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1. Introduction 
 

This chapter is concerned with intelligent software agents that populate open computational 
environments, in which they interact for various purposes, and in various manners, e.g. 
competitively in the case of electronic auctions or resource allocation problems, 
collaboratively in the case of distributed problem solving, parallel processing, joint 
planning, etc. By the term ‘intelligent’ we refer to agents that are autonomous (i.e. they decide 
for themselves what action to perform in order to meet their design goals), rational (i.e. they 
choose the best available course of action in order to meet their design goals; more precisely, 
they are computationally rational, in that they base their decision on the information available 
to them at the time of decision-making), and social (i.e. their interaction goes beyond mere 
data exchange and resembles social interaction among humans, that is, they may exchange 
promises, enter negotiations, raise requests, make demands, and so on). We use the term 
‘open’ to characterize a computational environment in the sense defined by Hewitt (Hewitt, 
1985), that is, in order to refer to an environment that is dynamic, continuous, unobservable 
(or, at best, partially observable) and non-deterministic. The interactions among agents in 
any multi-agent system are typically governed by norms that regulate the behaviour of the 
agents in the specific environment. Norms prescribe what behaviours are socially acceptable 
within a particular context, that is they specify what actions are obligatory, permitted or 
forbidden for each agent, in various circumstances, and usually within associated time 
bounds. For instance, norms may be used to regulate the agents’ communication and 
coordination, and to specify liveness and safety properties of each agent, as well as the 
whole multi-agent system. In some cases, for example in electronic auction markets, or an 
information grid to which agents subscribe, these norms are designed a priori by the market 
owner, and when an agent joins the particular forum, this is taken to signal tacitly that the 
agent agrees to be subject to the market ‘contract’ that is specified by these norms. In other 
application areas, such as e-commerce exchanges or ad hoc distributed problem solving, and 
ad hoc task and resource allocation problems, agents may negotiate and agree between 
themselves the norms that will govern their interaction; by agreeing on a set of norms, 
agents signal tacitly that they agree to be subject to the ‘contract’ that is specified by these 
norms. However, since agents are autonomous and rational, and since the environment is 
open, their actual behaviour may deviate from the ideal behaviour prescribed by the 
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‘contract’, whether intentionally or unintentionally. For example, an agent that is obliged to 
perform a particular calculation at some specific time point, and return the result to some 
other agent, in a distributed problem solving scenario, may fail to comply with its obligation 
because at the designated time the agent lacked the computational resources to perform the 
calculation, or because by the time the agent completed the computation, it lost its 
communication means and could not deliver the result to the intended recipient; in an e-
commerce scenario, a provider agent that is obliged to deliver a specific service or goods to a 
consumer agent may fail to do so, because it chose to deliver the service or goods to some 
other agent instead, after it established that the income that it would receive in this way 
outweighed the reparation costs that it would owe to the consumer agent. Autonomous 
agents decide for themselves what actions to perform, as noted earlier, and this decision 
includes the decision on whether to comply with the ‘contract’ that governs their behaviour. 
An agent’s rationality is measured against the quality of its decisions, and this relies heavily 
on the quantity and quality of information that the agent possesses at the time point of 
decision-making. Unavoidably, agents is open environments possess information that is 
incomplete, imprecise, maybe even incorrect, due to the very fact that the environment is 
open and, at the very least, agents join and leave it as they choose. Information exchange 
between agents may be delayed, and message content may be distorted by noise during 
communication; it may even be intentionally false in the case of insincere agents. It is 
natural, therefore, to expect that agents will have to perform their decision-making by 
employing assumptions, in order to fill in what they perceive as information gaps. 
Assumption identification and deployment must be dynamic, since the agents operate in a 
dynamic environment, and the agents’ reasoning must be nonmonotonic, since any 
conclusions drawn on the basis of assumptions may need to be revised, should information 
that was previously missing become available later.  
We begin by motivating the need for dynamic and autonomous hypothetical reasoning, and 
we identify and state explicitly three aspects of this problem in the context of open norm-
governed environments. Then we present our approach to dynamic assumption 
identification and usage, and we demonstrate the way in which it permits agents to 
establish their current knowledge state, as well as their current assumption requirements, 
autonomously. Our approach exploits the syntax of Default Logic (DfL) rules (Reiter, 1980), 
in order to separate the definite knowledge from the assumptions that are used in drawing a 
conclusion; however, as we explain later, assumption identification and deployment is 
conducted without resorting to proof, which is notably computationally hard. Finally, we 
review and discuss the main other approaches to assumption-based reasoning found in the 
Artificial Intelligence literature. We should note from the outset that the distinctive feature 
of our approach, which sets it apart from these other approaches, is that agents do not rely 
on a pre-specified pool of assumptions, in order to identify their assumption requirements. 
Nor do they rely on goal-orientation, as a means to identify candidate assumptions. In this 
way, we argue, an agent is open-minded, in that it decides for itself which assumptions are 
plausible and appropriate at any given time, and crucially, this involves making 
assumptions about its past, as well as its future; as it turns out it manages assumption 
deployment in a rational manner.  

 
 

 

2. Who needs assumptions and when? 
 

Rule-based knowledge representation, typically in first-order logic or some subset of it, has 
become popular and is used in many symbolic Artificial Intelligence applications, in order 
to encode domain information, as well as the decision-making behaviour of the system. 
Typically, rules have the form of sequent calculus sentences (Jean-Yves Girard and Lafont, 
1989), i.e. 
 

YX1, X2, …, Xk                                                                (1) 
 
where Y and Xi (1  i  k) are positive or negative literals (any variables are assumed to be 
universally quantified) representing the rule conclusion and conditions, respectively. The 
semantics of such a rule is “if all of the conditions Xi hold, then conclusion Y holds”. The system 
checks whether conditions hold against its knowledge base, and the conclusion Y it draws, 
in case the conditions are true given its knowledge, may result in belief revision – the 
knowledge base is updated to contain new information – or in the actualization of some 
behaviour – the system does something, and this action may be private (some internal 
computation), or public (e.g. the dispatch of a message, or, in the case of robotic agents, the 
performance of some action that transforms the environment in some way).   
A question that arises naturally is: what happens when the system does not know all of the 
conditions Xi that are involved in some rule contained in its knowledge base, i.e. it does not 
have explicit information, in its knowledge base, about the truth or falsity of some, or all of 
the conditions of a rule? There are two options: (i) if the system employs the Closed World 
Assumption (CWA) (Reiter, 1977) - anything not explicitly known is considered false - then 
the unknown conditions are treated as false, and hence the rule does not apply; (ii) if the 
system employs the Open World Assumption (OWA) - anything not explicitly known is 
considered neither true, nor false, merely unknown  - then the evaluation of unknown 
conditions is unsuccessful, and, again, the rule does not apply. In the first case the system 
deals with information gaps by filling them in, in a narrow-minded manner, based only on 
its set of beliefs; in the second case, the system is open-minded, in that it remains agnostic 
about missing information, allowing for the possibility that something it does not know may 
be true, but this stance is counterproductive, since the system cannot in effect apply its rule.  
In the worst case, if all of the rules of its knowledge base do not apply, because some of their 
conditions are unknown given the current knowledge base, the system will do nothing, 
whether it employs the CWA or the OWA. At best, in order to avoid idleness, the system 
may ask its user to determine the truth value of the information it lacks. This is, in fact, the 
classic approach to inference employed in expert systems, where the system user becomes 
responsible for the quality of information that is available to the system, and ultimately for 
the quality of the conclusions that the system draws. The user herself may not have definite 
knowledge about the missing information, yet she may want the system to proceed and 
produce even a tentative result; in this case the user provides an answer to the system, 
noting to herself that this answer is, in fact, an assumption that she makes for the time being, 
yet the system is not aware that it is employing an assumption, nor does it have any control 
over assumption deployment, since it is not up to it to decide whether to use the answer 
provided by the user or not. 
This approach is clearly inappropriate for intelligent agents, which are, after all, designed 
and developed in order to perform tasks delegated to them by humans, and which by 
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‘contract’, whether intentionally or unintentionally. For example, an agent that is obliged to 
perform a particular calculation at some specific time point, and return the result to some 
other agent, in a distributed problem solving scenario, may fail to comply with its obligation 
because at the designated time the agent lacked the computational resources to perform the 
calculation, or because by the time the agent completed the computation, it lost its 
communication means and could not deliver the result to the intended recipient; in an e-
commerce scenario, a provider agent that is obliged to deliver a specific service or goods to a 
consumer agent may fail to do so, because it chose to deliver the service or goods to some 
other agent instead, after it established that the income that it would receive in this way 
outweighed the reparation costs that it would owe to the consumer agent. Autonomous 
agents decide for themselves what actions to perform, as noted earlier, and this decision 
includes the decision on whether to comply with the ‘contract’ that governs their behaviour. 
An agent’s rationality is measured against the quality of its decisions, and this relies heavily 
on the quantity and quality of information that the agent possesses at the time point of 
decision-making. Unavoidably, agents is open environments possess information that is 
incomplete, imprecise, maybe even incorrect, due to the very fact that the environment is 
open and, at the very least, agents join and leave it as they choose. Information exchange 
between agents may be delayed, and message content may be distorted by noise during 
communication; it may even be intentionally false in the case of insincere agents. It is 
natural, therefore, to expect that agents will have to perform their decision-making by 
employing assumptions, in order to fill in what they perceive as information gaps. 
Assumption identification and deployment must be dynamic, since the agents operate in a 
dynamic environment, and the agents’ reasoning must be nonmonotonic, since any 
conclusions drawn on the basis of assumptions may need to be revised, should information 
that was previously missing become available later.  
We begin by motivating the need for dynamic and autonomous hypothetical reasoning, and 
we identify and state explicitly three aspects of this problem in the context of open norm-
governed environments. Then we present our approach to dynamic assumption 
identification and usage, and we demonstrate the way in which it permits agents to 
establish their current knowledge state, as well as their current assumption requirements, 
autonomously. Our approach exploits the syntax of Default Logic (DfL) rules (Reiter, 1980), 
in order to separate the definite knowledge from the assumptions that are used in drawing a 
conclusion; however, as we explain later, assumption identification and deployment is 
conducted without resorting to proof, which is notably computationally hard. Finally, we 
review and discuss the main other approaches to assumption-based reasoning found in the 
Artificial Intelligence literature. We should note from the outset that the distinctive feature 
of our approach, which sets it apart from these other approaches, is that agents do not rely 
on a pre-specified pool of assumptions, in order to identify their assumption requirements. 
Nor do they rely on goal-orientation, as a means to identify candidate assumptions. In this 
way, we argue, an agent is open-minded, in that it decides for itself which assumptions are 
plausible and appropriate at any given time, and crucially, this involves making 
assumptions about its past, as well as its future; as it turns out it manages assumption 
deployment in a rational manner.  

 
 

 

2. Who needs assumptions and when? 
 

Rule-based knowledge representation, typically in first-order logic or some subset of it, has 
become popular and is used in many symbolic Artificial Intelligence applications, in order 
to encode domain information, as well as the decision-making behaviour of the system. 
Typically, rules have the form of sequent calculus sentences (Jean-Yves Girard and Lafont, 
1989), i.e. 
 

YX1, X2, …, Xk                                                                (1) 
 
where Y and Xi (1  i  k) are positive or negative literals (any variables are assumed to be 
universally quantified) representing the rule conclusion and conditions, respectively. The 
semantics of such a rule is “if all of the conditions Xi hold, then conclusion Y holds”. The system 
checks whether conditions hold against its knowledge base, and the conclusion Y it draws, 
in case the conditions are true given its knowledge, may result in belief revision – the 
knowledge base is updated to contain new information – or in the actualization of some 
behaviour – the system does something, and this action may be private (some internal 
computation), or public (e.g. the dispatch of a message, or, in the case of robotic agents, the 
performance of some action that transforms the environment in some way).   
A question that arises naturally is: what happens when the system does not know all of the 
conditions Xi that are involved in some rule contained in its knowledge base, i.e. it does not 
have explicit information, in its knowledge base, about the truth or falsity of some, or all of 
the conditions of a rule? There are two options: (i) if the system employs the Closed World 
Assumption (CWA) (Reiter, 1977) - anything not explicitly known is considered false - then 
the unknown conditions are treated as false, and hence the rule does not apply; (ii) if the 
system employs the Open World Assumption (OWA) - anything not explicitly known is 
considered neither true, nor false, merely unknown  - then the evaluation of unknown 
conditions is unsuccessful, and, again, the rule does not apply. In the first case the system 
deals with information gaps by filling them in, in a narrow-minded manner, based only on 
its set of beliefs; in the second case, the system is open-minded, in that it remains agnostic 
about missing information, allowing for the possibility that something it does not know may 
be true, but this stance is counterproductive, since the system cannot in effect apply its rule.  
In the worst case, if all of the rules of its knowledge base do not apply, because some of their 
conditions are unknown given the current knowledge base, the system will do nothing, 
whether it employs the CWA or the OWA. At best, in order to avoid idleness, the system 
may ask its user to determine the truth value of the information it lacks. This is, in fact, the 
classic approach to inference employed in expert systems, where the system user becomes 
responsible for the quality of information that is available to the system, and ultimately for 
the quality of the conclusions that the system draws. The user herself may not have definite 
knowledge about the missing information, yet she may want the system to proceed and 
produce even a tentative result; in this case the user provides an answer to the system, 
noting to herself that this answer is, in fact, an assumption that she makes for the time being, 
yet the system is not aware that it is employing an assumption, nor does it have any control 
over assumption deployment, since it is not up to it to decide whether to use the answer 
provided by the user or not. 
This approach is clearly inappropriate for intelligent agents, which are, after all, designed 
and developed in order to perform tasks delegated to them by humans, and which by 
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definition, must behave autonomously and rationally. Typically, intelligent agents interact 
with other agents in a designated computational or physical environment, and this 
interaction is regulated by norms that stipulate what each agent is obliged, permitted, 
prohibited, institutionally empowered and so on to do, much in the same spirit that human 
agent interaction is regulated by the Law, organizational, and other formal, or informal, 
social rules. Human agents do not always comply with legal, organizational and social 
norms. The mere existence of these norms, whose purpose is to describe which behaviours 
are acceptable, encouraged, or even imperative, does not guarantee that their subjects will, 
in fact, behave accordingly. The actual behaviour that a human agent demonstrates deviates, 
quite often, from the ideal, and this may happen intentionally or unintentionally. It may be 
the case that a human agent knows what the norm prescribes, knows the consequences of a 
potential violation, but nonetheless chooses to violate it, for various reasons – she cannot do 
otherwise, or she judges that the penalty associated with the violation is worth paying, for 
the violation itself results in some state that she considers in some way positive, given her 
subjective value system. It may be the case that human agents violate norms 
unintentionally, often for the simple reason that they do not know that specific norms apply.  
In similar spirit, autonomous, rational, artificial agents cannot be expected to behave in 
accordance to the norms that govern their virtual societies, for the simple reason that they 
are designed and developed to act in the interest of their human/organizational owners, in 
accordance with the latter’s value systems and goals.  
Social norms may be thought of as rules of the form (1), shown above, where the conditions 
Xi and the conclusion Y refer not only to application domain entities, but to normative 
notions as well, which characterize agents’ actions, or the states of affairs that can be effected 
by agents’ actions; the main normative notions are obligation, permission, prohibition, and 
institutional power (the ability to create normative relations). For instance, in an electronic 
commerce scenario, a norm may specify that “if the seller agent delivers the specified quantity of 
goods to the buyer agent by the due date, then the buyer agent is obliged to pay the specified amount 
to the seller agent by a specified date”; in a distributed problem solving scenario, a norm may 
specify that “if the planning agent computes a partial plan for a specified goal, then it is permitted 
for the planning agent to send the partial plan it computed to the coordinator agent immediately”, or 
that “a planning agent is prohibited from sending partial solutions without being asked to do so by 
the coordinator agent”, and another may specify that “the coordinator agent is prohibited from 
computing the final plan, unless it has received partial plans for all of the subgoals that it allocated to 
planning agents”; in a task or resource allocation scenario a norm may specify that “the 
scheduler agent is permitted to change the order of print jobs in the printer queue, when a print job 
arrives from a designated port, which is to be treated as an emergency port”, or another norm may 
specify that “a scheduler agent is empowered to impose an obligation on a printer agent that 
processes jobs in first-in-first-out manner to start processing jobs in shortest-job-first manner, 
whenever the queue reaches a certain capacity”   
In order for an agent to decide whether to comply or not with a norm, first it must establish 
that the norm applies, and to do this it must be able to establish both factual information 
and prescriptive information, given a history of events that have occurred up to the point of 
its query. We saw earlier that a system that lacks information about rule conditions cannot 
apply its rules and, inevitably, if it is not to remain idle, it has to resort to its owner and 
obtain answers from her. This is not a realistic solution in the case of autonomous, rational 
agents, which are designed to act on behalf of their owners – idleness is not an attractive 

