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Estimation of soil properties using observations
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sensitivity analysis and impact on the
prediction of agro-environmental variables
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1. Introduction

Dynamic crop models are very useful to predict the behaviour of crops in their
environment and are widely used in a lot of agro-environmental work such as crop
monitoring, yield prediction or decision making for cultural practices (Batchelor et al.,
2002; Gabrielle et al., 2002; Houles et al., 2004). These models usually have many
parameters and their estimation is a major problem for agro-environmental prediction
(Tremblay and Wallach, 2004; Makowski et al., 2006). For spatial application, the
knowledge of soil parameters is crucial since they are responsible for a major part of the
variability of the crop model output variables of interest (Irmak et al., 2001; Launay and
Guérif, 2003; Ferreyra et al., 2006). These parameters may be estimated from different
techniques: either with soil analysis at the different points of the study area, from a soil
map and the application of pedotransfer functions (Reynolds et al., 2000; Murphy et al.,
2003), from remote sensing images (Lagacherie et al., 2008) or by using electrical
resistivity measurements (Golovko and Pozdnyakov, 2007). The choice of the first method
is difficult because of practical limitations, as well as time and financial constraints.
Detailed soil maps adapted to the scale of precision agriculture and even to the scale of
catchment are scarcely available (King et al., 1994), while the use of remote sensing
images or electrical resistivity is still hampered by a lack of robust interpretation of the
signal (Lagacherie et al., 2008). Moreover, these techniques do not permit to access the
values of all the soil parameters required to apply a complex crop model. Fortunately,
techniques derived from remote sensing images (Weiss and Baret, 1999; Houborg and
Boegh, 2008) or yield monitoring (Blackmore and Moore, 1999; Pierce et al., 1999) allow
soil parameters being estimated through the inversion of crop models.

Estimating parameters of complex models such as crop models may be not so easy
(Tremblay and Wallach, 2004; Launay and Guérif, 2005). One of the reasons for the
difficulties encountered may be a lack of sensitivity of the observed variables to the
parameters, making the estimation process inefficient. Another reason may be that the
influence of the parameters on the observed variables takes place mainly through
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interactions, making it difficult to identify the relevant factors (Saltelli et al., 2000). For
complex non-linear models such as crop models, global sensitivity analysis (GSA)
methods are able to give relevant information on the sensitivity of model outputs to the
whole range of variation of model inputs. Many studies have focused on this subject,
namely, how to choose the main parameters to be estimated for the model calibration
(Campolongo and Saltelli, 1997; Ruget et al., 2002; Gomez-Delgado and Tarantola, 2006;
Makowski et al., 2006) and ranked the importance of the parameters by calculating global
sensitivity indices: first-order indices (the main effect of the parameter on the output) and
total indices (sum of all effects involving the parameter, including the interactions with
other parameters). The common practice is consistent with the principles expressed by
Ratto et al. (2007). Small total sensitivity indices indicate a negligible effect of the
parameter on the model output concerned. These parameters can be fixed at a nominal
value (“Factor Fixing setting”). High first-order indices reveal a clearly identifiable
influence of the parameter on the model output concerned, and therefore the parameters
need to be determined accurately (“Factor Prioritization setting”). Small first-order
indices combined with large interaction indices result in a lack of identification. In
practice, the two first rules are commonly used to select the set of parameters to be
estimated in a calibration problem. GSA can also be used to evaluate the quantity of
information contained in a given set of observations for estimating parameters and thus to
determine which is the best observation set for estimating the parameters (Kontoravdi et
al., 2005). Although the results of GSA are often used to design the estimation process, the
link between GSA indices and the quality of parameter estimation has never been
quantified.

Our objectives in this study are twofold. Firstly, we propose to use GSA results in order to
measure the quantity of information contained in different sets of observations and to
illustrate the link between this measurement and the quality of parameter estimates.
Secondly, we propose to study the impact of the quality of parameter estimates on the
prediction of variables of interest for agro-environmental work. As the performance of the
estimation process is supposed to depend on several conditions such as soil type,
cropping conditions (preceding crop and climate) or available observations, we chose to
conduct the study on synthetic observations in order to be able to generate variability in
parameter retrieval performance as well as in sensitivity structure of the observed model
outputs to soil parameters and in the prediction performance. This choice also allows
eliminating the impact of model errors, which may complicate the interpretation of the
results. Finally, we considered in this study the STICS-wheat crop model and various
synthetic observations on wheat crops: derived from remote sensing images (LAI and
absorbed nitrogen) as well as grain yield.

