by strong
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constraints: each word and its localization in a sentence is important; navigation is less con-
strained and should be processed with more permissive models.
Thus statistical language modeling cannot be applied directly for web recommendation. Par-
allel navigations have to be handled. As the resources of one session can be relatively distant,
the history considered should be longer than those of classical language modeling.
The second difference is problematic too. A more constrained corpus means that a light model
can be build from it, and thus a less constrained data means that the resulting model is heavier.
As the web contains a large number of resources, a rather light model would be welcome.
Hence, exploiting statistical language models induces an adjustment of the algorithms in or-
der to provide a light and permissive model.

2.4 Exploiting statistical language modeling for web recommendation

In this section we discuss the exploitation of the aforementioned statistical language models
for web usage mining. The goal is to find a model providing a high accuracy in the recommen-
dations, a high coverage and a good robustness to noise while being tractable, which cannot
be provided by classical statistical language modeling.
As previously said, using closed sequences (e.g. Markov models) makes it impossible to han-
dle noise. One solution is to use open sequential patterns, but then the number of possible
patterns is very high which leads to a high complexity.
A first possibility is the use of trigger models. Trigger models allow to consider distant ele-
ments, and only the most informative pairs are included in the model, which allows to discard
noise. Indeed, if an element corresponds to noise, the impact of all other elements within the
window will compensate its impact. The use of mutual information provides another inter-
esting feature. Indeed, when using conditional probabilities, the most frequent resources are
more likely to be recommended, although such resources may not be of major utility for a
user. For instance, the home page of a website is usually the most visited one, but may not be
the most interesting page to recommend to a user. Using the mutual information measure has
a different effect of using conditional probabilities: the most frequent words are less likely to
have a large mutual information value. However, as well as for natural language, they cannot
be used alone. Indeed, a rare resource having a high correlation to a previous resource may
be recommended, which may not be useful for a user.
Trigger models should thus also be combined with n-grams, as classically used in statistical
language modeling in order to take advantage of both models. Such a configuration has been
tested by (Pavlov et al., 2004). The models presented consist in mixtures of sub-models. In
particular a bigram model (n-grams with n = 2) is combined with a trigger model. Both sub-
models are interpolated using coefficients computed according the Expectation Maximization
Algorithm (Dempster et al., 1977) on a validation set. Depending on the considered data, this
algorithm may take too long to converge to an optimal solution. (Pavlov et al., 2004) thus
propose to use a fast clustering algorithm based on users’ navigation sequences. Using such a
framework allows to take into account distant resources and to provide a high coverage while
having a low time and space complexity. However, the use of a bigram model provides less
accurate recommendations, and if the previous resource in the history is noise, then a bad
recommendation is likely to be provided. This may not be compensated by the combination
with a trigger model, as the mutual information may not be appropriate used alone, and
should only be used as a complement.
An alternative is to use n-gram models with skipping. It allows distant resources to be taken
into account, while using conditional probabilities. It is very close to open sequential pat-
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terns; the main difference is that it is usually performed with a fixed value of n, and has a
lower space and time complexity. The resulting model is thus tractable and robust to noise.
Coverage depends on the considered data. With a fixed value of n, it is obvious that an n-
gram model with skipping provides a better coverage than a raw n-gram model. Depending
on the considered data and the value of n, it is possible that the coverage is not full, which
can only be determined experimentally. An n-gram model with skipping was used in (Shani
et al., 2005) to initialize a Markov Decision Process recommender system. When building the
model, in addition to the raw n-gram counts, weighted occurrences of skipped n-grams are
added to the counts. The skipping is performed only between the next to last and the last
resource of the n-grams, and the occurrences are weighted according to an exponential de-
cay scheme. This n-gram model has been compared to a dependency network based model
in which the local distributions are probabilistic decision trees. Although these algorithms
are among the most competitive, the skipping-based model reached better results. However,
the skipping is applied only during the training step, which has been shown to provide less
accurate recommendations (Bonnin et al., 2008).
A last possibility is to combine a trigger model with an n-gram model with skipping. To the
best of our knowledge, such a configuration has never been studied in the frame of natural
language. This is because the strong constraints of natural language make raw n-gram models
very efficient, and they just need to be refined using distant information. However, as argued
above, web navigation is far less constrained and the combination of both models provides an
interesting alternative. Indeed, the complementarity of mutual information and conditional
probabilities may even enhance the accuracy of the recommendations. In the following of this
chapter we focus on the previous configuration (n-grams with skipping).