 

option, and an autonomous agent is expected to turn to its owner for help only in extreme 
circumstances!   
Obviously agents in any system (not necessarily open) do not possess information about the 
future. In order for an agent to meet its design goals, though, and plan its course of action at 
any given time, it needs to fill in information gaps by employing assumptions about the 
future. In open computational environments, even the historical information available to an 
agent when it poses its query may be incomplete, for various reasons: Information may be 
lost, or distorted by noise, and in a truly open system, where agents join or leave the system 
at different times, information delivery from agent to agent may simply be delayed. In order 
to reason in the absence of complete historical knowledge, agents must be able to fill in 
information gaps, by employing assumptions about the past and the present. One might 
argue that it would be reasonable for an agent to adopt the CWA in order to deal with 
information gaps that concern the past, and the OWA in order to deal with information gaps 
that concern the future. However, such an agent would not be truly open-minded, in that it 
would treat the historical information that it would possess as definitive. And in any case, as 
we argued earlier, both the adoption of the CWA and the adoption of the OWA have the 
same practical effect: the agent would remain idle, or it would need to resort to its owner, in 
order to fill in information gaps and proceed with its inferences. 
Therefore assumption-based reasoning is useful in two modes, progressively, because the 
agent cannot know the future, and retrospectively, because the agent may not know the 
past. Progressive hypothetical reasoning is sometimes referred to as best-guess reasoning, 
while retrospective hypothetical reasoning is sometimes referred to as no-risk reasoning.  
o Best-guess reasoning: An agent cannot know the future, yet it may need to plan its 

activities on the basis of hypotheses that concern the future, i.e., on the assumption that 
certain events or other agents’ actions will occur, or that certain causal relations will be 
effected in the environment, or that it will bear a certain normative status (obligations, 
permissions, prohibitions, powers) towards other agents. 

o No-risk reasoning: An agent may not know everything about the past and present, i.e., 
the history of its environment, other agents and itself so far, yet it may need to plan its 
activities on the basis of hypotheses that concern the past and present, i.e., on the 
assumption that certain events or other agents’ actions have occurred, or that certain 
normative relations have obtained between itself and other agents, in order to protect 
itself from an undesirable situation in the future.  

To illustrate these cases, consider a business transaction that takes place in an electronic 
marketplace populated by software agents. A buyer agent communicates, at time point T, 
with a seller agent and establishes an agreement with it for purchasing a certain product. 
Consequently, the seller agent communicates with a carrier agent and establishes another 
agreement with it for the timely and safe delivery of goods to the buyer agent. A reasonable 
query that the buyer agent might have might be general, such as “What do I have to do from 
now on, with respect to this contract?”. The buyer agent would expect a list of all the 
obligations, permissions, prohibitions, etc. that arise for it as a result of entering this 
agreement, along with their associated times, which may be relatively or absolutely defined. 
However, such an answer can only be derived on a hypothetical basis, that is on the 
assumption that the buyer agent’s order will be received correctly and on time by the seller 
agent, that the seller agent will acknowledge its obligation to respond to such an order with 
delivery, and that it will, in fact, be able and willing to provide the required quantity and 
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definition, must behave autonomously and rationally. Typically, intelligent agents interact 
with other agents in a designated computational or physical environment, and this 
interaction is regulated by norms that stipulate what each agent is obliged, permitted, 
prohibited, institutionally empowered and so on to do, much in the same spirit that human 
agent interaction is regulated by the Law, organizational, and other formal, or informal, 
social rules. Human agents do not always comply with legal, organizational and social 
norms. The mere existence of these norms, whose purpose is to describe which behaviours 
are acceptable, encouraged, or even imperative, does not guarantee that their subjects will, 
in fact, behave accordingly. The actual behaviour that a human agent demonstrates deviates, 
quite often, from the ideal, and this may happen intentionally or unintentionally. It may be 
the case that a human agent knows what the norm prescribes, knows the consequences of a 
potential violation, but nonetheless chooses to violate it, for various reasons – she cannot do 
otherwise, or she judges that the penalty associated with the violation is worth paying, for 
the violation itself results in some state that she considers in some way positive, given her 
subjective value system. It may be the case that human agents violate norms 
unintentionally, often for the simple reason that they do not know that specific norms apply.  
In similar spirit, autonomous, rational, artificial agents cannot be expected to behave in 
accordance to the norms that govern their virtual societies, for the simple reason that they 
are designed and developed to act in the interest of their human/organizational owners, in 
accordance with the latter’s value systems and goals.  
Social norms may be thought of as rules of the form (1), shown above, where the conditions 
Xi and the conclusion Y refer not only to application domain entities, but to normative 
notions as well, which characterize agents’ actions, or the states of affairs that can be effected 
by agents’ actions; the main normative notions are obligation, permission, prohibition, and 
institutional power (the ability to create normative relations). For instance, in an electronic 
commerce scenario, a norm may specify that “if the seller agent delivers the specified quantity of 
goods to the buyer agent by the due date, then the buyer agent is obliged to pay the specified amount 
to the seller agent by a specified date”; in a distributed problem solving scenario, a norm may 
specify that “if the planning agent computes a partial plan for a specified goal, then it is permitted 
for the planning agent to send the partial plan it computed to the coordinator agent immediately”, or 
that “a planning agent is prohibited from sending partial solutions without being asked to do so by 
the coordinator agent”, and another may specify that “the coordinator agent is prohibited from 
computing the final plan, unless it has received partial plans for all of the subgoals that it allocated to 
planning agents”; in a task or resource allocation scenario a norm may specify that “the 
scheduler agent is permitted to change the order of print jobs in the printer queue, when a print job 
arrives from a designated port, which is to be treated as an emergency port”, or another norm may 
specify that “a scheduler agent is empowered to impose an obligation on a printer agent that 
processes jobs in first-in-first-out manner to start processing jobs in shortest-job-first manner, 
whenever the queue reaches a certain capacity”   
In order for an agent to decide whether to comply or not with a norm, first it must establish 
that the norm applies, and to do this it must be able to establish both factual information 
and prescriptive information, given a history of events that have occurred up to the point of 
its query. We saw earlier that a system that lacks information about rule conditions cannot 
apply its rules and, inevitably, if it is not to remain idle, it has to resort to its owner and 
obtain answers from her. This is not a realistic solution in the case of autonomous, rational 
agents, which are designed to act on behalf of their owners – idleness is not an attractive 

 

option, and an autonomous agent is expected to turn to its owner for help only in extreme 
circumstances!   
Obviously agents in any system (not necessarily open) do not possess information about the 
future. In order for an agent to meet its design goals, though, and plan its course of action at 
any given time, it needs to fill in information gaps by employing assumptions about the 
future. In open computational environments, even the historical information available to an 
agent when it poses its query may be incomplete, for various reasons: Information may be 
lost, or distorted by noise, and in a truly open system, where agents join or leave the system 
at different times, information delivery from agent to agent may simply be delayed. In order 
to reason in the absence of complete historical knowledge, agents must be able to fill in 
information gaps, by employing assumptions about the past and the present. One might 
argue that it would be reasonable for an agent to adopt the CWA in order to deal with 
information gaps that concern the past, and the OWA in order to deal with information gaps 
that concern the future. However, such an agent would not be truly open-minded, in that it 
would treat the historical information that it would possess as definitive. And in any case, as 
we argued earlier, both the adoption of the CWA and the adoption of the OWA have the 
same practical effect: the agent would remain idle, or it would need to resort to its owner, in 
order to fill in information gaps and proceed with its inferences. 
Therefore assumption-based reasoning is useful in two modes, progressively, because the 
agent cannot know the future, and retrospectively, because the agent may not know the 
past. Progressive hypothetical reasoning is sometimes referred to as best-guess reasoning, 
while retrospective hypothetical reasoning is sometimes referred to as no-risk reasoning.  
o Best-guess reasoning: An agent cannot know the future, yet it may need to plan its 

activities on the basis of hypotheses that concern the future, i.e., on the assumption that 
certain events or other agents’ actions will occur, or that certain causal relations will be 
effected in the environment, or that it will bear a certain normative status (obligations, 
permissions, prohibitions, powers) towards other agents. 

o No-risk reasoning: An agent may not know everything about the past and present, i.e., 
the history of its environment, other agents and itself so far, yet it may need to plan its 
activities on the basis of hypotheses that concern the past and present, i.e., on the 
assumption that certain events or other agents’ actions have occurred, or that certain 
normative relations have obtained between itself and other agents, in order to protect 
itself from an undesirable situation in the future.  

To illustrate these cases, consider a business transaction that takes place in an electronic 
marketplace populated by software agents. A buyer agent communicates, at time point T, 
with a seller agent and establishes an agreement with it for purchasing a certain product. 
Consequently, the seller agent communicates with a carrier agent and establishes another 
agreement with it for the timely and safe delivery of goods to the buyer agent. A reasonable 
query that the buyer agent might have might be general, such as “What do I have to do from 
now on, with respect to this contract?”. The buyer agent would expect a list of all the 
obligations, permissions, prohibitions, etc. that arise for it as a result of entering this 
agreement, along with their associated times, which may be relatively or absolutely defined. 
However, such an answer can only be derived on a hypothetical basis, that is on the 
assumption that the buyer agent’s order will be received correctly and on time by the seller 
agent, that the seller agent will acknowledge its obligation to respond to such an order with 
delivery, and that it will, in fact, be able and willing to provide the required quantity and 
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quality of goods in time, that the buyer agent will acknowledge its obligation to pay for the 
goods that it will receive, and so on. The buyer agent’s query about the future might be 
more specific, such as “When will I, potentially, have to pay for this order, assuming all goes well 
and I receive the goods in due time, so that I plan to have adequate available funds?”. To derive an 
answer the buyer, again, needs to reason on the basis of future hypotheses, i.e. to perform 
best-guess reasoning. Now, consider the case where, after placing an order at time T, the 
buyer agent at some subsequent time point T’’ (T<T’’), wonders “I placed an order at time 
point T, and so far I have not received any information about how this order is proceeding. What if 
the seller agent has already dispatched the goods to me, and is expecting payment from me, while I am 
blissfully unaware that I should do something about this?”. In this case, the buyer agent does not 
know whether the carrier agent has performed delivery at some point T’, such that T<T’<T’’. 
Unless the buyer agent resorts to an assumption about the past (that delivery happened at 
some time point T’), that is unless it performs no-risk reasoning, it cannot infer that an 
obligation for it to pay the seller has become active, and it risks finding itself in the 
undesirable situation, where its time allowance for paying has expired and it now bears a 
sanction, say to pay some extra amount to the seller agent, to compensate for missing its 
deadline.   
We see that the reasoning problem faced by an agent in this context involves the following 
aspects: 
1H. Assumption identification and usage: What assumptions are applicable to fill in 

information gaps and how should these be employed in the inference process? 
2H. Assumption influence: What is the relation between the assumptions and the current or 

future world, i.e. how do assumptions employed at a given time point enable or restrict 
present and future conclusions? 

3H. Assumption corroboration: What happens when new information becomes available at 
some time point, confirming or disproving assumptions employed at earlier time points, 
or conclusions drawn at earlier time points? 