2. Material and methods
2.1 The crop model, output variables and soil parameters

2.1.1 The STICS model

The STICS model (Brisson et al., 2002) is a nonlinear dynamic crop model simulating the
growth of various crops. For a given crop, STICS takes into account the climate, type of
soil and cropping techniques to simulate the carbon, water and nitrogen balances of the
crop-soil system on a daily time scale. In this study, a wheat crop is simulated. The crop is

www.intechopen.com



Estimation of soil properties using observations and the crop model STICS. Interest
of global sensitivity analysis and impact on the prediction of agro-environmental variables 231

essentially characterized by its above-ground biomass carbon and nitrogen, and leaf area
index. The main outputs are agronomic variables (yield, grain protein content) as well as
environmental variables (water and nitrate leaching). Yield, grain protein content and
nitrogen balance in the soil at harvest are of particular interest for decision making,
especially for monitoring nitrogen fertilization (Houles et al., 2004). Nitrogen absorbed by
the plant and leaf area index are also important to analyze the health and growth of the
plant during the crop’s growing season.

The STICS model includes more than 200 parameters arranged in three main groups:
those related to the soil, those related to the characteristics of the plant or to the genotype,
and those describing the cropping techniques. The values of the last group of parameters
are usually known as they correspond to the farmer’s decisions. The parameters related to
the plant are generally determined either from literature, from experiments conducted on
specific processes included in the model (e.g. mineralization rate, critical nitrogen dilution
curve etc.) or from calibrations based on large experimental database, as is the case for the
STICS model (Hadria et al., 2007). The soil parameters are difficult to determine at each
point of interest and are responsible for a large part of the spatial variability of the output
variable. That is why the sensitivity analysis and parameter estimation processes
described in this study only concern soil parameters.

2.1.2 Output variables considered

In this study, we focus on two types of STICS output variables. First, those corresponding
with observations that may be done on wheat canopy by automated measurements. They
consist in:

- the leaf area index (LAI;) and the nitrogen absorbed by the plant (QN;) at various dates ¢
during the crop season - as potentially derived from remote sensing image inversion
(Weiss and Baret, 1999; Houborg and Boegh, 2008),

- the yield at harvest (YId) as potentially provided by yield monitoring systems.

These output variables, hereafter referred to as “observable variables” can be observed at
different dates during the growing season.

Second, a main objective of this study, beyond the estimation of soil parameter values, lies
in the prediction of some output variables of interest, and its improvement as compared to
the prediction obtained with a lack of precise values on soil parameters. They consist in:

- yield at harvest (Yid),

- protein in the grain at harvest (Prot),

- nitrogen contain in the soil at harvest (Nit).

Yield, grain protein content and nitrogen balance in the soil at harvest are of particular
interest for decision making, especially for monitoring nitrogen fertilization (Houles et al.,
2004). Nitrogen absorbed by the plant are also important to analyze the health and growth
of the plant during the crop’s growing season (Baret et al., 2006).

2.1.3 The soil parameters estimated

The STICS model contains about 60 soil parameters. In our case, in order to limit the
problems of identifiability, the number of soil parameters to be estimated has been
reduced. First, among the available options for simulating the soil system, the simplest
was chosen, by ignoring capillary rise and nitrification. These assumptions define the
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domain of validity of the model considered and hence, of the results that are found. We
then considered the soil as a succession of two horizontal layers, each characterized by a
specific thickness parameter. From the observation of the tillage practices in the region
around our experimental site of Chambry (49.35°N, 3.37°E) (Guérif et al., 2001), the
thickness of the first layer was set at 0.30 m. We performed a first sensitivity analysis on
the 13 resulting soil parameters. This allowed us to fix those whose effects on the
observed variables were negligible: for each parameter we computed the values of its
effects on all the observed variables considered for a lot of soil, climate and agronomic
conditions, and dropped the parameters for which all these values were less than 10% of
the total effects generated by the 13 parameters. We thus restricted the study to 7
parameters.

The 7 soil parameters considered (Table 1) characterize both water and nitrogen processes.
They refer to permanent characteristics and initial conditions. Among the permanent
characteristics, clay and organic nitrogen content of the top layer are involved mainly in
organic matter decomposition processes and nitrogen cycle in the soil. Water content at
field capacity of both layers affects the water (and nitrogen) movements and storage in the
soil reservoir. Finally, the thickness of the second layer defines the volume of the
reservoir. The initial conditions correspond to the water and nitrogen content, Hinit and
NOg3init, at the beginning of the simulation, in this case the sowing date.