3. The Skipping-Based Recommender

As shown in the previous sections, predicting user behavior involves tradeoffs between com-
plexity, predictive accuracy and coverage. Sequential patterns handle distance between the
resources, but induce a huge number of sequences. The all-kth-order Markov models, as to
them, induce fewer sequences, lead to a high coverage, but still need a high storage space
and do not allow distance between resources, which does not allow robustness to noise. In
statistical language modeling the use of skipping in n-gram models is a way to benefit from
the accuracy of n-gram models while handling distant resources as trigger models do, which
leads to a high coverage and a low time and space complexity. Due to these advantages, the
recommendation algorithm we propose is an n-gram model with skipping and is called the
Skipping-Based Recommender or SBR.
When using skipping, the elements that can be skipped have to be determined and the size
of the skipping has to be fixed. We thus present several possible skipping variants. We then
present the weighting schemes we apply in order to alleviate the importance of distant re-
sources. Last we describe the recommendation process of the SBR model.

3.1 Skipping Variants

In the skipping variants we study in this article, we consider that when an element can be
skipped, the size of the skipping is limited to the size of the window used (similar to the
sliding window used in association rules and Markov models).
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3.1.1 Shani’s skipping

The first skipping variant we study is the one used in (Shani et al., 2005). It consists in allowing
skipping only for the last element of the n-grams, all other elements being contiguous.
For example, let n = 3, and the navigation sequence: (a, b, x, y, z, c, d) where (a, b, c, d) and
(x, y, z) correspond to overlapping navigations. This variant allows to consider triplets as
(a, b, y) or (a, b, c) and also raw triplets as (a, b, x) and (z, c, d). It is thus able to capture dis-
tant elements of a sequence if the last element corresponds to the continuance of a previously
initiated navigation as for the triplet (a, b, c). The elements between (a, b) and c are here con-
sidered as elements of another navigation, but may also be considered as noise.
However, this skipping variant is not able to capture a navigation overlap if the two last
elements correspond to the continuance of a previously begun navigation (a step after the
previous configuration): for example, the triplet (b, c, d) cannot be handled as b and c are not
contiguous.

3.1.2 Full skipping

The full skipping variant goes a step further by allowing skipping between all the elements of
the n-gram. It makes the resulting model almost equivalent to sequential patterns, for instance
the one proposed in (Nakagawa & Mobasher, 2003). The main difference is that the SBR model
considers only sequences of size n while sequential patterns usually handle variable size pat-
terns. This variant has several advantages. First, a high amount of n-grams is processed,
which provides a better coverage. Second, this skipping captures parallel navigations, noise
and approximate sequences, wherever these unexpected actions are, and whatever is their
size. However, it can be viewed as a too permissive variant and the size of the model rapidly
grows.

3.1.3 Enhanced skipping

We designed this new variant especially to take into account noise and parallel navigations
without inducing a high complexity. The first variant can handle only noise in the last el-
ement. The second variant handles noise everywhere in the navigation, which may be too
permissive. We propose here a variant that can be considered to be between both. It allows
the consideration of two configurations simultaneously: skipping the last or the first element
of the n-gram, which enables noise either in the first part of the n-gram, or in the last part, but
not both.
For instance, given the previous example, it becomes possible to handle both cases (a, b, c) and
(b, c, d) but not (a, x, c).