In order to address question 1H an agent seeks to identify appropriate assumptions, and 
because it operates in an open, essentially dynamic, environment, assumption identification 
must be carried out dynamically. In order to answer question 2H the agent needs to employ 
some way that commits its reasoning to the specific assumptions that it employs, from that 
moment onwards. Finally, in order to answer question 3H the agent needs to reason 
nonmonotonically.  
There are many interesting approaches to dynamic assumption-based reasoning, which we 
review in section 4, after we present our approach in section 3. We stress from the outset 
that these approaches rely either on the existence of a pre-specified assumption space or on 
pre-specified criteria for the identification of assumptions. In the first case, assumption 
identification is not really dynamic, rather assumption usage, i.e. the management of the 
pre-specified assumption space, may be done dynamically. In the second case assumption 
identification is dynamic, only in the sense that the appropriate assumption is chosen at run-
time, but since this choice is made on pre-specified criteria, it is in a sense static. What 
distinguishes, therefore, our work from these approaches, is that we propose a way in which 
both identification and usage of appropriate candidate assumptions are done dynamically. 
In this way, we argue, the agent is truly autonomous in deciding what assumptions to 
employ and when to employ them. We start by presenting our approach, before we review 

 

these other approaches, in order to facilitate the reader in appreciating these differences, 
without getting lost in technical detail. 

 
3. Autonomous hypothetical reasoning 
 

In (Giannikis and Daskalopulu, 2006, Giannikis and Daskalopulu, 2007) we proposed an 
approach for representing norms (focussing specifically on e-contracts), as Default Theories 
(DfT), constructed dynamically from an initial Event Calculus (EC) representation 
(Kowalski and Sergot, 1986).   
Many researchers have explored the use of temporal logics for the representation of e-
contracts (e.g. (Marνn and Sartor, 1999, Artikis  et al., 2002, Farrell  et al., 2005, Rouached  et 
al., 2005)), and have demonstrated how such representations allow us to establish the state 
of a business exchange, given the actions that parties perform or omit to perform. On the 
basis of such a representation and in order to support nonmonotonic reasoning, one might 
use some of the various approaches such as Circumscription (McCarthy, 1980), Logic 
Programs (Gelfond and Lifschitz, 1988, Gelfond and Lifschitz, 1991), or Defeasible Logic 
(Nute, 1994), as many other researchers have done. In (Giannikis and Daskalopulu, 2007) we 
discussed in detail our view on the extent to which these approaches can cope with 
hypothetical reasoning, and argued for the adoption of Default Logic for the following 
reasons:  
(i) The syntax of DfL offers a natural way to represent separately what is known, what is 

assumed and what is concluded on the basis of this knowledge and assumptions. We 
saw an opportunity to exploit this syntax, in order to address the first aspect (1H) of our 
problem, namely assumption identification and usage. 

(ii) The semantics of DfL offers a way to reason nonmonotonically and to preserve the 
relation of an assumption and any inferences drawn on its basis. This enables us to 
address the second and the third aspect (2H, 3H) of our problem, namely assumption 
influence and assumption corroboration.  

However, we should note that although we exploit the syntax of DfL, we do not resort to 
proof in DfL, which is notably computationally hard. Instead we adapt an incremental 
technique for the computation of possible world models, initially proposed in (Antoniou, 
1999) which requires set manipulation.  

 
3.1 Preliminaries 
A default rule (henceforth default) has the form:  
 

P : J1,J2,…Jn / C, 
 
where P is the prerequisite, J={J1,J2,… Jn} is a set of justifications, and C is the derived 
consequent of the rule. The semantics of this rule is: If P holds and the justifications 
contained in J are consistent with the current knowledge, then C may be inferred. A DfT is a 
pair of the form (W, D), where W is a set of propositional or predicate logic formulae that 
represent currently available knowledge, and D is a set of defaults. A default is applicable to 
a deductively closed set of formulae EW, if and only if PE and ¬J1E,…,¬JnE. The set E 
is called the extension of the DfT. The notion of extension is the most complicated concept of 
Reiter’s logic, because it is hard to determine an accurate belief set for which justifications 
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quality of goods in time, that the buyer agent will acknowledge its obligation to pay for the 
goods that it will receive, and so on. The buyer agent’s query about the future might be 
more specific, such as “When will I, potentially, have to pay for this order, assuming all goes well 
and I receive the goods in due time, so that I plan to have adequate available funds?”. To derive an 
answer the buyer, again, needs to reason on the basis of future hypotheses, i.e. to perform 
best-guess reasoning. Now, consider the case where, after placing an order at time T, the 
buyer agent at some subsequent time point T’’ (T<T’’), wonders “I placed an order at time 
point T, and so far I have not received any information about how this order is proceeding. What if 
the seller agent has already dispatched the goods to me, and is expecting payment from me, while I am 
blissfully unaware that I should do something about this?”. In this case, the buyer agent does not 
know whether the carrier agent has performed delivery at some point T’, such that T<T’<T’’. 
Unless the buyer agent resorts to an assumption about the past (that delivery happened at 
some time point T’), that is unless it performs no-risk reasoning, it cannot infer that an 
obligation for it to pay the seller has become active, and it risks finding itself in the 
undesirable situation, where its time allowance for paying has expired and it now bears a 
sanction, say to pay some extra amount to the seller agent, to compensate for missing its 
deadline.   
We see that the reasoning problem faced by an agent in this context involves the following 
aspects: 
1H. Assumption identification and usage: What assumptions are applicable to fill in 

information gaps and how should these be employed in the inference process? 
2H. Assumption influence: What is the relation between the assumptions and the current or 

future world, i.e. how do assumptions employed at a given time point enable or restrict 
present and future conclusions? 

3H. Assumption corroboration: What happens when new information becomes available at 
some time point, confirming or disproving assumptions employed at earlier time points, 
or conclusions drawn at earlier time points? 

In order to address question 1H an agent seeks to identify appropriate assumptions, and 
because it operates in an open, essentially dynamic, environment, assumption identification 
must be carried out dynamically. In order to answer question 2H the agent needs to employ 
some way that commits its reasoning to the specific assumptions that it employs, from that 
moment onwards. Finally, in order to answer question 3H the agent needs to reason 
nonmonotonically.  
There are many interesting approaches to dynamic assumption-based reasoning, which we 
review in section 4, after we present our approach in section 3. We stress from the outset 
that these approaches rely either on the existence of a pre-specified assumption space or on 
pre-specified criteria for the identification of assumptions. In the first case, assumption 
identification is not really dynamic, rather assumption usage, i.e. the management of the 
pre-specified assumption space, may be done dynamically. In the second case assumption 
identification is dynamic, only in the sense that the appropriate assumption is chosen at run-
time, but since this choice is made on pre-specified criteria, it is in a sense static. What 
distinguishes, therefore, our work from these approaches, is that we propose a way in which 
both identification and usage of appropriate candidate assumptions are done dynamically. 
In this way, we argue, the agent is truly autonomous in deciding what assumptions to 
employ and when to employ them. We start by presenting our approach, before we review 

 

these other approaches, in order to facilitate the reader in appreciating these differences, 
without getting lost in technical detail. 

 
3. Autonomous hypothetical reasoning 
 

In (Giannikis and Daskalopulu, 2006, Giannikis and Daskalopulu, 2007) we proposed an 
approach for representing norms (focussing specifically on e-contracts), as Default Theories 
(DfT), constructed dynamically from an initial Event Calculus (EC) representation 
(Kowalski and Sergot, 1986).   
Many researchers have explored the use of temporal logics for the representation of e-
contracts (e.g. (Marνn and Sartor, 1999, Artikis  et al., 2002, Farrell  et al., 2005, Rouached  et 
al., 2005)), and have demonstrated how such representations allow us to establish the state 
of a business exchange, given the actions that parties perform or omit to perform. On the 
basis of such a representation and in order to support nonmonotonic reasoning, one might 
use some of the various approaches such as Circumscription (McCarthy, 1980), Logic 
Programs (Gelfond and Lifschitz, 1988, Gelfond and Lifschitz, 1991), or Defeasible Logic 
(Nute, 1994), as many other researchers have done. In (Giannikis and Daskalopulu, 2007) we 
discussed in detail our view on the extent to which these approaches can cope with 
hypothetical reasoning, and argued for the adoption of Default Logic for the following 
reasons:  
(i) The syntax of DfL offers a natural way to represent separately what is known, what is 

assumed and what is concluded on the basis of this knowledge and assumptions. We 
saw an opportunity to exploit this syntax, in order to address the first aspect (1H) of our 
problem, namely assumption identification and usage. 

(ii) The semantics of DfL offers a way to reason nonmonotonically and to preserve the 
relation of an assumption and any inferences drawn on its basis. This enables us to 
address the second and the third aspect (2H, 3H) of our problem, namely assumption 
influence and assumption corroboration.  

However, we should note that although we exploit the syntax of DfL, we do not resort to 
proof in DfL, which is notably computationally hard. Instead we adapt an incremental 
technique for the computation of possible world models, initially proposed in (Antoniou, 
1999) which requires set manipulation.  

 
3.1 Preliminaries 
A default rule (henceforth default) has the form:  
 

P : J1,J2,…Jn / C, 
 
where P is the prerequisite, J={J1,J2,… Jn} is a set of justifications, and C is the derived 
consequent of the rule. The semantics of this rule is: If P holds and the justifications 
contained in J are consistent with the current knowledge, then C may be inferred. A DfT is a 
pair of the form (W, D), where W is a set of propositional or predicate logic formulae that 
represent currently available knowledge, and D is a set of defaults. A default is applicable to 
a deductively closed set of formulae EW, if and only if PE and ¬J1E,…,¬JnE. The set E 
is called the extension of the DfT. The notion of extension is the most complicated concept of 
Reiter’s logic, because it is hard to determine an accurate belief set for which justifications 
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should be consistent. In his initial paper on DfL (Reiter, 1980) Reiter noted three important 
properties of extensions: (i) an extension E of a DfT (W, D) should contain W, (ii) the 
extension E of a DfT should be deductively closed, and (iii) for a default rule of the form 
P:J1,J2,… Jn / C, if PE and ¬J1,…, ¬JnE then CE.  
The requirement that the extension of a DfT be deductively closed is computationally 
problematic. However, Antoniou in (Antoniou, 1999) proposed a useful operational 
definition of extensions and a technique for their computation, which is done incrementally, 
by maintaining syntactically consistent sets of formulae, whose conditions part 
(prerequisites and justifications) is interpreted conjunctively and the conclusions part 
(consequent) is interpreted disjunctively, as in sequent calculus.  
Let Π represent a default reasoning process by recording the order in which defaults from D 
apply. At each step i of the reasoning process, i.e. after the application of each default 
P:J1,J2,…,Jn/C, the extension computed is a set of ground sentences In(i)=In(i-1)  {C}, and 
the set of justifications employed, which should not turn out to be true, is Out(i) = Out(i-1)  
{J1…, Jn}. As a result, Π(i)= Π(i-1)  {Di | Di is the default rule which applied at step i}. 
Initially In(0)=W, Out(0)= and Π(0)= for i=0. The default reasoning process Π(i) is 
successful if and only if In(i)  Out(i)= , otherwise it is failed. Moreover, the process Π(i) is 
closed if and only if every default rule that belongs in the set D and is applicable to In(i) 
already occurs in Π(i). According to (Antoniou, 1999) a set of formulae E is a DfT extension, 
if there is a closed and successful process Π(i) of the DfT such that E=In(i).  
For a quick illustration of these concepts, consider the DfT (W, D), where W={A} and D 
contains the following defaults: 
 

D1 ≡ A : B / C 
 

D2 ≡ true : ¬D / E 
 
The process Π(2)={D1,D2}, i.e. In(2)={A,C,E} and Out(2)={¬B,D}, is successful and closed, 
thus it is considered as an extension of the theory. 
Now, consider the DfT (W, D), where W={A} and D contains the following defaults: 
 

D1 ≡ A : B / C 
  

D2 ≡ true : D / ¬B 
 
The process Π(2)={D1,D2}, i.e. In(2)={A,C,¬B} and Out(2)={¬B,¬D}, is closed but not 
successful, thus it is not considered as an extension of the theory. The process Π(1)={D2}, i.e. 
In(1)={A,¬B} and Out(1)={¬D}, is successful and closed, since D1 does not apply, thus it is 
considered as an extension of the theory. 

 
3.2 The idea in a nutshell 
We saw an opportunity to exploit the syntax of default rules in order to represent the 
inference relation between what the agent knows definitely (the premises in Reiter’s terms), 
what the agent can assume, consistently with its current knowledge (the justifications in 
Reiter’s terms), and what the agent can infer on the basis of its current knowledge and the 
assumptions that it adopts (the consequent in Reiter’s terms). Therefore, the basic idea of our 

 

approach, which was initially proposed in our (Giannikis and Daskalopulu, 2006), is to have 
agents reason, via constructing extensions of default theories, using Antoniou’s incremental 
technique. To achieve this, the agents must reason with default theories, that is, their 
knowledge base, whose contents are initially in the form of sentences of sequent calculus, 
must be translated into default rules.  
 
Recall, that initially an agent’s knowledge base contains sentences of the form (1): 
 

YX1, X2, …, Xk 
 
where Y and Xi (1  i  k) are positive or negative literals (any variables are assumed 
universally quantified) representing the rule conclusion and conditions, respectively. A rule 
of such a form must be translated into a default rule, where what the agent knows definitely 
will be captured by the prerequisite component, what the agent does not know will be 
captured by the justification component, and the conclusion Y will be captured by the 
consequent component. In principle the agent’s definite knowledge changes over time, 
while it interacts with other agents and it perceives its environment, so in principle any one 
or all of the conditions Xi of such a rule may be known or unknown. Hence, a single rule of 
the form (1) shown above may be mapped to any one of the following default rules: 
o To the single assumption-free default of the form X1, X2, …, Xk : true / Y, just in case the 

agent possesses definite knowledge about all of the conditions Xi, and therefore needs 
to make no assumptions, in order to be able to apply the rule and derive a conclusion. 

o To k one-assumption defaults, that correspond to the k possible situations, where the 
agent possesses definite knowledge about k-1 of the conditions Xi, and needs to make a 
single assumption for the unknown condition, that is to one of the defaults of the set:  

{ X1, X2, …, Xk-1 : Xk / Y, 
X1, X2, …, Xk-2, Xk : Xk-1 / Y, 
X1, X2, …, Xk-1, Xk : Xk-2 / Y, 

... 
X2, ..., Xk : X1 /Y   } 

o To k(k-1)/2 two-assumption defaults, that correspond to the k(k-1)/2 possible 
situations, where the agent possesses definite knowledge about (k-2) of the conditions 
Xi, and needs to make assumptions for the two unknown conditions, that is to one of 
the defaults of the set: 

{ X1, X2, …, Xk-2 : Xk-1, Xk / Y, 
X1, X2, …, Xk-3, Xk-1 : Xk-2, Xk / Y, 

X1, X2, …, Xk-4, Xk-2, Xk-1 : Xk-3, Xk / Y, 
... 