Parameter  Definition Range Unit

argi Clay content of the 1rst layer 14-37 %

Norg Organic nitrogen content of the 1rst layer 0.049-0.131 %

epc(2) Thickness of the 2nd layer 0-70 or 50-130* cm

HCC(1) Water content at field capacity (1rst layer) 14-30 gg-1
HCC(2) Water content at field capacity (2nd layer) 14-30 gg-1

Hinit Initial water content (both layers) 4-29 % of weight
NO3init Initial mineral nitrogen content (1rst layer) 4-21.5 or 25-86** kg N ha-1

* the first range is for a shallow soil and the second for a deep soil; ** the first range is for a wheat
cultivated after sugar beet and the second for a wheat cultivated after pea

Table 1. The 7 soil parameters and ranges of variation.

2.2 Global sensitivity analysis

In this study, we chose a variance-based method of global sensitivity analysis which
allows calculating the sensitivity indices for a non-linear model such as STICS. More
precisely, the method we chose is Extended FAST.

2.2.1 Variance decomposition and sensitivity indices
We denote a given output variable of the STICS model as Y. The total variance of Y,

V(Y ), caused by variation in the 7 selected soil parameters @, can be partitioned as
follows (Chan et al., 2000):

7
V(Y): ZV; + ZVU + "'+V1,2,~~,7 1)
i=1

1<i<j<7
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where Vl = V[E (Y|‘91 )] measures the main effect of the parameter 49[. , i=1,---,7, and the

other terms measure the interaction effects. Decomposition (2) is used to derive two types
of sensitivity indices defined by:

_V
ry)-v,
ST, =

where J_, is the sum of all the variance terms that do not include the index i.
S, is the first-order (or main) sensitivity index for the it parameter. It computes the

fraction of Y variance explained by the uncertainty of parameter §, and represents the

main effect of this parameter on the output variable Y.
ST is the total sensitivity index for the ith parameter and is the sum of all effects (first and

higher order) involving the parameter 6, .
S, and ST, are both in the range (0, 1), low values indicating negligible effects, and

values close to 1 huge effects. S7, takes into account both S; and the interactions between

the ith parameter and the 6 other parameters, interactions which can therefore be assessed
by the difference between S7, and ;. The interaction terms of a set of parameters

represent the fraction of Y variance induced by the variance of these parameters but that
cannot be explained by the sum of their main effects. The two sensitivity indices §, and

ST, are equal if the effect of the ith parameter on the model output is independent of the

values of the other parameters: in this case, there is no interaction between this parameter
and the others and the model is said to be additive with respect to 4, .

2.2.2 Extended FAST
Sobol’s method and Fourier Amplitude Sensitivity Test (FAST) are two of the most widely

used methods to compute S, and S7, (Chan et al., 2000). We have chosen here to use the

extended FAST (EFAST) method, which has been proved, in several studies (Saltelli and
Bolado, 1998; Saltelli et al., 1999; Makowski et al., 2006), to be more efficient in terms of
number of model evaluations than Sobol’s method. The main difficulty in evaluating the
first-order and total sensitivity indices is that they require the computation of high
dimensional integrals. The EFAST algorithm performs a judicious deterministic sampling
to explore the parameter space which makes it possible to reduce these integrals to one-
dimensional ones using Fourier decompositions. The reader interested in a detailed
description of EFAST can refer to (Saltelli et al., 1999).

We have implemented the EFAST method in the Matlab® software, as well as a specific
tool for computing and easily handling numerous STICS simulations. The uncertainties
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considered for the soil parameters are assumed independent and follow uniform
distributions. These uncertainties are based to the measurements made in Chambry and
correspond to the ranges of variation presented in Tab. 1. A preliminary study of the
convergence of the sensitivity indices allowed us to set the number of simulations per
parameter to 2000, leading to a total number of model runs of 7x2 000=14 000 to compute
the main and total effects for all output variables and parameters considered here. One
run of the STICS model taking about 1s with a Pentium 4, 2.9 GHz processor, the overall
simulation process takes about 4h.

2.2.3 Criteria based on GSA indices

GSA provides main and total indices per parameter for each output variable considered.
In order to summarize this information, we propose to create different criteria.