3.2 Weighting Schemes

We argue that skipped n-grams handled by the aforementioned skipping variants cannot be
considered in the same way than raw n-grams (contiguous n-grams), and thus propose to
weight them.
We present in this section several weighting schemes that can be used to take into account
these skipped n-grams. Let di be the distance between the ith element and the last element of
the trigram, and D the size of the window.
In order to show the benefits of weighting, we first propose to not use any weighting, as done
for sequential patterns (Nakagawa & Mobasher, 2003). This weighting scheme is also similar
to most of the trigger-based models: whatever is the distance between the elements of the n-
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grams, they all have the same weight. In this case, the weighting scheme is referred to as the
No Weighting scheme. The weight w(d1, ..., dn−1) of a given skipped n-gram is defined as:

w(d1, ..., dn−1) =

{

1 if d1 ≤ D
0 else

(3)

However, the recommendation impact of a skipped trigram should be lower than the one
of a raw n-gram, due to the distance. We consider that the more a resource is distant, the
more its influence is low, and the less the corresponding skipped n-gram is influencing. Thus,
we propose to apply to a skipped n-gram a weight inversely proportional to the distance D.
The following weight decreases linearly according to the distance. In this case, the weighting
scheme is referred to as the Linear Decay weighting scheme. The weight becomes then:

w(d1, ..., dn−1) =

{

− d1
D + 1 if d1 ≤ D

0 else
(4)

Another way to perform this decrease is to decay exponentially the weight as proposed by
(Shani et al., 2005). Using such a weighting scheme makes the value decrease faster. In this
case, the weighting scheme is referred to as the Single Exponential Decay weighting scheme,
and is defined as follows:

w(d1, ..., dn−1) =

{

2−d1 if d1 ≤ D
0 else

(5)

This last scheme is sufficient for Shani’s skipping variant. Indeed, only the last resource can
be skipped, and it is not necessary to consider all the distances between the resources. In the
enhanced and the full skipping variant however, other distances between the elements of a
skipped n-gram may vary, and should be considered to compute the weightings. We thus
propose to apply to skipped n-grams a weight that depends on the distance between each
element of the n-grams and the resource to predict.
For example, applied to the sequence (a, b, x, y, z, c, d) with n = 3, triplets (a, b, d) and (a, c, d)
should not have the same weight, even if the first element of both triplets is equidistant from
the last element. Moreover the weight of (a, c, d) should be higher than the weight of (a, b, d)
as the intermediate resource c is closer to d than b is. In this case, the weighting scheme is
referred to as the Multiple Exponential Decay weighting scheme. The weight we propose to
use is the following:

w(d1, ..., dn−1) =











1

n − 1

n−1

∑
i=1

2−di if d1 ≤ D

0 else

(6)

Given the previous skipping variants and weighting schemes, the processing of recommen-
dations can be done. The SBR model relies on the following steps:

Step 1: Training the model on a corpus to determine the counts of the n-grams

Step 2: Computing the probabilities of the n-grams based on their counts

Step 3: Running the model to recommend the pertinent resources to the active user given
his/her stream of navigation
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3.2.1 Training

In the training phase, raw n-grams and skipped n-grams are trained on the input data. The
question now is how to mix the skipped n-grams and the raw n-grams. We propose to simply
add the occurrences of skipped n-grams (weighted by the weighting schemes of the previous
section) to the occurrences of raw n-grams (contiguous n-grams) as in (Chan & Goodman,
1998).
The weighted occurrences of the skipped n-grams are added to the counts of their correspond-
ing raw n-grams. Algorithm 1 presents how these counts are computed when using the full
skipping variant and n = 3. The count of the skipped trigram is denoted by C(ρi, ρj, ρk).