X3, ..., Xk : X1, X2 /Y         } 
o In similar spirit, to any one of the set containing three-assumption defaults, four-

assumption defaults and so on, right down to the single k-assumption default, which 
corresponds to the case where the agent knows nothing and has to make assumptions 
about everything, i.e. true : X1, ..., Xk / Y. 
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should be consistent. In his initial paper on DfL (Reiter, 1980) Reiter noted three important 
properties of extensions: (i) an extension E of a DfT (W, D) should contain W, (ii) the 
extension E of a DfT should be deductively closed, and (iii) for a default rule of the form 
P:J1,J2,… Jn / C, if PE and ¬J1,…, ¬JnE then CE.  
The requirement that the extension of a DfT be deductively closed is computationally 
problematic. However, Antoniou in (Antoniou, 1999) proposed a useful operational 
definition of extensions and a technique for their computation, which is done incrementally, 
by maintaining syntactically consistent sets of formulae, whose conditions part 
(prerequisites and justifications) is interpreted conjunctively and the conclusions part 
(consequent) is interpreted disjunctively, as in sequent calculus.  
Let Π represent a default reasoning process by recording the order in which defaults from D 
apply. At each step i of the reasoning process, i.e. after the application of each default 
P:J1,J2,…,Jn/C, the extension computed is a set of ground sentences In(i)=In(i-1)  {C}, and 
the set of justifications employed, which should not turn out to be true, is Out(i) = Out(i-1)  
{J1…, Jn}. As a result, Π(i)= Π(i-1)  {Di | Di is the default rule which applied at step i}. 
Initially In(0)=W, Out(0)= and Π(0)= for i=0. The default reasoning process Π(i) is 
successful if and only if In(i)  Out(i)= , otherwise it is failed. Moreover, the process Π(i) is 
closed if and only if every default rule that belongs in the set D and is applicable to In(i) 
already occurs in Π(i). According to (Antoniou, 1999) a set of formulae E is a DfT extension, 
if there is a closed and successful process Π(i) of the DfT such that E=In(i).  
For a quick illustration of these concepts, consider the DfT (W, D), where W={A} and D 
contains the following defaults: 
 

D1 ≡ A : B / C 
 

D2 ≡ true : ¬D / E 
 
The process Π(2)={D1,D2}, i.e. In(2)={A,C,E} and Out(2)={¬B,D}, is successful and closed, 
thus it is considered as an extension of the theory. 
Now, consider the DfT (W, D), where W={A} and D contains the following defaults: 
 

D1 ≡ A : B / C 
  

D2 ≡ true : D / ¬B 
 
The process Π(2)={D1,D2}, i.e. In(2)={A,C,¬B} and Out(2)={¬B,¬D}, is closed but not 
successful, thus it is not considered as an extension of the theory. The process Π(1)={D2}, i.e. 
In(1)={A,¬B} and Out(1)={¬D}, is successful and closed, since D1 does not apply, thus it is 
considered as an extension of the theory. 

 
3.2 The idea in a nutshell 
We saw an opportunity to exploit the syntax of default rules in order to represent the 
inference relation between what the agent knows definitely (the premises in Reiter’s terms), 
what the agent can assume, consistently with its current knowledge (the justifications in 
Reiter’s terms), and what the agent can infer on the basis of its current knowledge and the 
assumptions that it adopts (the consequent in Reiter’s terms). Therefore, the basic idea of our 

 

approach, which was initially proposed in our (Giannikis and Daskalopulu, 2006), is to have 
agents reason, via constructing extensions of default theories, using Antoniou’s incremental 
technique. To achieve this, the agents must reason with default theories, that is, their 
knowledge base, whose contents are initially in the form of sentences of sequent calculus, 
must be translated into default rules.  
 
Recall, that initially an agent’s knowledge base contains sentences of the form (1): 
 

YX1, X2, …, Xk 
 
where Y and Xi (1  i  k) are positive or negative literals (any variables are assumed 
universally quantified) representing the rule conclusion and conditions, respectively. A rule 
of such a form must be translated into a default rule, where what the agent knows definitely 
will be captured by the prerequisite component, what the agent does not know will be 
captured by the justification component, and the conclusion Y will be captured by the 
consequent component. In principle the agent’s definite knowledge changes over time, 
while it interacts with other agents and it perceives its environment, so in principle any one 
or all of the conditions Xi of such a rule may be known or unknown. Hence, a single rule of 
the form (1) shown above may be mapped to any one of the following default rules: 
o To the single assumption-free default of the form X1, X2, …, Xk : true / Y, just in case the 

agent possesses definite knowledge about all of the conditions Xi, and therefore needs 
to make no assumptions, in order to be able to apply the rule and derive a conclusion. 

o To k one-assumption defaults, that correspond to the k possible situations, where the 
agent possesses definite knowledge about k-1 of the conditions Xi, and needs to make a 
single assumption for the unknown condition, that is to one of the defaults of the set:  

{ X1, X2, …, Xk-1 : Xk / Y, 
X1, X2, …, Xk-2, Xk : Xk-1 / Y, 
X1, X2, …, Xk-1, Xk : Xk-2 / Y, 

... 
X2, ..., Xk : X1 /Y   } 

o To k(k-1)/2 two-assumption defaults, that correspond to the k(k-1)/2 possible 
situations, where the agent possesses definite knowledge about (k-2) of the conditions 
Xi, and needs to make assumptions for the two unknown conditions, that is to one of 
the defaults of the set: 

{ X1, X2, …, Xk-2 : Xk-1, Xk / Y, 
X1, X2, …, Xk-3, Xk-1 : Xk-2, Xk / Y, 

X1, X2, …, Xk-4, Xk-2, Xk-1 : Xk-3, Xk / Y, 
... 

X3, ..., Xk : X1, X2 /Y         } 
o In similar spirit, to any one of the set containing three-assumption defaults, four-

assumption defaults and so on, right down to the single k-assumption default, which 
corresponds to the case where the agent knows nothing and has to make assumptions 
about everything, i.e. true : X1, ..., Xk / Y. 
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So, each initial rule, which involves k conditions, may be translated into any one of 2k 
defaults1. The question is, which one is the appropriate one? And the answer is, let the agent 
decide, depending on its current knowledge/absence of knowledge state, that is, let the 
agent determine what it knows and what it needs to make assumptions about, dynamically, 
as its knowledge base evolves over time. 
Our first proposal for the translation of an agent’s initial knowledge base into a DfT 
appeared in (Giannikis and Daskalopulu, 2007): Given a sequent calculus rule in its 
knowledge base, the agent would construct a default rule by mapping the conclusion of the 
rule to the consequent part of the default, all of the conditions Xi that could be proved from 
its knowledge base to the prerequisite part of the default, and the remaining conditions that 
could not be proved from its knowledge base to the justification part of the default. 
Although this is a correct formal characterization of the intended translation, it is 
computationally unacceptable, since it requires an agent to attempt to prove literals from its 
knowledge base, in order to decide whether to use them in the prerequisite or the 
justification part of each default that it constructs. In other words, the agent needs to attempt 
to prove literals (and fail in doing so) in order to identify candidate assumptions. In order to 
overcome this limitation we proposed an alternative view in (Giannikis and Daskalopulu, 
2008), which is suitable for implementation, and relies on structuring hierarchically the 2k 
possible translations into a multi-level structure and have the agent traverse it. We present 
this in detail in the next section. 

 
3.3 Default theory construction and inference 
We may think of the 2k possible defaults for a single rule of the form (1) as representations of 
the possible mental states in which the agent may find itself. Each such state is characterized 
by what is known and what is not known to the agent, i.e. it represents what we may call the 
single-rule knowledge/hypothesis (KH) status of the agent. These possible states are 
organized in a multi-level hierarchy, which we depict as a triangle, such as the one shown in 
Figure 1. The top of the triangle shows the direction in which the agent’s mental state 
evolves over time. Each level of the KH structure contains those of the 2k possible default 
translations of the rule that contain as many assumptions as indicated by the number of the 
leverl, that is level 0 contains the single assumption-free default, level 1 contains the k one-
assumption defaults, and so on, until the top level which contains the single, knowledge-
free default. That is, for a an agent which possesses an initial rule of the form (1), moving 
upwards in a stepwise manner until it reaches the top level of the single-norm KH structure, 
is tantamount to identifying candidate assumptions among the conditions that are included 
in the initial rule. Defaults contained in the same level have the same number of 
assumptions; the defaults of any given level contain one more assumption than the defaults 
of the immediately lower level, and one fewer assumption than the defaults of the 

                                                 
1 To be precise, we should note that there is one more default that could be used as the translation of 
the initial sequent calculus rule, namely the normal default of the form X1, ..., Xk : Y / Y, which 
corresponds to the case where the agent knows all of the conditions, and proceeds to infer Y, if 
assuming it is consistent with its current knowledge. There is a short philosophical discussion that can 
be made about this point, but we leave it aside for the time being, and we shall return to it in the 
discussion at the end of this section, after we have presented the details of our approach.  
 

 

immediately higher level. Let | L | denote the total number of defaults contained at level L, 
where 0 ≤ L ≤ k, and k is the total number of conditions in an initial rule of the form (1). 
Then, it is easy to verify that the following properties hold: 
o | L | = 1  if  L = 0 
o | L | = ( k – L + 1)  *  | L-1|  /  L  if L ≠ 0 
To illustrate this idea consider the following rule, given in the initial sequent calculus form, 
which involves four conditions (k=4):  
 
Y  X1, X2, X3, X4 

 
The corresponding 5-level triangle is: 

 
Level 0: { X1,X2,X3,X4 : true / Y } 
 
Level 1: { X1,X2,X3 : X4 / Y,      

 X1,X2,X4 : X3 / Y,       
 X1,X3,X4 : X2 / Y,  
 X2,X3,X4 : X1 / Y         } 

 
Level 2: { X1,X2 : X4, X3 / Y,      

 X1,X3 : X4, X2 / Y,       
 X2,X3 : X4, X1 / Y,  
 X1,X4 : X3, X2 / Y, 
 X2,X4 : X3, X1 / Y, 
 X3,X4 : X2, X1 / Y        } 

 
Level 3: { X1 : X4, X3, X2 / Y,      

 X2 : X4, X3, X1 / Y,   
 X3 : X4, X2, X1 / Y,         
 X4 : X3, X2, X1 / Y        } 

 
Level 4: { true : X4,X3,X2,X1 / Y  } 

no 
assumptions

1 assumption

all assumptions

ground 
level (0)

level 1

top level    
      (k)

 
Fig. 1. Single-rule KH structure of an agent’s mental states 
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So, each initial rule, which involves k conditions, may be translated into any one of 2k 
defaults1. The question is, which one is the appropriate one? And the answer is, let the agent 
decide, depending on its current knowledge/absence of knowledge state, that is, let the 
agent determine what it knows and what it needs to make assumptions about, dynamically, 
as its knowledge base evolves over time. 
Our first proposal for the translation of an agent’s initial knowledge base into a DfT 
appeared in (Giannikis and Daskalopulu, 2007): Given a sequent calculus rule in its 
knowledge base, the agent would construct a default rule by mapping the conclusion of the 
rule to the consequent part of the default, all of the conditions Xi that could be proved from 
its knowledge base to the prerequisite part of the default, and the remaining conditions that 
could not be proved from its knowledge base to the justification part of the default. 
Although this is a correct formal characterization of the intended translation, it is 
computationally unacceptable, since it requires an agent to attempt to prove literals from its 
knowledge base, in order to decide whether to use them in the prerequisite or the 
justification part of each default that it constructs. In other words, the agent needs to attempt 
to prove literals (and fail in doing so) in order to identify candidate assumptions. In order to 
overcome this limitation we proposed an alternative view in (Giannikis and Daskalopulu, 
2008), which is suitable for implementation, and relies on structuring hierarchically the 2k 
possible translations into a multi-level structure and have the agent traverse it. We present 
this in detail in the next section. 

 
3.3 Default theory construction and inference 
We may think of the 2k possible defaults for a single rule of the form (1) as representations of 
the possible mental states in which the agent may find itself. Each such state is characterized 
by what is known and what is not known to the agent, i.e. it represents what we may call the 
single-rule knowledge/hypothesis (KH) status of the agent. These possible states are 
organized in a multi-level hierarchy, which we depict as a triangle, such as the one shown in 
Figure 1. The top of the triangle shows the direction in which the agent’s mental state 
evolves over time. Each level of the KH structure contains those of the 2k possible default 
translations of the rule that contain as many assumptions as indicated by the number of the 
leverl, that is level 0 contains the single assumption-free default, level 1 contains the k one-
assumption defaults, and so on, until the top level which contains the single, knowledge-
free default. That is, for a an agent which possesses an initial rule of the form (1), moving 
upwards in a stepwise manner until it reaches the top level of the single-norm KH structure, 
is tantamount to identifying candidate assumptions among the conditions that are included 
in the initial rule. Defaults contained in the same level have the same number of 
assumptions; the defaults of any given level contain one more assumption than the defaults 
of the immediately lower level, and one fewer assumption than the defaults of the 

                                                 
1 To be precise, we should note that there is one more default that could be used as the translation of 
the initial sequent calculus rule, namely the normal default of the form X1, ..., Xk : Y / Y, which 
corresponds to the case where the agent knows all of the conditions, and proceeds to infer Y, if 
assuming it is consistent with its current knowledge. There is a short philosophical discussion that can 
be made about this point, but we leave it aside for the time being, and we shall return to it in the 
discussion at the end of this section, after we have presented the details of our approach.  
 