(i) The first one is a global measure of the information contained in a set of observations to
estimate each parameter:

The Global Mean Sensitivity (GMS;) computes the mean of the main effect of parameter

@, minus its interactions with the other parameters for all observed variables, each

component being weighted by the degree of dependence of the corresponding output
variable with the other variables:

GMS, :%i(l—ak)(gik _Rik) 4)

=1
where k is a given observed output variable in a subset composed of K variables among
{LAI;, QNy, t=1,...,T and Yld}, Rl.k = STik — Sl.k is the sum of all interaction terms including
parameter 01. for the observed variable k, 0 < ¢ 0 S 1 is the mean of the absolute values of

the correlation coefficients |rkk.| between the variable k and the other variables k’

(calculated on the model simulations required for GSA): ¢, = ; Z |rkk, , K>1.
K -1

L k'#k

The GMS; criterion is based on the following rules:
-if ST, is low (and thus .§,), observation k is assumed not to contain enough information

to estimate parameter @,: in this case the corresponding part of the criteria should be low,
- if §, is high (and thus S§7)), observation k is assumed to contain sufficient information
to estimate parameter @.: in this case the corresponding part of the criteria should be
high,

- if §, is low and STis high, then the model is over-parameterized and difficulties in
identifying parameter @, are expected (Ratto et al., 2007): in this case the corresponding

part of the criteria should be low,

- high correlation between output variables indicates that the information contents of
these variables are redundant: in this case the weights of the corresponding sensitivity
indices should be reduced.
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GMS; varies within the range [-1, 1]. It tends to 1 when S, is close to 1 for all observed
variables and when all the observed variables are perfectly uncorrelated: in this case the
model has an additive structure for the parameter §, and this parameter has a clearly
identifiable influence on the K observed variables. GMS; tends to -1 when §, and Rl.k are

close to 0 and 1 respectively for all observed variables and when all the observed variables
are perfectly uncorrelated: in this case problems of identification of the parameter @, are
expected.

(ii) The second criterion is calculated at the whole parameter set level.
The Total Global Mean Sensitivity (TGMS), is the sum of the GMS,; for all parameters:

> (1-a,)s! - &Y (5)

1
K13

7 7
TGMS =) GMS,

i=1 i=1
The TGMS criterion varies within the range [-7, 1]. It tends to 1 when Rl.k is close to 0 for
all parameters and all observed variables and when all the observed variables are
perfectly uncorrelated: in this case the model is additive. TGMS tends to -7 when Rik is

close to 1 for all parameters and all observed variables and when all the observed
variables are perfectly uncorrelated: in this case the model is expected to be
unidentifiable.

2.3 Parameter estimation

We chose a bayesian method which allow to take into account existing information on the
parameters to be estimated (this improves the quality of the estimation process) and to
compute an estimate of the posterior probability distribution of parameter values
(Makowski et al., 2002; Gaucherel et al., 2008). More precisely, the method we chose is
Importance Sampling.

2.3.1 The Importance Sampling method
The posterior parameter distribution is given by Bayes’ theorem:

7(Y /1 6)r(6)

n(6/Y)= e

(6)

where Y is the vector of total observations of size K, 7[(9/ Y) is the posterior parameter
distribution, 7[((9) is the prior parameter distribution, 7z'(Y) is a constant of
proportionality determined by the requirement that the integral of 7[(9/ Y ) over the
parameter space equals 1, and 7z(Y/ 9) is the likelihood function. The likelihood is the

probability of the data Y given the parameters @. Its value is determined from the
probability distribution of the errors of modelled and observed data. It is readily seen that
both the prior distribution and the new data affect the posterior parameter distribution.
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The principle of the Importance Sampling method (Beven and Binley, 1992; Beven and
Freer, 2001) is to approximate the posterior parameter distribution 7[(9/ Y ) given in (7)

N

by a discrete probability distribution (Qn, p,), n=1,.,N, Z p, = 1, where p, is the
n=I

probability associated with the parameter vector @, . In our case, the method proceeds as

follows:

(1) Randomly generate N vectors ‘9"' n=1,..,N, from the prior parameter distribution

(),
(2) Calculate the likelihood values 7z(Y / Hn) for n=1,...,N, associated with the different

generated parameter vectors,

(3) Calculate p = 7 (Y / 071)
n T N
> a(¥/e,)
1

i
The pairs (Hn, pP,) n=1,.,N, can be used to determine various characteristics of the

posterior distribution, including the mean of the posterior joint distribution of @,

. N
0 ot = anen ’
n=l1

In this study, we assume that the errors of simulated and observed data are independent
between dates and variables and follow normal distributions of zero mean and standard

deviation o Thus, we use the following likelihood function:

7(Y/0)= ) ¥3XP{_$[/V/¢ —fk(H,x)]z} )

1 /270

The parameters are assumed to be independent in our case. The prior distribution 7[((9) is

thus the product of the different marginal prior distributions. Accordingly to the
distributions based on the experimental fields of Chambry we assumed them to be
uniform and correspond to the uncertainties given in Tab. 1.