Data: a set S of navigation sessions
Result: a list of trigrams associated with their occurrences
trigramlist ← ();
for each session s = (ρ1 . . . ρ|s|) in S do

for i ← 1 to |s| − 2 do
for j ← i + 1 to min(i + D, |s| − 1) do

for k ← j + 1 to min(j + 1 + D, |s|) do
trigram ← (ρi, ρj, ρk);
d1 ← k − i − 1;
d2 ← k − j − 1;
if trigram is in trigramlist then

C(ρi, ρj, ρk) ← C(ρi, ρj, ρk) + w(d1, d2);

else
C(ρi, ρj, ρk) ← w(d1, d2);

end

end

end

end

end

Algorithm 1: Computing counts of trigrams with skipping using the full skipping variant

3.2.2 Computing the probabilities of the n-grams

Given the n-grams counts from the training phase, the conditional probabilities have to
be computed. Let the n-gram (ρi−n+1, ..., ρi). The probability of the resource ρi given
(ρi−n+1, ..., ρi−1) is computed as follows:

P(ρi | ρi−n+1, ..., ρi−1) =
C(ρi−n+1, ..., ρi)

C(ρi−n+1, ..., ρi−1)
(7)

where C(ρi−n+1, ..., ρi) is the count of the skipped n-gram (ρi−n+1, ..., ρi).

3.2.3 Recommending

The recommendation step consists in predicting the next resource ri given the D − 1 previous
resources in the session (ρi−D+1, ..., ρi−1). For each resource in the set of distinct resources of
the data R = {r1, ..., r|R|}, a score is computed according to each possible skipping state σ.
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This score is a weighted form of the probability that at least one of the skipping states leads to
resource rj. The score is given by the following formula:

q(rj, h) = 1 − ∏
σ

(

1 − P(rj | σ) · w(d1, ..., dn−1)
)

(8)

where P(rj|σ) is the probability of rj given the skipping state σ, w(d1, ..., dn−1) the weighting
of the skipping n-gram (σ ◦ rj) according to the distances d1, ..., dn−1 between its elements.
The skipping states σ considered depend on the skipping variant chosen.
For instance, if a user has browsed the following resources:

388 401 55 359 325 369 381 368 366 60 72

Then if the window size is D = 10, the resources considered are the following: 55, 359,
325, 369, 381, 368, 366, 60 and 72 (the 9 previous resources). If the skipping variant is
the enhanced skipping and n = 3, than skipping states of size 2 have to be considered, thus
1 + 2 × 7 = 15 skipping states. These skipping states are presented in Figure 1.

〈 60, 72 〉 〈 381, 72 〉 〈 325, 369 〉
〈 366, 72 〉 〈 381, 368 〉 〈 359, 72 〉
〈 366, 60 〉 〈 369, 72 〉 〈 359, 325 〉
〈 368, 72 〉 〈 369, 381 〉 〈 55, 72 〉
〈 368, 366 〉 〈 325, 72 〉 〈 55, 359 〉

Fig. 1. Example of skipping states obtained using the enhanced skipping variant for n = 3

Then, matching trigrams are searched in the model. The corresponding entries are weighted
and included in the final recommendation list according to Equation (8).

The following sections study the performance of the model presented in this section.

4. Experimental setup

4.1 Corpus

Empirical studies are performed on two types of datasets. The first one is provided by the
Crédit Agricole S.A. banking group1, one of the main banks in France. Its employees use an In-
tranet interface containing workspaces, news, articles, etc. The bank provided us anonymized
navigation client logs containing 3, 391 distinct web pages (resources) browsed by 815 bank
clerks during years 2007 and 2008. Using these logs we could extract a corpus of 123, 470
consultations.
The second corpus is the CTI web server corpus of the DePaul University (http://www.
cs.depaul.edu). It contains 69, 471 consultations of 683 pages by 5, 446 users during a two
week period in April 2002 (i.e. about 170 consultations per day). The data has been cleaned
and filtered by eliminating sessions of size 1 and low support page views.
The repartition of session sizes of both corpora are depicted in Figure 2. As can be seen, most
of the sessions have a size below 10. The Crédit Agricole S.A. corpus has an average session
size of 8.33 while the DePaul corpus has an average session size of 5.05.
In order to test the robustness to noise of our model, an increasing percentage of resources
is randomly included in the corpora. These resources are extracted from the set of distinct

1 Thanks to Jean-Philippe Blanchard
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resources (the vocabulary) of each corpus. Notice that noise was already present in the original
corpora, but was not quantifiable.
Two extra processings have been applied to the data. The first is the elimination of sessions
of size 1 (which was already performed on the DePaul corpus) and 2. This is because in the
following, we compare our SBR model for n = 3 to state-of-the-art models, and wanted the
same recommendation cases to be considered. The second is the division of the resulting
corpora into training and test sets of 90% and 10% respectively.