 

immediately higher level. Let | L | denote the total number of defaults contained at level L, 
where 0 ≤ L ≤ k, and k is the total number of conditions in an initial rule of the form (1). 
Then, it is easy to verify that the following properties hold: 
o | L | = 1  if  L = 0 
o | L | = ( k – L + 1)  *  | L-1|  /  L  if L ≠ 0 
To illustrate this idea consider the following rule, given in the initial sequent calculus form, 
which involves four conditions (k=4):  
 
Y  X1, X2, X3, X4 

 
The corresponding 5-level triangle is: 

 
Level 0: { X1,X2,X3,X4 : true / Y } 
 
Level 1: { X1,X2,X3 : X4 / Y,      

 X1,X2,X4 : X3 / Y,       
 X1,X3,X4 : X2 / Y,  
 X2,X3,X4 : X1 / Y         } 

 
Level 2: { X1,X2 : X4, X3 / Y,      

 X1,X3 : X4, X2 / Y,       
 X2,X3 : X4, X1 / Y,  
 X1,X4 : X3, X2 / Y, 
 X2,X4 : X3, X1 / Y, 
 X3,X4 : X2, X1 / Y        } 

 
Level 3: { X1 : X4, X3, X2 / Y,      

 X2 : X4, X3, X1 / Y,   
 X3 : X4, X2, X1 / Y,         
 X4 : X3, X2, X1 / Y        } 

 
Level 4: { true : X4,X3,X2,X1 / Y  } 

no 
assumptions

1 assumption

all assumptions

ground 
level (0)

level 1

top level    
      (k)

 
Fig. 1. Single-rule KH structure of an agent’s mental states 
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An agent’s initial knowledge base will typically contain many rules, for each of which the 
agent constructs a KH structure. All the resulting single-rule KH structures are composed 
into a single polygon-like structure (Figure 2), which contains as many levels as the tallest of 
the constituent single-rule KH structures. Given an initial set of rules, the number of levels 
of the multi-rule KH structure is equal to the maximum ki, where 1  i  r and r is the 
number of the initial norms of the form (1). To be precise, we should note that the multi-rule 
KH structure does not have a single top, since each constituent single-rule KH structure may 
have its own top level. We are interested in the highest amongst these top levels, since this 
denotes the point of termination of an agent’s inference process, when an agent moves 
upwards in the multi-rule KH structure and its mental state evolves over time. 
Therefore, the full DfT that is constructed by an agent is a pair of the form (W, D), where W 
contains all of the available (if any) historical information and D is the multi-rule KH 

structure. Level 0 contains the r assumption-free defaults, level 1 contains the ∑r
i=1 ki one-

assumption defaults, and so on, until the top max(ki) level, which contains some of the 
knowledge-free defaults. 
Note that, although the corresponding rule mapping is one-to-many, only one default for 
each initial rule may finally be employed for inference. The inference process starts from the 
ground level, by applying as many defaults as possible given the agent’s current knowledge. 
Each time a default applies its consequent is included in the extension that is being 
computed currently. When there are no further defaults that can be applied in a level, this 
signals to the agent that assumptions are needed in order to proceed, and inference 
continues by examining defaults that lie in the next level upwards.  
 

no 
assumptions

1 assumption

all assumptions

ground 
level (0)

level 1

top level    
      max(ki)

 
Fig. 2. Multi-rule KH structure of an agent’s mental states 
 
Note that the case where reasoning is possible using only rules from the ground level is 
identical to inference in classical logic. During its reasoning process an agent infers all 
possible conclusions on the basis of its current knowledge. When no further inference is 
possible, the agent is able to reassess its mental state and establish its 
knowledge/hypothesis status, in order to continue. That is, the agent first attempts to draw 
conclusions using only assumption-free defaults, then by employing one assumption per 
default, then by employing two assumptions per default, and so on, until no further defaults 

 

apply. In other words, a general priority criterion among defaults is being established: This 
is the number of assumptions employed via the use of a default rule. Thus, such inference in 
a step-wise manner ensures that the agent employs the fewest possible hypotheses, always, 
that is, that the agent is rational in its deployment of assumptions.  
To illustrate the inference procedure, consider this next example: let us assume that a 
normative system comprises two rules of the form:  

 
R1  Y1 X1, X2 

 
R2  Y2  X3, X4, X5 

 
Thus, the corresponding single-rule and multi-rule KH structures are as follows (Dlevel,number 
denotes the level of the default and its identification number within its level, and it is used 
to facilitate reference):   
 
Single-rule KH structure for R1: 
Level 0: { D10,1  X1,X2 : true / Y1  } 
 
Level 1: { D11,1  X1 : X2 / Y1,      
                 D11,2  X2 : X1 / Y1          } 
 
Level 2: { D12,1  true : X2,X1 / Y1  } 
 
Single-rule KH structure for R2: 
Level 0: { D20,1  X3,X4,X5 : true / Y2     } 
 
Level 1: { D21,1  X3,X4 : X5 / Y2,      
                 D21,2  X3,X5 : X4 / Y2, 
                 D21,3  X4,X5 : X3 / Y2              } 
 
Level 2: { D22,1  X3 : X5, X4 / Y2, 
                 D22,2  X4 : X5, X3 / Y2, 
                 D22,3  X5 : X4, X3 / Y2             } 
 
Level 3: { D23,1  true : X5, X4, X3 / Y2    } 
 
Multi-rule KH structure for R1 and R2: 
Level 0: { D10,1  X1,X2 : true / Y1,  D20,1  X3,X4,X5 : true / Y2        } 
 
Level 1: { D11,1  X1 : X2 / Y1,           D21,1  X3,X4 : X5 / Y2,      
                 D11,2  X2 : X1 / Y1,            D21,2  X3,X5 : X4 / Y2, 
                                                              D21,3  X4,X5 : X3 / Y2               } 
 
Level 2: { D12,1  true : X2,X1 / Y1,   D22,1  X3 : X5, X4 / Y2, 
                                                              D22,2  X4 : X5, X3 / Y2, 
                                                              D22,3  X5 : X4, X3 / Y2              } 
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An agent’s initial knowledge base will typically contain many rules, for each of which the 
agent constructs a KH structure. All the resulting single-rule KH structures are composed 
into a single polygon-like structure (Figure 2), which contains as many levels as the tallest of 
the constituent single-rule KH structures. Given an initial set of rules, the number of levels 
of the multi-rule KH structure is equal to the maximum ki, where 1  i  r and r is the 
number of the initial norms of the form (1). To be precise, we should note that the multi-rule 
KH structure does not have a single top, since each constituent single-rule KH structure may 
have its own top level. We are interested in the highest amongst these top levels, since this 
denotes the point of termination of an agent’s inference process, when an agent moves 
upwards in the multi-rule KH structure and its mental state evolves over time. 
Therefore, the full DfT that is constructed by an agent is a pair of the form (W, D), where W 
contains all of the available (if any) historical information and D is the multi-rule KH 

structure. Level 0 contains the r assumption-free defaults, level 1 contains the ∑r
i=1 ki one-

assumption defaults, and so on, until the top max(ki) level, which contains some of the 
knowledge-free defaults. 
Note that, although the corresponding rule mapping is one-to-many, only one default for 
each initial rule may finally be employed for inference. The inference process starts from the 
ground level, by applying as many defaults as possible given the agent’s current knowledge. 
Each time a default applies its consequent is included in the extension that is being 
computed currently. When there are no further defaults that can be applied in a level, this 
signals to the agent that assumptions are needed in order to proceed, and inference 
continues by examining defaults that lie in the next level upwards.  
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Fig. 2. Multi-rule KH structure of an agent’s mental states 
 
Note that the case where reasoning is possible using only rules from the ground level is 
identical to inference in classical logic. During its reasoning process an agent infers all 
possible conclusions on the basis of its current knowledge. When no further inference is 
possible, the agent is able to reassess its mental state and establish its 
knowledge/hypothesis status, in order to continue. That is, the agent first attempts to draw 
conclusions using only assumption-free defaults, then by employing one assumption per 
default, then by employing two assumptions per default, and so on, until no further defaults 

 

apply. In other words, a general priority criterion among defaults is being established: This 
is the number of assumptions employed via the use of a default rule. Thus, such inference in 
a step-wise manner ensures that the agent employs the fewest possible hypotheses, always, 
that is, that the agent is rational in its deployment of assumptions.  
To illustrate the inference procedure, consider this next example: let us assume that a 
normative system comprises two rules of the form:  

 
R1  Y1 X1, X2 

 
R2  Y2  X3, X4, X5 

 
Thus, the corresponding single-rule and multi-rule KH structures are as follows (Dlevel,number 
denotes the level of the default and its identification number within its level, and it is used 
to facilitate reference):   
 
Single-rule KH structure for R1: 
Level 0: { D10,1  X1,X2 : true / Y1  } 
 
Level 1: { D11,1  X1 : X2 / Y1,      
                 D11,2  X2 : X1 / Y1          } 
 
Level 2: { D12,1  true : X2,X1 / Y1  } 
 
Single-rule KH structure for R2: 
Level 0: { D20,1  X3,X4,X5 : true / Y2     } 
 
Level 1: { D21,1  X3,X4 : X5 / Y2,      
                 D21,2  X3,X5 : X4 / Y2, 
                 D21,3  X4,X5 : X3 / Y2              } 
 
Level 2: { D22,1  X3 : X5, X4 / Y2, 
                 D22,2  X4 : X5, X3 / Y2, 
                 D22,3  X5 : X4, X3 / Y2             } 
 
Level 3: { D23,1  true : X5, X4, X3 / Y2    } 
 
Multi-rule KH structure for R1 and R2: 
Level 0: { D10,1  X1,X2 : true / Y1,  D20,1  X3,X4,X5 : true / Y2        } 
 
Level 1: { D11,1  X1 : X2 / Y1,           D21,1  X3,X4 : X5 / Y2,      
                 D11,2  X2 : X1 / Y1,            D21,2  X3,X5 : X4 / Y2, 
                                                              D21,3  X4,X5 : X3 / Y2               } 
 
Level 2: { D12,1  true : X2,X1 / Y1,   D22,1  X3 : X5, X4 / Y2, 
                                                              D22,2  X4 : X5, X3 / Y2, 
                                                              D22,3  X5 : X4, X3 / Y2              } 
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Level 3: {                                              D23,1  true : X5, X4, X3 / Y2     } 
 
Here are some possible scenaria, with different initial knowledge available each time, in the 
beginning of the reasoning process: 
o if W={X1, X2} then extension In(2)= W  {Y1, Y2} is computed by making the assumption 

that X5, X4 and X3 hold (Out(2)={X5, X4, X3}) and by applying defaults D10,1 and 
D23,1 respectively, i.e. Π(2)={D10,1, D23,1}. Note that, the default D10,1 takes priority over 
the default D23,1, due to the fact that the first one does not employ any assumptions 
while the second one employs three assumptions in the inference process.   

o if W={X1, X2, X3} then extension In(2)= W  {Y1, Y2} is computed by making the 
assumption that X5 and X4 hold (Out(2)={X5, X4}) and by applying defaults D10,1 and 
D22,1 respectively, i.e. Π(2)={D10,1, D22,1}. Also, note that, the default D10,1 takes priority 
over the default D22,1. 

o if W={X1, X3, X4, X5} then extension In(2)= W  {Y2, Y1} is computed by making the 
assumption that only X2 holds (Out(2)={X2}) and by applying defaults D20,1 and D11,1 
respectively, i.e. Π(2)={D20,1, D11,1}. The default D20,1 takes priority over the default 
D11,1, due to the fact that the first one does not employ any assumptions while the 
second one employs an assumption in the inference process.  

o if W={X1, X3, X4} then extension In(2)= W  {Y1, Y2} is computed by making the 
assumptions that X2 and X5 hold (Out(2)={X2, X5}) and by applying defaults D11,1 and 
D21,1 respectively, i.e. Π(2)={D11,1, D21,1}. Now, note that, defaults D11,1 and D21,1, 
employ the same number of assumptions in the inferences process. Due to this fact and 
according to the priority criterion on the basis of the total number of assumptions 
employed by a rule, none of the rules takes priority over the other. Thus, both process 
Π(2)={D11,1, D21,1} and Π(2)={D21,1, D11,1} are feasible. It just happens in this case that 
processes have identical final impacts to the environment, i.e. In(2)= W  {Y1, Y2} and 
Out(2)={X2, X5} or In(2)= W  {Y2, Y1} and Out(2)={X5, X2}. 