We have implemented the Importance Sampling method in the Matlab® software. A
preliminary study of the convergence of the estimates allowed us to set the total number
of generated parameter vectors N at 100 000.

2.3.2 Criterion expressing the quality of parameter estimation
(i) For each parameter, we created a criterion noted RE; (for Relative Error of the parameter
i), to quantify the quality of the parameter estimation. It computes the ratio between the

error of the estimated parameter 5;’ " and the error of the prior information @P o

www.intechopen.com



Estimation of soil properties using observations and the crop model STICS. Interest
of global sensitivity analysis and impact on the prediction of agro-environmental variables 237

P RMSE(6."")
i RMSE(giprior)

(®)

P
where RMSE(0."*") = iZ(@_’”‘e — Q.1 )2 , @™ is the true value of soil parameter
i P 1 i,p i,p Lp
p:
6. for a given vector p and 51.’;”‘” is the corresponding estimation given by the Bayesian

method. RE; quantify how much the estimation given by the Bayesian method improves
(REi<1) or not (RE;=1) the prior knowledge about the parameter value.

(ii) For all parameters, the criterion called Total Relative Error (TRE), is defined by the
mean of the 7 values of RE;:

7 7 N post
TRE :lZREi :lz RMSE(G, ™) 9)
7 75 RMSE(6,""")

i=l1 i=l1

2.3.3 Criterion expressing the quality of prediction

We created a criterion to quantify the quality of the prediction of the 3 agro-
environmental variables defined above. This criterion computes the ratio between the
error of prediction obtained from the mean of the posterior distributions of the

parameters, 0 7" and the one obtained from the mean of the prior distributions, Q P
It is called Relative Error of Prediction and is defined as follows:

RMSEP, (67"
J RMSE])] (éprior)

(10)

_ P Q,‘ .
where RMSEPJ (9 P‘)St) = ;Z (qu (eltjrue) _ qu (eppost ))2 , glt)rue is the true
P X Q,‘ p=l q=1

values of soil parameters @ for a given vector p, Hp”(’s’ is the corresponding estimation

given by the Importance Sampling method, and qu (49;””) is assumed to be one of the Q;

observations of the predicted variable j, for the p!" vector of true values of soil parameters.

2.4 Numerical experiments

2.4.1 Generation of observations for parameter estimation

The STICS model output variables depend on the soil, climate and agronomic conditions
for which the wheat crop is simulated. In view of this, we use different configurations in
our study, as presented in Table 2: 4 contrasting climates, 2 different soil depths (shallow
and deep), and 2 preceding crops (sugar beet and peas). The climatic data used were
obtained from the meteorological station of Roupy (49.48°N, 3.11°E). Four different sets of
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data were chosen to characterize a dry climate (1975-1976), a wet climate (1990-1991), a
medium-dry climate (1979-1980) and a medium-wet climate (1972-1973). The distributions
of soil parameters used in our study (GSA, creation of observations and prior information
for GLUE) are independent and uniform and deduced from the experimental data
acquired in Chambry (see Tab. 1). In this application, we assume that the type of soil
depth (shallow or deep) and the preceding crop (sugar beet or pea) are known. As a
consequence, two different ranges were considered for the depth of soil epc(2) and for the
mineral nitrogen content at the beginning of the wheat crop simulation NO3init.

Climatic Soil Preceding Configuration
conditions depth crop label

Dry Shallow Sugar beet dry-beet
Medium-dry Shallow Sugar beet mdry-beet
Medium-wet Shallow Sugar beet muwet-beet
Wet Shallow Sugar beet wet-beet
Dry Deep Sugar beet dry+beet
Medium-dry Deep Sugar beet mdry+beet
Medium-wet Deep Sugar beet muwet+beet
Wet Deep Sugar beet wet+beet
Dry Shallow Pea dry-pea
Medium-dry Shallow Pea mdry-pea
Medium-wet Shallow Pea muwet-pea
Wet Shallow Pea wet-pea
Dry Deep Pea dry+pea
Medium-dry Deep Pea mdry+pea
Medium-wet Deep Pea muwet+pea
Wet Deep Pea wet+pea

Table 2. Description of the 16 configurations based on soil, climatic and agronomic
conditions.