4.2 Evaluation metrics

To evaluate the accuracy of our models, we used the Recommendation Score (RS). This metric
evaluates the average pertinence of recommendation lists. For each history of the test corpus, a
recommendation list of size m is built, containing the most probable resources according to the
model. If the actual resource is in the list, the recommendation is pertinent (also called a hit).
This metric thus calculates the percentage of pertinent recommendations; it is also called the
hit-ratio (Jin et al., 2005; Pavlov et al., 2004). To complete the evaluations, we also provide the
coverage, i.e. the percentage of cases where the model can recommend a resource. Running
times and model sizes are provided too. All experiments have been performed on a 2.66GHz
processor and 4GB memory computer. Running times have been obtained by running ten
times each model and retaining the smallest ones.

4.3 Models

In the following, we compare our SBR model to state-of-the-art web predictive models. These
models are a standard form of all-kth-order Markov model and open sequential patterns.
The sequential patterns are built and selected according to the GSP algorithm and the combi-
nation of the antecedents is performed using the maximum length policy as done in (Naka-
gawa & Mobasher, 2003) together with the sum policy.
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Recall that all-kth-order Markov models are equivalent to closed sequential patterns. The only
difference is that there is no need of the Apriori or GSP algorithm to filter the states.

5. Tractability

This section is dedicated to a theoretical and an empirical study of the tractability of the SBR
model, the all-kth-order Markov model and open sequential patterns.
Two aspects are considered: time and space complexity. As training can be performed off-line,
only the time complexity of the recommendation step is studied.

5.1 Theoretical discussion

Theoretically, space complexity is dependent on the number of distinct elements N of the data
considered. For instance, if a model has to store all encountered sequences of sizes 1 and 2,
then the maximum number of elements to be stored is N + N2.
Time complexity is dependent on the number of sequences that are considered in the history
for each recommendation, and the time necessary to find a matching antecedent or state in the
model.

5.1.1 Sequential patterns

� Space complexity:
Using sequential patterns, a huge number of sequences has to be stored. If N is the number of
distinct elements and D the window size, the maximum number of elements to store is:

D

∑
k=1

N
k = N ·

1 − ND

1 − N
= O(N

D) (9)

Using the GSP algorithm reduces space complexity; however it induces a lower coverage of
longer patterns.

� Time complexity:
Open sequential patterns consider variable length open sequences in a window of size D. The
last element of the pattern (the consequent) is always the rightmost element in the window.
The number of combinations induced is thus:

D−1

∑
k=1

C
k
D−1 = 2D−1 (10)

The search of the corresponding patterns in the model, can be done in O(k) using a tree struc-
ture, where k is the length of the current pattern to be matched. The number of iterations of
each recommendation is thus:

D−1

∑
k=1

O(k) · C
k
D−1 �

D−1

∑
k=1

O(D) · C
k
D−1

� O(D)
D−1

∑
k=1

C
k
D−1

� O(D) · 2D−1 = O(D · 2D−1)

(11)
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5.1.2 All-kth-order Markov models

� Space complexity:
The maximum number of elements induced using an all-kth-order Markov model is the same
as the one of sequential patterns. However, in practice considering contiguous patterns in-
duces far less elements, and space complexity is lower. The difference depends on the size of
the training data and on the number of distinct resources. As for sequential patterns, pruning
the states can lower space complexity, as done in (Deshpande & Karypis, 2004), but may also
induce a low coverage of longer sequences.

� Time complexity:
All-kth-order Markov models have a lower complexity than sequential patterns. Indeed, as the
patterns considered are contiguous, only D sequences are induced for each recommendation.
Time complexity is thus:

D

∑
k=1

O(k) = O(D
2) (12)

5.1.3 SBR model

� Space complexity:
The maximum number of elements induced using the SBR model is always lower than Nn,
which is a quite lower upper bound than the ones of both previous models.