This last example indicates the need for additional priority criteria. For instance, we may use 
as a criterion the size of factual knowledge a rule employs, i.e. the number of prerequisites. 
In this case the default D21,1 takes priority over the default D11,1, due to the fact that the first 
one fires on a larger factual basis in contrast to the second one, although both of them 
employ the same number of assumptions in the inference process.    
Note that although a level may contain two or more defaults that correspond to the same 
initial contract rule (e.g. D21,1 or D21,2 or D21,3) there is no need for some kind of 
prioritization among these defaults. If two or more defaults of the same level, which are 
derived from the same initial rule (i.e. they belong to the same level within the same single-
rule KH structure), were to apply simultaneously, then the more general default contained 
in the immediately lower level should have applied.  
Also, note that, it is important to consider the issue of consistency between assumptions 
employed during the reasoning process and new inferences derived as a result of the 
reasoning process. One of the reasons for which we revised our initial proposal for the 
construction of the DfT is precisely because an agent would require a revision mechanism in 
order to reconstruct the default rules as new information becomes available, and the agent is 
able to prove literals from its updated knowledge, and hence treat them as prerequisites 
rather than justifications. The alternative way that we propose here, for the construction of 

 

the DfT does not require any revision of the defaults. This is because inference involves one 
level at a time in a stepwise manner, and the agent moves upwards to the next level of the 
multi-rule KH structure only when it has exhausted inference at a given level. This ensures 
that the agent employs the fewest possible hypotheses. We are able to preserve consistency 
of entailment, if we employ appropriate variations of DfL such as Constrained Default Logic 
(CDfT) (Schaub, 1992). A CDfT is a DfT that ensures the joint consistency of all justifications 
involved in reasoning. A default is applied only if its justifications and consequents are 
consistent with the background theory, i.e., In(i)Out(i). In this case, the possible world 
model that the agent infers incrementally is the consistent set In(i)Out(i). This is 
tantamount to saying that the new possible world models inferred by the agent contain, 
besides previously available knowledge, both the consequents and the assumptions of the 
defaults that the agent applied. 
Finally, note that the technique described here resembles, in a way, stratification of a DfT 
(Cholewinski, 1994). A DfT is stratified (SDfT) iff there exists a stratification function s that 
assigns a natural number to each default and, thus, separates the initial set of defaults D into 
strata. The stratification function is chosen so that, if the consequent of a default D1 is 
required as a prerequisite or justification by another default D2, than D1 is to be applied 
before D2 i.e., s(D1)≤s(D2). Our separation of the possible set of defaults that correspond to 
each rule of the initial representation into levels, based on the number of assumptions 
employed, may be regarded as somewhat similar to a stratification criterion. We believe that 
it is worth examining the use of stratification, in its original sense, in combination with our 
proposed separation of the set of defaults based on the number of assumptions employed, to 
establish whether an agent’s reasoning may be guided more thouroughly.  
So far, we have omitted normal defaults from the discussion about the way in which an 
agent may construct its default theory. Normal defaults have the form P:C/C, i.e., their 
justification coincides with their consequent. Two questions seem to arise naturally: (i) 
Should the agent include normal defaults in the set of potential mappings that it constructs 
from the initial e-contract representation? And, if so, (ii) In which level of the triangle should 
normal defaults be placed? It seems to us that normal defaults are required only in order to 
ensure that there is at least one extension of the currently available knowledge, which may 
be computed by adding to it new information, provided that consistency is preserved. That 
is, the normal default may be viewed as behaving similarly to the justification-free default, 
in that all its prerequisites should be satisfied by the current knowledge base; the only 
additional assumption made in the case of the normal default concerns the consistency of its 
conclusion with the current knowledge base. For this reason, although the normal default 
contains a single assumption, and should therefore belong to level 1 of the triangle, 
‘operationally’ it belongs to level 0, since its assumption is not genuinely about something 
that holds in the world. Hence, an agent may either omit normal defaults totally from the 
triangles that it constructs, or it may include them in level 0, if it is important to ensure that 
at least one extension exists while preserving consistency. 

 
3.4. Example 
For the sake of generality we have, so far, presented our approach to dynamic assumption 
identification and deployment in abstract terms. In this section we present a flavour of a real 
example from the application area of e-commerce. We omit, here, a full representation in EC 
(or some other temporal logic), in order to avoid distracting the reader with details, but an 
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Level 3: {                                              D23,1  true : X5, X4, X3 / Y2     } 
 
Here are some possible scenaria, with different initial knowledge available each time, in the 
beginning of the reasoning process: 
o if W={X1, X2} then extension In(2)= W  {Y1, Y2} is computed by making the assumption 

that X5, X4 and X3 hold (Out(2)={X5, X4, X3}) and by applying defaults D10,1 and 
D23,1 respectively, i.e. Π(2)={D10,1, D23,1}. Note that, the default D10,1 takes priority over 
the default D23,1, due to the fact that the first one does not employ any assumptions 
while the second one employs three assumptions in the inference process.   

o if W={X1, X2, X3} then extension In(2)= W  {Y1, Y2} is computed by making the 
assumption that X5 and X4 hold (Out(2)={X5, X4}) and by applying defaults D10,1 and 
D22,1 respectively, i.e. Π(2)={D10,1, D22,1}. Also, note that, the default D10,1 takes priority 
over the default D22,1. 

o if W={X1, X3, X4, X5} then extension In(2)= W  {Y2, Y1} is computed by making the 
assumption that only X2 holds (Out(2)={X2}) and by applying defaults D20,1 and D11,1 
respectively, i.e. Π(2)={D20,1, D11,1}. The default D20,1 takes priority over the default 
D11,1, due to the fact that the first one does not employ any assumptions while the 
second one employs an assumption in the inference process.  

o if W={X1, X3, X4} then extension In(2)= W  {Y1, Y2} is computed by making the 
assumptions that X2 and X5 hold (Out(2)={X2, X5}) and by applying defaults D11,1 and 
D21,1 respectively, i.e. Π(2)={D11,1, D21,1}. Now, note that, defaults D11,1 and D21,1, 
employ the same number of assumptions in the inferences process. Due to this fact and 
according to the priority criterion on the basis of the total number of assumptions 
employed by a rule, none of the rules takes priority over the other. Thus, both process 
Π(2)={D11,1, D21,1} and Π(2)={D21,1, D11,1} are feasible. It just happens in this case that 
processes have identical final impacts to the environment, i.e. In(2)= W  {Y1, Y2} and 
Out(2)={X2, X5} or In(2)= W  {Y2, Y1} and Out(2)={X5, X2}. 

This last example indicates the need for additional priority criteria. For instance, we may use 
as a criterion the size of factual knowledge a rule employs, i.e. the number of prerequisites. 
In this case the default D21,1 takes priority over the default D11,1, due to the fact that the first 
one fires on a larger factual basis in contrast to the second one, although both of them 
employ the same number of assumptions in the inference process.    
Note that although a level may contain two or more defaults that correspond to the same 
initial contract rule (e.g. D21,1 or D21,2 or D21,3) there is no need for some kind of 
prioritization among these defaults. If two or more defaults of the same level, which are 
derived from the same initial rule (i.e. they belong to the same level within the same single-
rule KH structure), were to apply simultaneously, then the more general default contained 
in the immediately lower level should have applied.  
Also, note that, it is important to consider the issue of consistency between assumptions 
employed during the reasoning process and new inferences derived as a result of the 
reasoning process. One of the reasons for which we revised our initial proposal for the 
construction of the DfT is precisely because an agent would require a revision mechanism in 
order to reconstruct the default rules as new information becomes available, and the agent is 
able to prove literals from its updated knowledge, and hence treat them as prerequisites 
rather than justifications. The alternative way that we propose here, for the construction of 

 

the DfT does not require any revision of the defaults. This is because inference involves one 
level at a time in a stepwise manner, and the agent moves upwards to the next level of the 
multi-rule KH structure only when it has exhausted inference at a given level. This ensures 
that the agent employs the fewest possible hypotheses. We are able to preserve consistency 
of entailment, if we employ appropriate variations of DfL such as Constrained Default Logic 
(CDfT) (Schaub, 1992). A CDfT is a DfT that ensures the joint consistency of all justifications 
involved in reasoning. A default is applied only if its justifications and consequents are 
consistent with the background theory, i.e., In(i)Out(i). In this case, the possible world 
model that the agent infers incrementally is the consistent set In(i)Out(i). This is 
tantamount to saying that the new possible world models inferred by the agent contain, 
besides previously available knowledge, both the consequents and the assumptions of the 
defaults that the agent applied. 
Finally, note that the technique described here resembles, in a way, stratification of a DfT 
(Cholewinski, 1994). A DfT is stratified (SDfT) iff there exists a stratification function s that 
assigns a natural number to each default and, thus, separates the initial set of defaults D into 
strata. The stratification function is chosen so that, if the consequent of a default D1 is 
required as a prerequisite or justification by another default D2, than D1 is to be applied 
before D2 i.e., s(D1)≤s(D2). Our separation of the possible set of defaults that correspond to 
each rule of the initial representation into levels, based on the number of assumptions 
employed, may be regarded as somewhat similar to a stratification criterion. We believe that 
it is worth examining the use of stratification, in its original sense, in combination with our 
proposed separation of the set of defaults based on the number of assumptions employed, to 
establish whether an agent’s reasoning may be guided more thouroughly.  
So far, we have omitted normal defaults from the discussion about the way in which an 
agent may construct its default theory. Normal defaults have the form P:C/C, i.e., their 
justification coincides with their consequent. Two questions seem to arise naturally: (i) 
Should the agent include normal defaults in the set of potential mappings that it constructs 
from the initial e-contract representation? And, if so, (ii) In which level of the triangle should 
normal defaults be placed? It seems to us that normal defaults are required only in order to 
ensure that there is at least one extension of the currently available knowledge, which may 
be computed by adding to it new information, provided that consistency is preserved. That 
is, the normal default may be viewed as behaving similarly to the justification-free default, 
in that all its prerequisites should be satisfied by the current knowledge base; the only 
additional assumption made in the case of the normal default concerns the consistency of its 
conclusion with the current knowledge base. For this reason, although the normal default 
contains a single assumption, and should therefore belong to level 1 of the triangle, 
‘operationally’ it belongs to level 0, since its assumption is not genuinely about something 
that holds in the world. Hence, an agent may either omit normal defaults totally from the 
triangles that it constructs, or it may include them in level 0, if it is important to ensure that 
at least one extension exists while preserving consistency. 

 
3.4. Example 
For the sake of generality we have, so far, presented our approach to dynamic assumption 
identification and deployment in abstract terms. In this section we present a flavour of a real 
example from the application area of e-commerce. We omit, here, a full representation in EC 
(or some other temporal logic), in order to avoid distracting the reader with details, but an 
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interested reader is referred to (Giannikis and Daskalopulu, 2006, Giannikis and 
Daskalopulu, 2007). Consider a 3-party business transaction that takes place in an electronic 
marketplace populated by software agents. A buyer agent (BA) communicates with a seller 
agent (SA) and establishes an agreement for purchasing a certain product. Consequently, the 
seller agent communicates with a carrier agent (CA) and establishes a separate agreement 
for the safe and timely delivery of goods to the buyer agent. An extract of the initial set of 
contract norms for the agreement between the buyer agent and the seller agents is as 
follows: 

 
R={ R1    SAIsObligedToDeliverToBAWithinNext20days  BAOrdersFromSA  
                                                                                                                     E-shopFunctionsWell, 
 
       R2    BAIsObligedToPayCAOnBehalfOfSA  BAOrdersFromSA  CADeliversToBA  
                                                    CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA  } 
 
Note that these norms have the same number of conditions as the norms considered in the 
abstract example presented in section 3.3. Thus, the corresponding KH structures are as 
follows: 
 
Single-rule KH structure for R1: 
Level 0: {  
  D10,1   
           BAOrdersFromSA, E-shopFunctionsWell  
           : true  
           / SAIsObligedToDeliverToBAWithinNext20days       } 
 
Level 1: {  
  D11,1   
           BAOrdersFromSA  
           : E-shopFunctionsWell  
           / SAIsObligedToDeliverToBAWithinNext20days,      
                      
  D11,2   
           E-shopFunctionsWell  
           : BAOrdersFromSA  
           / SAIsObligedToDeliverToBAWithinNext20days        } 
 
Level 2: {  
  D12,1   
           true  
           : E-shopFunctionsWell, BAOrdersFromSA  
           / SAIsObligedToDeliverToBAWithinNext20days        } 
 
Single-rule KH structure for R2: 
Level 0: {  
  D20,1   

 

           BAOrdersFromSA, CADeliversToBA, CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : true  
           / BAIsObligedToPayCAOnBehalfOfSA                                } 
 
Level 1: {  
  D21,1   
           BAOrdersFromSA, CADeliversToBA  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           / BAIsObligedToPayCAOnBehalfOfSA,      
 
  D21,2   
           BAOrdersFromSA, CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : CADeliversToBA  
           / BAIsObligedToPayCAOnBehalfOfSA, 
 
  D21,3   
           CADeliversToBA, CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA                               } 
 
Level 2: {  
  D22,1   
           BAOrdersFromSA  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA, CADeliversToBA  
           / BAIsObligedToPayCAOnBehalfOfSA, 
 
  D22,2   
           CADeliversToBA  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA, BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA, 
 
  D22,3   
           CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : CADeliversToBA, BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA                               } 
 
Level 3: {  
  D23,1   
           true  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA, CADeliversToBA, BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA                                } 
 
Multi-rule KH structure for R1 and R2: 
Level 0: {  
  D10,1   
           BAOrdersFromSA, E-shopFunctionsWell  
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interested reader is referred to (Giannikis and Daskalopulu, 2006, Giannikis and 
Daskalopulu, 2007). Consider a 3-party business transaction that takes place in an electronic 
marketplace populated by software agents. A buyer agent (BA) communicates with a seller 
agent (SA) and establishes an agreement for purchasing a certain product. Consequently, the 
seller agent communicates with a carrier agent (CA) and establishes a separate agreement 
for the safe and timely delivery of goods to the buyer agent. An extract of the initial set of 
contract norms for the agreement between the buyer agent and the seller agents is as 
follows: 

 
R={ R1    SAIsObligedToDeliverToBAWithinNext20days  BAOrdersFromSA  
                                                                                                                     E-shopFunctionsWell, 
 
       R2    BAIsObligedToPayCAOnBehalfOfSA  BAOrdersFromSA  CADeliversToBA  
                                                    CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA  } 
 
Note that these norms have the same number of conditions as the norms considered in the 
abstract example presented in section 3.3. Thus, the corresponding KH structures are as 
follows: 
 
Single-rule KH structure for R1: 
Level 0: {  
  D10,1   
           BAOrdersFromSA, E-shopFunctionsWell  
           : true  
           / SAIsObligedToDeliverToBAWithinNext20days       } 
 
Level 1: {  
  D11,1   
           BAOrdersFromSA  
           : E-shopFunctionsWell  
           / SAIsObligedToDeliverToBAWithinNext20days,      
                      
  D11,2   
           E-shopFunctionsWell  
           : BAOrdersFromSA  
           / SAIsObligedToDeliverToBAWithinNext20days        } 
 
Level 2: {  
  D12,1   
           true  
           : E-shopFunctionsWell, BAOrdersFromSA  
           / SAIsObligedToDeliverToBAWithinNext20days        } 
 
Single-rule KH structure for R2: 
Level 0: {  
  D20,1   

 

           BAOrdersFromSA, CADeliversToBA, CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : true  
           / BAIsObligedToPayCAOnBehalfOfSA                                } 
 