We consider observations on wheat crops obtained for the different configurations
described before. These observations consist of LAI; and QN; available at 10 dates ¢,
distributed through the wheat growing season: November 15, December 12, January 15,
February 16, March 15, April 05, April 19, May 03, May 17 and June 07; and Yld. Three
possible sets of observations (see Table 3) were considered for the parameter estimation
experiments and the computation of the criteria based on the GSA and GLUE results. In

order to compute observations, 50 vectors of true values 8" were randomly generated
from the distributions defined above. The number P is thus equal to 50. Corresponding
values of STICS-wheat model output variables were simulated for each configuration

leading to 50x16 simulations. Observations Y, were then computed by adding a random

error term to the simulated values of the variables and dates defined above:
=f (9””3 x)+ & 11
Yar =Jqu ’ g.t (11)

where fq , is the STICS model output g (Yld, LAl or QN;) calculated on date ¢ (harvest for
Yld or t=1,...,T for LAI and QN), x is the vector of explanatory variables and £y is the
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observation error term. Following the assumptions made in Section 2.3.1 to compute the
likelihood function of the GLUE method, the vector of observation error is given by:

eq,,~N(0,a;J) where o, =0, W(H’”’e,x), Oya=9%, ©,,=17% and o, =30%

according to measurements realized in agricultural plots (Machet et al., 2007, Moulin et
al., 2007).

Set number Variables used Size K
1 LAI; on dates t=1,...,10 K=10
2 LAI; and QN on dates t=1,...,10 K=20
3 LAI; and QN; on dates t=1,...,10, and Yld K=21

Table 3. Description of the 3 sets of observations.

2.4.2 Generation of observations for prediction

The prediction of variables of interest is performed on independent wheat crop seasons
from those used in the estimation process. From each of the 50 vectors defined above, 120
configurations of prediction were studied and are composed by the corresponding type of
soil depth, 10 climatic data, 3 different sowing dates and 4 different cropping techniques (2
amount of fertiliser and 2 types of preceding crops). The number Q; is thus equal to 120 The
climatic data were obtained from the meteorological station of Roupy (49.48°N, 3.11°E) and
are different from those used in the parameter estimation process.

From each vector 6", type of soil depth and configuration, the values of synthetic
observations of the predicted variables of interest (YId, Prot and Nit at harvest) are simulated
with STICS-wheat. The values of the permanent properties (argi, Norg, epc(2), HCC(1) and

HCC(2)) of 0™ are the same as those used to create the synthetic observations in the
estimation step and the initial conditions (Hinit and NO3init) are randomly generated from
the distributions defined in Tab. 1: we assume that the values of the initial conditions are not
known for the predicted season. For each parameter estimation experiment defined above,
each estimated values of the permanent properties are used to predict the output variables
of wheat crop through the STICS model. Assuming that the initial conditions are unknown
for the predicted season, they are fixed at the mean of their distribution.

3. Results
3.1 Relationship between criteria based on GSA results and the quality of estimates

3.1.1 At a single parameter level

For each soil parameter, we present here the results about the relationship between the
criterion based on GSA results and the criterion related to the quality of the parameter
estimate, for the three sets of observations and the 16 soil, climatic and agronomic
conditions.

Figure 1 shows that a good link exists between GMS; and RE;: the relationship seems to be
linear, the higher the GMS; criterion, the lower the RE; and the better the quality of
estimation of the i#" parameter. The results show clusters of parameters: h (Hinit) at high
GMS; and low RE; values, e (epc(2)) at intermediate GMS; and RE; values, and the other
parameters all grouped in the same cluster at low GMS; and high RE; values. Within the
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scattering around the relationship, the position of the parameter depends on the
configuration and especially the soil depth.
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Fig. 1. Scatter diagrams of the criteria RE; and GMS; of the 7 soil parameters for the 3 sets
of observations and the 16 configurations. a) Label a corresponds to argi, N to Norg, e to
epc(2), H1 to HCC(1), H2 to HCC(2), h to Hinit and n to NO3init. b) Symbol o corresponds
to shallow soils and o corresponds to deep soils.

The case of parameters for which the observations contain enough information to estimate
them precisely can be illustrated by the parameter Hinit. For example, for the dry-beet
configuration and the observation set #1, Hinit has a big main effect (equal to 0.582 on
average), leading to a high value of GMS;=0.155. In this case, the parameter Hinit has a
low value of RE; (RE;=0.499) meaning a good improvement of its uncertainty through the
parameter estimation process (see Figure 1a). In general, the results show that for high
values of GMS;, the reduction of the estimation error is large: a high GMS; indicates good
parameter estimation.