� Time complexity:
The complexity of our model depends on the skipping variant used. Using the full skipping
variant, Ck

D−1 sequences are induced for each recommendation, thus O(Dn−1) if n � D

2 ,

O(DD−n+1) if D

2 � n � D, and O(DD/2) ∀n � D. As searching the states in a tree structure
can be done in O(n), time complextity is thus:

O(n · Dn−1) if n � D

2

O(n · DD−n+1) if D

2 � n � D

O(n · DD/2) ∀n � D

(13)

Shani’s and the enhanced skipping variants reduce this number to O(n · D).
Thus, depending on the value of n, the full skipping variant can have a high complexity.
However, using low values of n such as 3 or 4 leads to acceptable complexities. For n = 3
and D � 6, the time complexity of the full skipping variant is O(D2). As well, for n = 4 and
D � 8, the time complexity of the full skipping variant is O(D3). As using skipping allows to
simulate a higher order model using a lower order model, the accuracy and coverage should
be high.

5.2 Empirical comparison

In this section, experimental results of the three models are compared in terms of model
sizes and computation time. In order to have comparable models, all support and confidence
thresholds are set to 0. The size of the recommendation lists is set to 10. We chose this value
for two reasons: (1) a user rarely takes into consideration resources recommended above this
value (2) top-10 recommendation lists are widely used, which provides a direct comparison
of the results. The size of the window is set to D = 10. The SBR is tested for a value of n = 3,
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and using the three aforementionned skipping variants: Shani’s, enhanced and full. Results
are shown in Table 1.

DePaul Crédit Agricole S.A.

size time size time

SBR (Shani) 1.5 MB 14s 2.3 MB 3m05s

SBR (Enhanced) 2.6 MB 18s 4.1 MB 3m20s

SBR (Full) 5.3 MB 25s 8.1 MB 5m51s

AKO 3.3 MB 3m06s 8.3 MB 17m02s

SP 108.7 MB 1m08s 289.6 MB 10m50s

Table 1. Size and running time of the models

� Space requirements
We can first notice that using the SBR model with Shani’s and the enhanced skipping variants
provides the lowest model sizes on both corpora. On the Crédit Agricole S.A. corpus, the full
skipping variant induces a larger model than the all-kth-order Markov model. However, on
the DePaul corpus, the size of the SBR model with the full skipping variant is slightly smaller
than the one of the all-kth-order Markov model.
The huge space complexity of sequential patterns is obviously verified: it is more than 20
times larger than all other models on the Crédit Agricole S.A. corpus, and more than 30 times
larger on the DePaul corpus. So far, the SBR model and the all-kth-order Markov model are
almost equivalent.

� Running time
Surprisingly, the sequential patterns model ran faster than the all-kth-order Markov model
(1m08s vs 3m06s and 10m50s vs 17m05s). This is because the first one considers open se-
quences and contains far more elements (108.7 MB vs 3.3 MB and 289.6 MB vs 8.3 MB). Thus
using sequential patterns, it is much more likely to find matching sequences and the model
is able to provide top-10 recommendation lists after far less iterations. Indeed, the sequen-
tial patterns model we implemented use the maximum length policy. Using this policy, for
each possible sequential pattern length, all combinations are considered in the window. If a
sufficient number of recommendations is induced, then it is not necessary to continue the pro-
cess using smaller sequential patterns. The same strategy is used for the all-kth-order Markov
model.
The running time of the SBR model is clearly below the ones of both other models. Using the
full skipping variant, it ran more than four times faster than the sequential patterns on the
DePaul corpus, and almost twice faster on the Crédit Agricole S.A. corpus. It thus represents
the most tractable alternative. As could have been predicted, the most tractable skipping
variants are Shani’s and the enhanced skipping variants.