Level 1: {  
  D21,1   
           BAOrdersFromSA, CADeliversToBA  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           / BAIsObligedToPayCAOnBehalfOfSA,      
 
  D21,2   
           BAOrdersFromSA, CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : CADeliversToBA  
           / BAIsObligedToPayCAOnBehalfOfSA, 
 
  D21,3   
           CADeliversToBA, CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA                               } 
 
Level 2: {  
  D22,1   
           BAOrdersFromSA  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA, CADeliversToBA  
           / BAIsObligedToPayCAOnBehalfOfSA, 
 
  D22,2   
           CADeliversToBA  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA, BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA, 
 
  D22,3   
           CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : CADeliversToBA, BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA                               } 
 
Level 3: {  
  D23,1   
           true  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA, CADeliversToBA, BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA                                } 
 
Multi-rule KH structure for R1 and R2: 
Level 0: {  
  D10,1   
           BAOrdersFromSA, E-shopFunctionsWell  
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           : true  
           / SAIsObligedToDeliverToBAWithinNext20days,      
  
  D20,1   
           BAOrdersFromSA, CADeliversToBA, CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : true  
           / BAIsObligedToPayCAOnBehalfOfSA                                } 
 
Level 1: {  
  D11,1   
           BAOrdersFromSA  
           : E-shopFunctionsWell  
           / SAIsObligedToDeliverToBAWithinNext20days,      
                      
  D11,2   
           E-shopFunctionsWell  
           : BAOrdersFromSA  
           / SAIsObligedToDeliverToBAWithinNext20days,         
 
  D21,1   
           BAOrdersFromSA, CADeliversToBA  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           / BAIsObligedToPayCAOnBehalfOfSA,      
 
  D21,2   
           BAOrdersFromSA, CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : CADeliversToBA  
           / BAIsObligedToPayCAOnBehalfOfSA, 
 
  D21,3   
           CADeliversToBA, CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA                               } 
 
Level 2: {  
  D12,1   
           true  
           : E-shopFunctionsWell, BAOrdersFromSA  
           / SAIsObligedToDeliverToBAWithinNext20days,        
 
  D22,1   
           BAOrdersFromSA  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA, CADeliversToBA  
           / BAIsObligedToPayCAOnBehalfOfSA, 
 
 

 

  D22,2   
           CADeliversToBA  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA, BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA, 
 
  D22,3   
           CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : CADeliversToBA, BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA                               } 
 
Level 3: {                                          
  D23,1   
           true  
           : CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA, CADeliversToBA, BAOrdersFromSA  
           / BAIsObligedToPayCAOnBehalfOfSA                               } 
 
Suppose that the current explicit knowledge that the buyer agent possesses is that it has 
ordered goods from the seller agent, that the e-shop functions properly, and that the carrier 
agent that will actually deliver the goods is legally empowered to accept payment on behalf 
of the seller agent, i.e., the buyer agent’s current knowledge is: 
 
W={ BAOrdersFromSA, E-shopFunctionsWell,  
         CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA } 
 
On the basis of this knowledge alone, the buyer may only infer, that the seller is obliged to 
deliver products to it, within the next 20 days, i.e. the extension In(1)= W  { 
SAIsObligedToDeliverToBAWithinNext20days } is computed by making no assumptions 
(Out(1)={ }) and by applying default D10,1, i.e. Π(1)={ D10,1 }.  
But, apart from establishing what it must expect from its counterparty, the buyer agent may 
wish to explore potential future scenaria. For instance, the buyer may need to perform best-
guess reasoning and plan its future activities on the assumption that certain events/actions 
will occur, and that its partners’ actions will be valid. Suppose that the buyer wants to infer 
the time by which it will have to pay for the goods, assuming that all goes well and it 
receives them in good time, because it wants to plan to have adequate funds available. To 
derive such an answer the buyer agent needs to identify and employ the assumption that 
delivery happens in due time (CADeliversToBA)2, i.e. the extension In(2)= W  { 
SAIsObligedToDeliverToBAWithinNext20days, BAIsObligedToPayCAOnBehalfOfSA } is 
computed by making the assumption that CADeliversToBA holds (Out(2)={ 
¬CADeliversToBA }) and by applying defaults D10,1 and D21,2 (Π(2)={ D10,1, D21,2 }), 
respectively. 
Now suppose that the buyer agent does not possess complete historical information, i.e. it 
does not know everything that may have happened so far. Let its current knowledge be such 

                                                 
2 In the full representation of the example, using some temporal logic, the temporal conditions involved 
in norms, are treated as all other conditions, when the agent constructs single-norm KH structures, i.e. 
the agent can make assumptions about them as well.  
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           : true  
           / SAIsObligedToDeliverToBAWithinNext20days,      
  
  D20,1   
           BAOrdersFromSA, CADeliversToBA, CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA   
           : true  
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Suppose that the current explicit knowledge that the buyer agent possesses is that it has 
ordered goods from the seller agent, that the e-shop functions properly, and that the carrier 
agent that will actually deliver the goods is legally empowered to accept payment on behalf 
of the seller agent, i.e., the buyer agent’s current knowledge is: 
 
W={ BAOrdersFromSA, E-shopFunctionsWell,  
         CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA } 
 
On the basis of this knowledge alone, the buyer may only infer, that the seller is obliged to 
deliver products to it, within the next 20 days, i.e. the extension In(1)= W  { 
SAIsObligedToDeliverToBAWithinNext20days } is computed by making no assumptions 
(Out(1)={ }) and by applying default D10,1, i.e. Π(1)={ D10,1 }.  
But, apart from establishing what it must expect from its counterparty, the buyer agent may 
wish to explore potential future scenaria. For instance, the buyer may need to perform best-
guess reasoning and plan its future activities on the assumption that certain events/actions 
will occur, and that its partners’ actions will be valid. Suppose that the buyer wants to infer 
the time by which it will have to pay for the goods, assuming that all goes well and it 
receives them in good time, because it wants to plan to have adequate funds available. To 
derive such an answer the buyer agent needs to identify and employ the assumption that 
delivery happens in due time (CADeliversToBA)2, i.e. the extension In(2)= W  { 
SAIsObligedToDeliverToBAWithinNext20days, BAIsObligedToPayCAOnBehalfOfSA } is 
computed by making the assumption that CADeliversToBA holds (Out(2)={ 
¬CADeliversToBA }) and by applying defaults D10,1 and D21,2 (Π(2)={ D10,1, D21,2 }), 
respectively. 
Now suppose that the buyer agent does not possess complete historical information, i.e. it 
does not know everything that may have happened so far. Let its current knowledge be such 

                                                 
2 In the full representation of the example, using some temporal logic, the temporal conditions involved 
in norms, are treated as all other conditions, when the agent constructs single-norm KH structures, i.e. 
the agent can make assumptions about them as well.  

www.intechopen.com



Web Intelligence and Intelligent Agents98

 

that it only knows that it ordered goods from the seller agent, that the e-shop functions well, 
and that the carrier agent delivered goods to it.  
 
W={ BAOrdersFromSA, E-shopFunctionsWell, CADeliversToBA } 
 
The buyer may need to perform no-risk reasoning, in order to derive a conclusion based on 
assumptions, because alternatively it might find itself in an undesirable situation. For 
instance, it may want to infer that it has an obligation to pay for the goods that it received, 
yet this inference is not possible, unless it assumes that the carrier agent is legally 
empowered to accept payment on behalf of the seller agent 
(CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA), i.e. the extension In(2)= W  { 
SAIsObligedToDeliverToBAWithinNext20days, BAIsObligedToPayCAOnBehalfOfSA } is 
computed by making the assumption that CAIsEmpoweredToAcceptPayment 
FromBAOnBehalfOfSA holds (Out(2)={¬CAIsEmpoweredToAcceptPaymenFromBAOn 
BehalfOfSA}) and by applying defaults D10,1 and D21,1 (Π(2)={ D10,1, D21,1 }), respectively. In 
this scenario, the buyer agent does not possess knowledge about the carrier agent’s legal 
power to accept payment on behalf of the seller agent. It may be the case that when such 
information was communicated to it by the seller agent, it got lost or distorted, or it may be 
the case that the seller agent simply ‘forgot’ to communicate such information to it. If the 
buyer agent does not perform no-risk reasoning, it risks finding itself in a situation where it 
will have violated its obligation to pay for the goods that it received, inadvertently, and it 
will have to face the legal consequences, e.g. to pay extra charges.  

 
4. Related Work on Assumption-based Reasoning 
 

During the past thirty years or so various approaches to assumption-based reasoning have 
been proposed in the Artificial Intelligence literature. These can be broadly grouped into:  
o those that rely on a priori specification of the assumptions that can be employed during 

the reasoning process, i.e., those where assumption identification is static; and  
o those that attempt to support ad hoc identification of potentially useful assumptions 

during the reasoning process, that is those that purport to identify and employ 
assumptions dynamically. 

Our approach, which is presented in section 3, is clearly related closely to the second group. 
However, we review here static approaches as well, since they form the basis on which 
dynamic approaches to assumption-based reasoning were developed. In order to assist 
readers to familiarize themselves both with the motivations for assumption-based reasoning 
and with the technical aspects of the various approaches, we found it useful to include static 
approaches in our discussion. 

 
4.1 Static Assumption-based Reasoning 
Doyle in 1979 (Doyle, 1979) described the representation and structure of a Truth 
Maintenance System (TMS). He argued that his work solves part of the belief revision 
problem and provides a mechanism for making assumptions. It is guided by the so called 
problem of control, that is the problem of deciding on what the system’s next inference will 
be. In other words, the agent needs an inference about which inference to make. New 
inferences are made by the Reasoner System (or overall Problem Solver) based on different 

 

assumptions that are statements believed without a particular reason. Consequently, 
different assumptions define different justified beliefs or reasoned arguments. A TMS, 
firstly, works as a cache by storing all inferences (justifications) ever made and, secondly, it 
makes any necessary revisions in the current belief set when the justifications-set, i.e. a set of 
justifications that represent different reasons for accepting a belief, is altered either by 
removing or adding a justification. In cases where a contradiction arises, a procedure, called 
‘reasoned retraction of assumptions’ is introduced. The procedure searches each belief 
justification-set for at least one assumption to be removed or added, in order to eliminate the 
contradiction. In 1986, de Kleer in (de Kleer, 1986a, de Kleer, 1986b) presented a new kind of 
TMS that avoids certain previous pitfalls. Contrary to (Doyle, 1979) this new approach, the 
Assumption-based Truth Maintenance System (ATMS), is based on manipulating not only 
justifications but assumptions as well. In this way, each belief is labelled with the set of 
assumptions under which it holds, besides the justifications that support it. Later, Reiter and 
de Kleer, in (Reiter and de Kleer, 1987) and (de Kleer, 1988) respectively, proposed some 
extensions and generalizations of the ATMS that are concerned mainly with the way the 
system is able to manipulate clauses, which are more general than Horn clauses. Based on 
the above ideas of TMS and ATMS, Kohals et al. in (Kohlas and Monney, 1993, Anrig  et al., 
1997) proposed an extension of the propositional assumption-based model with 
probabilities, the so called Assumption-based Evidential Language (ABEL). Consequently, 
hypotheses were, also, enhanced with notions such as support, quasi-support, plausibility 
and doubt. 
Poole in (Poole  et al., 1987, Poole, 1988) presents Theorist that is a framework for default 
reasoning implemented in Prolog. Poole argues that no special logic is required for default 
reasoning and proposes a modification to classical logic to achieve default reasoning. He 
considers the simplest case of hypothetical reasoning, where the user provides the form of 
possible assumptions in order to achieve explanation. Specifically, Theorist accepts from 
users a set of closed formulae called facts (F), and a set Δ of potential assumptions called 
possible hypotheses. A closed formula G is explainable from F and Δ, if there is a set D of 
ground instances of Δ such that FD entails G, and FD is consistent3. Finally, in (Poole, 
1996) a very interesting discussion is presented. Queries such as “What are the possible 
hypotheses?” and “Who makes the assumptions?” are answered based on the type of 
problem that the agent faces, i.e. planning, diagnosis or default reasoning. Although, this 
approach is close to the technique that is presented in this chapter, there is a quite important 
difference. In Theorist, predefined rules determine what can be used as hypotheses, while in 
ours an agent discovers candidate hypotheses for itself. 
Bondarenko et al. in (Bondarenko  et al., 1993) proposed an argumentation-based approach 
to hypothetical reasoning. This work is inspired by Dung’s general argumentation 
framework and it is based on the notions of attack and counterattack of argumentation 
theory. An assumption is said to be acceptable, if it is able to counterattack any other 
attacking set of assumptions. According to this view, definitions for admissible, complete, 
grounded, stable and preferred sets of assumptions were given. This fixed-assumptions 
framework is first introduced for logic programming, while an extension for its application 
to other formalisms of nonmonotonic reasoning is possible.  

                                                 
3 As Poole points out, his assumptions are identical to Reiter’s supernormal default rules.  
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that it only knows that it ordered goods from the seller agent, that the e-shop functions well, 
and that the carrier agent delivered goods to it.  
 