Small first-order indices combined with a large interaction are thought to induce
problems of identification. In our case, this applies to most of the parameters. For
example, HCC(1) has a small main effect (0.089 on average) and a large interaction (equal
to 0.251 on average) for the wet-beet configuration and the first observation set, leading to
a negative value of GMS;=-0.099. In this case, the parameter HCC(1) has a high value of
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RE; (RE;=0.921), meaning a poor improvement in parameter estimation (see Figure 1a). In
general, the results show that for negative values of GMS;, the reduction of the estimation
error is small: a negative value of GMS; reveals a bad quality of the parameter estimation.
The values of both criteria for parameter epc(2) vary a lot between the different
configurations and especially between the types of soil depth. As it is shown is Figure 1b,
only configurations with a shallow soil (with the symbol) allow retrieving the parameter
epc(2). For shallow soil the observed variables are quite sensitive to epc(2), leading to a
quite good estimate, while for deep soil the observed variables are no longer sensitive to
epc(2), leading to a poor estimate. For example, the configuration dry-beet and the set #3
leads to intermediate GMS; and RE; values (GMS;=0.073 and RE;=0.724), while dry+beet
and set #3 leads to lower (resp. higher) GMS; (resp. RE;) values (GMS;=-0.008 and
RE=0.871).

In order to quantify the quality of the relationship illustrated in Figure 1, we propose to
compute the Spearman rank correlations coefficient (Spearman, 1904) between GMS; and
RE;, for each configuration and observation set. This coefficient allows comparing the
relationship between two ranking lists. The analysis is made after discarding the
parameters having a negative GMS; which have always a poor quality of estimation and
whose rank would still be high. The results displayed in Table 4 show that the averaged
Spearman's correlation between GMS; and RE; is satisfactory (about 75.4 %). The GMS;
criterion is thus considered to be effective for ranking the accessible parameters (for
which the criterion is positive) with respect to their quality of estimates.

Parameters* Climates Observation sets
(RE;, GMS)) 75 % (TRE, TGMS) 72 % 91 %
* calculated for parameters having a positive value of GMS..
Table 4. Averaged Spearman’s rank correlation coefficient of criteria (RE; GMS;) and
(TRE, TGMS). The first pair of criteria is involved in the parameter ranking and the
second pair is involved in the climates and observation sets ranking.

3.1.2 At the whole parameter set level

In Figure 2 the values of TRE and TGMS have been averaged for each observation set and
climate over the two soil depths and the two preceding crops. The relationship between
TRE and TGMS appears satisfactory. The TRE criterion never reaches low values (the
minimum value is about 0.8) even for high TGMS values (about 0.21), due to the relatively
large number of parameters which are not easily retrievable. The effect of climate is
striking. Configurations with a dry climate have the higher values of TGMS (between 0.16
and 0.2) and they correspond to the best quality of estimation of the parameter set (TRE
between 0.81 and 0.86), unlike configurations with a wet climate (TGMS below 0.03 and
TRE above 0.89).

The greater the number of observations considered in the estimation process (from set #1
to set #3), the lower is the TRE. As expected and seen in Figure 2, TGMS often decreases
when the number of observations increases. Although some of the observed variables are
mutually correlated (the average correlation coefficient between set #1 and set #2 is about
61 % while it is about 37 % between set #2 and set # 3), they each improve the quality of
the parameter set estimation.

www.intechopen.com



242 Advances in Geoscience and Remote Sensing

Finally, the Spearman's correlation coefficients between TGMS and TRE were computed
for each type of soil depth, preceding crop and observation set, in order to quantify the
ranking of the 4 climates given by both TGMS and TRE. The averaged Spearman's
correlation presented in Table 4 between TGMS and TRE is satisfactory (about 72 %).
Secondly, the Spearman correlations between TGMS and TRE were computed for each soil
depth, preceding crop and climate, in order to quantify the ranking of the three
observation sets given by both TGMS and TRE. The averaged Spearman's correlation
between TGMS and TRE is very satisfactory (about 91 %).
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Fig. 2. Scatter diagrams of the criteria TRE and TGMS at the whole parameter set level, for
the 3 sets of observations and the 4 types of climate. Each of the 12 points is an average of
the 2 soil depth and the 2 preceding crop configurations. The symbol o corresponds to the
set #1, ¢ to set #2 and m to set #3.