6. Robustness to noise

As discussed previously, the presence of noise in navigations can have dramatic effects on the
recommendations. Our model is designed to be robust to noise. In this section we compare its
features with the ones of all-kth-order Markov models and open sequential patterns.
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6.1 Theoretical discussion

In (Jianyong et al., 2007), it is argued that closed sequences are more appropriate for web
navigation. The reasons put forward are that it provides more compact recommendation lists
and that it is more efficient. Moreover, all-kth-order Markov models are considered as being
among the best performing models of the state-of-the-art. However, using closed sequences
makes it impossible to ignore resources corresponding to noise. When the history does not
match the model, it is then reduced step by step, until a resource can be recommended. After
a reduction, the resource that is discarded is the one that is the more distant from the resource
to recommend. So if any noise appears in a close past and no matching history can be found
unless this resource is ignored, the history will be reduced until the resource is out of it. As
a result, very few resources will be considered to compute the recommendations. Moreover,
when the resource previously consulted is noise, no reliable recommendation can be provided.
For these reasons, we think that using closed sequences, in particular all-kth-order Markov
models, is not the most appropriate configuration.
Open sequential patterns exhibits good characteristics that make them more robust to such
problems. As all (2D−1) possible open sequences in the past can be considered, if noise oc-
curred in a recent past, longer sequences that does not include it can be considered to com-
pute recommendations. It should be noticed that using such a scheme, most of the sequences
induced are formed using distant resources. We think that such sequences may be less repre-
sentative, as users rarely perform navigation mistakes, returns to previous pages or parallel
navigations between each page consultation, and that most of contiguous consultations cor-
respond to coherent transitions. Moreover, as the number of sequences induced is huge, it is
not clear whether it is compensated by the accuracy provided.
The SBR model has several advantages concerning robustness to noise. First, all skipping
states used to provide the recommendations are combined, and weighting schemes are used
to alleviate the importance of distant resources. Moreover, using Shani’s and the enhanced
skipping variants, among the n elements of each n-gram, n − 1 elements are always contigu-
ous, which lowers the phenomenon of non coherent transitions. Last, it has low space and
state complexities. It thus represents an even better candidate.

6.2 Empirical comparison

We are now interested in the empirical study of the robustness to noise of the models. Tests
are performed on the Crédit Agricole S.A. and DePaul corpora in which 0%, 15% and 30% of
noise is inserted. It should be noticed that when no noise is inserted, there is actually already
some natural noise in the corpus. Thus, the 0% noise values below does not mean that there
is no noise in the corpus, but that no additional noise was inserted. For this reason, we only
inserted a maximum of 30% of noise.
We first focus on the determination of the best configuration of our SBR model. We then
provide a comparison of the SBR model and the models of the state-of-the-art. Here again, the
size of the recommendation lists is set to 10. Results are provided in terms of RS and coverage.

6.2.1 Skipping variants

This section is dedicated to the study of the SBR model. The two features studied are the
skipping variant presented in section 3.1 and the weighting schemes presented in section 3.2.
Figure 3 and Figure 4 show the RS obtained on the Crédit Agricole S.A. corpus and the DePaul
corpus respectively.
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Fig. 3. Accuracy of the SBR model on the Crédit Agricole S.A. corpus according to the skipping
variants and the weighting schemes proposed
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We can first notice that Shani’s skipping variant provides the lowest RS values on all 6 corpora.
When no noise is inserted into the corpora, the enhanced and the full skipping variant provide
similar results. When noise is inserted, the full skipping variant provides a slightly better RS.
As our enhanced skipping variant is almost as accurate as the full skipping variant and has a
lower complexity, it seems to be the best configuration.
Focusing on the weighting schemes, we can first notice that using no weighting provides al-
most always the lowest RS. When no noise is inserted, the Multiple Exponential Decay weight-
ing scheme always provides the best results. When noise is inserted, it almost always provides
the best results. It thus constitutes the best alternative.
So far, the best configuration of the SBR model is the enhanced skipping variant together with
the Multiple Exponential Decay weighting scheme.
Focusing on Table 2 and Table 3, we can see that when no noise is inserted, all skippings reach
an almost full coverage. When noise is inserted the enhanced and the full skipping variants
provide the best coverages, which are similar. This thus confirms that the enhanced skipping
variant we proposed is the best configuration.