W={ BAOrdersFromSA, E-shopFunctionsWell, CADeliversToBA } 
 
The buyer may need to perform no-risk reasoning, in order to derive a conclusion based on 
assumptions, because alternatively it might find itself in an undesirable situation. For 
instance, it may want to infer that it has an obligation to pay for the goods that it received, 
yet this inference is not possible, unless it assumes that the carrier agent is legally 
empowered to accept payment on behalf of the seller agent 
(CAIsEmpoweredToAcceptPaymentFromBAOnBehalfOfSA), i.e. the extension In(2)= W  { 
SAIsObligedToDeliverToBAWithinNext20days, BAIsObligedToPayCAOnBehalfOfSA } is 
computed by making the assumption that CAIsEmpoweredToAcceptPayment 
FromBAOnBehalfOfSA holds (Out(2)={¬CAIsEmpoweredToAcceptPaymenFromBAOn 
BehalfOfSA}) and by applying defaults D10,1 and D21,1 (Π(2)={ D10,1, D21,1 }), respectively. In 
this scenario, the buyer agent does not possess knowledge about the carrier agent’s legal 
power to accept payment on behalf of the seller agent. It may be the case that when such 
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4. Related Work on Assumption-based Reasoning 
 

During the past thirty years or so various approaches to assumption-based reasoning have 
been proposed in the Artificial Intelligence literature. These can be broadly grouped into:  
o those that rely on a priori specification of the assumptions that can be employed during 

the reasoning process, i.e., those where assumption identification is static; and  
o those that attempt to support ad hoc identification of potentially useful assumptions 

during the reasoning process, that is those that purport to identify and employ 
assumptions dynamically. 
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and with the technical aspects of the various approaches, we found it useful to include static 
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4.1 Static Assumption-based Reasoning 
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assumptions that are statements believed without a particular reason. Consequently, 
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makes any necessary revisions in the current belief set when the justifications-set, i.e. a set of 
justifications that represent different reasons for accepting a belief, is altered either by 
removing or adding a justification. In cases where a contradiction arises, a procedure, called 
‘reasoned retraction of assumptions’ is introduced. The procedure searches each belief 
justification-set for at least one assumption to be removed or added, in order to eliminate the 
contradiction. In 1986, de Kleer in (de Kleer, 1986a, de Kleer, 1986b) presented a new kind of 
TMS that avoids certain previous pitfalls. Contrary to (Doyle, 1979) this new approach, the 
Assumption-based Truth Maintenance System (ATMS), is based on manipulating not only 
justifications but assumptions as well. In this way, each belief is labelled with the set of 
assumptions under which it holds, besides the justifications that support it. Later, Reiter and 
de Kleer, in (Reiter and de Kleer, 1987) and (de Kleer, 1988) respectively, proposed some 
extensions and generalizations of the ATMS that are concerned mainly with the way the 
system is able to manipulate clauses, which are more general than Horn clauses. Based on 
the above ideas of TMS and ATMS, Kohals et al. in (Kohlas and Monney, 1993, Anrig  et al., 
1997) proposed an extension of the propositional assumption-based model with 
probabilities, the so called Assumption-based Evidential Language (ABEL). Consequently, 
hypotheses were, also, enhanced with notions such as support, quasi-support, plausibility 
and doubt. 
Poole in (Poole  et al., 1987, Poole, 1988) presents Theorist that is a framework for default 
reasoning implemented in Prolog. Poole argues that no special logic is required for default 
reasoning and proposes a modification to classical logic to achieve default reasoning. He 
considers the simplest case of hypothetical reasoning, where the user provides the form of 
possible assumptions in order to achieve explanation. Specifically, Theorist accepts from 
users a set of closed formulae called facts (F), and a set Δ of potential assumptions called 
possible hypotheses. A closed formula G is explainable from F and Δ, if there is a set D of 
ground instances of Δ such that FD entails G, and FD is consistent3. Finally, in (Poole, 
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approach is close to the technique that is presented in this chapter, there is a quite important 
difference. In Theorist, predefined rules determine what can be used as hypotheses, while in 
ours an agent discovers candidate hypotheses for itself. 
Bondarenko et al. in (Bondarenko  et al., 1993) proposed an argumentation-based approach 
to hypothetical reasoning. This work is inspired by Dung’s general argumentation 
framework and it is based on the notions of attack and counterattack of argumentation 
theory. An assumption is said to be acceptable, if it is able to counterattack any other 
attacking set of assumptions. According to this view, definitions for admissible, complete, 
grounded, stable and preferred sets of assumptions were given. This fixed-assumptions 
framework is first introduced for logic programming, while an extension for its application 
to other formalisms of nonmonotonic reasoning is possible.  

                                                 
3 As Poole points out, his assumptions are identical to Reiter’s supernormal default rules.  
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Kowalski and Sadri in (Kowalski and Sadri, 1994, Kowalski and Sadri, 1997) compare the 
Situation Calculus (McCarthy, 1963, Reiter, 1993) and the EC. Both calculi are formulated as 
Logic Programs. As noted, the EC was intended primarily for reasoning about actual events, 
and the Situation Calculus was primarily designed for reasoning about hypothetical actions. 
Thus the unification of the way both calculi handle hypothetical and actual events is 
proposed. Actual events are simply asserted in the knowledge base and their effects are 
considered valid. On the contrary, hypothetical events are also asserted in the knowledge 
base but nothing on their effects is stated. When events are asserted in the knowledge base it 
is important to verify its integrity, and to this end  integrity constraints are used to ensure 
that i) an event that happens is possible given the current situation, that is all its associated 
preconditions actually or hypothetically hold; and ii) no concurrent events are possible. 
These constraints play different roles in the case of actual or hypothetical events. In the first 
case, they ensure that only possible events happen, and, in the second case, they define the 
context in which an assumption is possible. 
Provetti in (Provetti, 1996) also deals with the problem of actual and hypothetical actions in 
terms of the Situation Calculus and the EC and introduces new predicates such as 
HypHolds(fluent,situation) to denote that a fluent is assumed to hold in a situation, as well 
as new ordered types of constants. A simple version of the EC formulated as an Extended 
Logic Program with answer sets semantics is presented and discussed as a tool for making 
assumptions on domains. Thus the new axiomatization of the EC is enhanced with new 
predicates and constants of the language. 
Florea in (Florea, 1997) presents an assumption-based reasoning approach for multi-agent 
systems that is based on the TLI (Teoria Logica Implicita) logic. The proposed logic is first-
order logic enhanced with special notation for the representation of Reiter’s original default 
rules and for the derivation of extensions. 
Tahara in (Tahara, 2004) addresses the issue of inconsistency that may arises in the 
knowledge base as a result of inconsistent hypotheses and uses a preference ordering in 
order to resolve contradictions.  

 
4.2 Dynamic Assumption-based Reasoning 
The most notable approaches that fall into the second category, where it is attempted to 
identify and employ assumptions dynamically, include those of Cox and Pietrzykowski 
(Cox and Pietrzykowski, 1986), Reichgelt and Shadbolt (Reichgelt and Shadbolt, 1989, 
Reichgelt and Shadbolt, 1990), Abe (Abe, 1999), Pellier and Fiorino (Pellier and Fiorino, 2004, 
Pellier and Fiorino, 2005) and Jago (Jago, 2005). Our work is, obviously, related mostly to 
this second category. However, it seems to us that assumption identification in these 
approaches is not truly dynamic. Before we discuss briefly each of these approaches, we 
make some general remarks on this issue: Some of these approaches rely on the use of a pre-
specified pool of assumptions, from which the agent must choose appropriate ones, 
whenever it identifies an information gap and needs to fill it, in order to proceed with its 
reasoning. A natural question that arises though, is whether it is realistic to expect that 
candidate assumptions can be identified in advance. It may be the case that in some 
application domains this is possible. However, in such cases, candidate assumption 
identification is not really dynamic, rather selection of an appropriate assumption from the 
pre-specified pool, may be carried out dynamically during the inference process. This 
selection though, requires deductive proof, which is notably computationally expensive. 

 

Other dynamic approaches that purport to support dynamic identification of assumptions, 
rely on finding appropriate assumptions in a goal-driven manner, that is, a particular 
conclusion that the agent wants to derive is given, and then the agent identifies the 
assumptions that are required, in order for this conclusion to be derivable. In some cases, 
such goal-driven identification of candidate assumptions requires proof. But more 
importantly, the problem that we perceive with purely goal-driven assumption 
identification is the following: although software agents, in general, are inherently goal-
driven in planning their activity, their rationality (and consequently their performance 
measure) depends on the extent to which they are perceptive of their environment, so that 
they may exploit changes in it. A purely goal-driven identification of candidate assumptions 
does not leave much room for the agent to adapt to circumstances.  
We now discuss each one of the approaches on dynamic assumption identification and 
usage, with some additional comments on each of them: 
Cox and Pietrzykowski in (Cox and Pietrzykowski, 1986) explore the problem of the 
derivation of hypotheses to explain observed events. This is equivalent to finding what 
assumptions together with some axioms imply a given formula. This is similar to what we 
refer to as no-risk reasoning, i.e. the identification and usage of assumptions about the past. 
In this work, the identification of assumptions is essentially goal-driven, and it requires 
proof, in order to establish that the observed event is implied by what is known (the axioms) 
and what is assumed. 
Reichgelt and Shadbolt in (Reichgelt and Shadbolt, 1989, Reichgelt and Shadbolt, 1990) 
present a way to analyze planning as a form of theory extension. Theory extension enables 
an agent to add further assumptions to its knowledge base, in order to derive potential 
plans towards goal achievement. This is similar to what we refer to as best-guess reasoning, 
i.e. the identification and usage of assumptions about the future. Their approach requires 
the use of a pre-specified assumption pool, where candidate assumptions are defined in 
advance, along with preconditions for their usage. The selection of an appropriate 
assumption from this pool is conducted in a goal-driven manner and requires that the 
preconditions associated with the assumption may be deductively proved from the 
knowledge base. If multiple assumptions have preconditions that are satisfied, selection 
amongst them is performed by checking them against pre-specified criteria, e.g. parsimony 
(the assumption with the fewest preconditions is selected) or generality (the more general 
assumption is preferred).  
Abe in (Abe, 1999), also, deals with the problem of missing hypotheses for the explanation of 
an observation. He proposes a way to generate analogous hypotheses from the knowledge 
base when the latter lacks the necessary ones. This work extends the Clause Management 
System (CMS) proposed by Reiter and de Kleer (Reiter and de Kleer, 1987) for abduction. A 
CMS, given an observation Ο that cannot be explained from the knowledge base ΚΒ 
(ΚΒ⊭Ο), returns as set of minimal clauses O′ such that ΚΒ⊨ΟO’ and ΚΒ⊭Ο’. That is to say, 
O’ is the minimal support for O with respect to KB, iff no proper subset of O’ is support for 
O with respect to KB. Hypothesis generation is done in two distinct steps: i) using first 
abduction and then deduction, candidate hypotheses are searched in the knowledge base, 
and ii) in case where such candidate assumptions do not exist in the knowledge base, 
analogous hypotheses are generated by examining clauses in the knowledge base and the 
assumption requirements that were identified in the previous step. Hypotheses are 
generated ad hoc during the inference process, by exploiting predefined analogy 
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relationships between clauses. This is an attractive approach, but it requires caution: in some 
applications it is difficult to define analogy relations between clauses, in advance; if no such 
definition for analogy is provided a priori, counterintuitive results may be produced: For 
instance, suppose that a buyer agent is obliged to pay a seller agent by some deadline, and 
that it actually proceeds to do so by cash deposit into the seller’s bank account. Although the 
action of paying via a cash deposit is analogous to the action of paying in cash (in the sense 
that they have the same practical effect, the seller agent ends up possessing the required 
funds), the contract that regulates the exchange between the two agents may dictate that 
only payment in some specific form is deemed as acceptable. The two distinct forms of 
payment that seem analogous in terms of practical effects, may have different legal effects: 
one will result in the successful discharge of the buyer’s obligation to pay the seller, while 
the other will result in a (technical) violation of this obligation. 
Pellier and Fiorino in (Pellier and Fiorino, 2004, Pellier and Fiorino, 2005) address 
Assumption-based Planning, and propose a mechanism by which an agent can produce 
“reasonable” conjectures, i.e. assumptions, based on its current knowledge. Any action 
precondition that cannot be proved from the knowledge base is considered to be a candidate 
assumption. A tentative plan (i.e. one that involves assumptions) becomes firm, and can be 
employed by the agent in order to achieve a specific goal, only when the agent can satisfy all 
of the conjectures, and this requires the agent to regard them as sub-goals and produce 
plans for them in turn.  
Jago in (Jago, 2005) uses the notion of context in making assumptions. A context is the 
current set of the agent’s beliefs. Nested contexts are used to model nested assumptions, and 
temporally ordered contexts are used to represent the agent’s set of beliefs as it changes over 
time. Assumptions are not identified a priori, but rather during the reasoning process, either 
by guessing or in a goal-driven manner. 

 
5. Conclusions 
 

The work presented in this chapter is motivated by the need for assumption-based 
reasoning in open normative multi-agent environments. The behaviour of agents in multi-
agent environments is restricted by the norms that regulate the particular environment in 
which they participate. In the most general case, regardless of any particular application 
domain, some communication and interaction protocols govern the society of agents; 
specific application domains may require additional prescription of agent behaviour, and 
pose application-specific norms. Unavoidably in open environments agents have incomplete 
knowledge about their world, and about other agents, yet they must somehow plan their 
activities (both private and public), and they must somehow preserve their autonomy, i.e. 
decide for themselves which behaviour serves their private or shared goals in the best way. 
We believe that the degree of agent autonomy is related to the extent to which an agent is 
‘free’ to make assumptions about anything it does not know about, and we want to support 
assumption identification and usage, without a priori restrictions on the agent, and without 
resorting to proof, which is prohibitive computationally. 
We have developed a prototype implementation, in order to establish that our proposal is 
feasible. One natural direction for future work is the extension of our prototype to handle 
variables and their quantification, and we are currently investigating four major approaches 
(cf. (Reiter, 1980, Lifschitz, 1990, Poole, 1988, Kaminski, 1995, Kaminski  et al., 1998)) to the 

 

semantics of open Default Theories, to establish what might be appropriate for 
computational purposes.  
Another direction for future work is to explore whether our ideas about the dynamic and ad 
hoc identification and usage of candidate assumptions via the construction of hierarchical 
multi-level structures, can be applied to other approaches to nonmonotonic reasoning such 
as Logic Programs (Gelfond and Lifschitz, 1988, Gelfond and Lifschitz, 1991) and Defeasible 
Logic (Nute, 1994). 
Finally, we have already started exploring alternative ways for representing the possible 
knowledge/hypothesis states of an agent as lattices, which can be traversed both upwards 
and downwards, reflecting an agent’s expanding or contracting knowledge base, or 
equivalently an agent’s contracting or expanding assumption requirements; we are 
experimenting with the computational implementation of the associated algorithms for such 
traversal and have recorded some preliminary results in (Giannikis and Daskalopulu, 2009). 
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