Noise 0 15 30

Shani 98.8 89.5 84.5

Enhanced 99.5 95.9 93.6

Full 99.7 96.0 94.3

Table 2. Coverage of the SBR model on the Crédit Agricole S.A. corpus according to the
skipping variants proposed

Noise 0 15 30

Shani 98.9 96.1 93.1

Enhanced 99.7 98.2 96.3

Full 99.8 98.3 96.4

Table 3. Coverage of the SBR model on the DePaul corpus according to the skipping variants
proposed

6.2.2 Comparison to the state-of-the-art

This section is dedicated to the comparison of the robustness to noise of our SBR model to
both state-of-the-art models. The configuration of the SBR model is the enhanced skipping
variant together with the Multiple Exponential Decay Weighting scheme.
Results of the all-kth-order Markov model and the sequential patterns are provided at optimal
pruning thresholds. Notice that sequential patterns could not be used with support thresholds
of 0, as moving to more noisy environment made the space requirements too huge for our
computer, although it was possible using both other models.
Results are presented in Figure 5 and Figure 6. We can first notice that on the Crédit Agricole
S.A. corpus, the best results are provided by the SBR model. When no noise is inserted, the
SBR provides a significant enhancement compared to sequential patterns. This difference is
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Fig. 5. RS of the models on the noisy Crédit Agricole S.A. corpora
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Fig. 6. RS of the models on the noisy DePaul corpora

www.intechopen.com



Skipping-Based Collaborative Recommendations inspired from Statistical Language Modeling 285

lower when 15% of noise is inserted in the corpus. With 30% of noise, both models provide
similar results.
On the DePaul corpus, sequential patterns provide slightly better results than the SBR model,
whatever is the amount of noise inserted. As the SBR has lower time and space complexities,
it constitutes a better choice.
The all-kth-order Markov model provides the lowest accuracy, which confirms that using
closed sequences provides less accurate results in a noisy environment. It should be noticed
that this last model has a higher slope than both other. We think this shows that it is not able
to handle long sequences and is more accurate using a lower maximum value of k. Indeed,
the more noise is inserted in the model, the less long matching states are found, and thus
the lower the length of the matching states. However, as this model provided a very lower
accuracy, we did not study this phenomenon further.

7. Conclusion

In this chapter, we focused on sequence-based recommender systems. We first described re-
lated work and drew a parallel between natural language and Web navigation. We then de-
cided to take advantage of statistical language models to perform recommendations in the
frame of web navigation.
We proposed a new model called Sequence Based Recommender or SBR, that is based on an
n-gram model and integrates skipping. This model has the advantage to take into account
long histories while being tractable. Several skipping variant were proposed. As well, several
weighting schemes were proposed to alleviate the importance of distant resources.
We provided theoretical and empirical studies of the tractability and robustness to noise of
our model, compared to state-of-the-art models: all-kth-order Markov models and sequential
patterns. The empirical studies were performed on two browsing datasets. Results show
that on both corpora, considering open sequences is more efficient than considering closed
sequences. Furthermore, our model has been shown to represent the best alternative: it has
the lowest time and space complexity, provides a better accuracy on one of the corpora and
an accuracy comparable to the one of sequential patterns on the other one, while having a
comparable coverage.

8. References

Adomavicius, G., Sankaranarayanan, R., Sen, S. & Tuzhilin, A. (2005). Incorporating contex-
tual information in recommender systems using a multidimensional approach, ACM
Transactions on Information Systems 23(1): 103–145.

Adomavicius, G. & Tuzhilin, A. (2005). Toward the Next Generation of Recommender Sys-
tems: A Survey of the State-of-the-Art and Possible Extensions, IEEE Transactions on
Knowledge and Data Engineering 17(6): 734–749.
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