This study shows that the quality of parameter estimation can be explained by the results
of GSA. Suitable empirical criteria have been proposed to summarize the results of GSA
which allow ranking (i) the parameters with respect to their quality of estimate and (ii) the
configurations (particularly the climate and the observation set) with respect to the
quality of estimation of the whole parameter set. These criteria are thus shown in our case
to be useful tools for estimating the potential of given configurations of observations for
retrieving soil parameter values. They may be used also for optimizing the type of
observations to be acquired and the dates of acquisition.

3.2 Impact of the quality of estimates on the quality of prediction

The quality of the prediction in now analysed. Figure 3 and 4 shows the results in term of
REP; for the prediction of the variables of interest concerning wheat crop, by using the
estimated values of the permanent soil parameters (argi, Norg, epc(2), HCC(1) and HCC(2))
in place of their prior values. The initial conditions (Hinit and NO3init) are assumed to be
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unknown for the prediction and are fixed at the mean of their distributions. The values of
REP; are calculated for the 2 types of soil depth and the 3 sets of observations.
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Fig. 3. Results of the prediction of the variables of interest. The results are presented for
the 2 types of soil depth and the 3 sets of observations and averaged on the 4 climates.

In Figure 3, REP; values are averaged on the 4 climates. It can be seen that 2 of the 3
variables of interest (YId and Prot) have a significant lower REP; and therefore a greatly
improved quality of prediction when using the estimated values of the permanent
parameters, as compared to when using prior information on the parameters. In that case,
Yld and Prot seem to be quite sensitive to the permanent soil parameters. The output
variable Nit is not or slightly affected by the estimation of the soil parameters because it is
sensitive to the initial conditions, which are fixed at a nominal value for the prediction,
and not to the permanent parameters. Through the estimation of the permanent soil
properties, the size of the observation set slightly improves the quality of prediction: the
bigger the observation set size the better the permanent parameter estimates and the
better the prediction. The most important improvement between two sets of observations
concerns the output variable YId in a shallow soil: REP; is about 0.66 for set #2 and about
0.52 for set #3. In that case, a lot of information is provided by the observation of YId.

The type of soil depth affects a lot the quality of the prediction and especially for the
output variables YId and Prot, which have a lower REP; when the type of soil is shallow. It
is not surprising, accordingly to the results of parameter estimation, because the
parameter epc(2) has a better quality of estimates in the case of shallow soil and because
Yld and Prot are also quite sensitive to this parameter, as well as the observed variables
(see Section 3.1.1). The output variable Nit is not affected by the soil depth because of its
lack of sensitivity to epc(2).
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Fig. 4. Results of the prediction of the variables of interest. Effect of the climates on
prediction of the variables of interest. The results are averaged on the 3 observation sets
for a shallow soil.

The effect of climate on the quality of prediction of the variables of interest is illustrated in
Figure 4 on a shallow soil and averaged over the 3 sets of observations. The dryer the
climate the better the quality of the prediction. As the observed variables are more
sensitive to the soil parameters in dry climatic conditions (see Section 3.1.2), that allows a
better quality of the parameter estimates in that case. The results of the prediction are thus
affected by the quality of the estimates and are better in dry climatic conditions, because
of their sensitivity on the parameters. The REP; value of the output variables YId and Prot
significantly decreases from 0.71 to 0.5 and 0.65 to 0.47. As previously, the output variable
Nit is not accurately predicted and slightly affected by the climate: REP; decreases from
0.92 to 0.86.

It was shown in this study that some soil parameters can be retrieved by considering
observations on crops and that the estimated values of the permanent soil parameters
allow reducing the uncertainty on the prediction, because of the sensitivity of the
predicted variables on these parameters. The quality of the prediction is manly affected by
two factors: the soil depth and climate. These results are closely linked to the quality of
the parameter estimates.

4. Conclusion

In our results the link between the quality of parameter estimation and GSA results was
illustrated through three types of behavior: high first-order indices are associated with
good quality of estimation, low total indices are associated with bad quality of estimation,
and high total indices combined with low first-order indices are associated with poor
estimates because of interactions between parameters. Many other studies show that the
parameter estimation performance can be explained by the results of GSA (Tremblay and
Wallach, 2004; Gaucherel et al., 2008; Manache and Melching, 2008). Given the large
number of output variables and dates considered in this application, the GSA indices had
to be summarized to study the link between GSA and parameter estimation results. We
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proposed the GMS,; criterion and show its relation with the criterion RE; which measures
the quality of estimation of parameter i. The criterion GMS; proves to be effective for
ranking the accessible parameters with respect to their quality of estimation. For a given
configuration, GSA is able to provide information on which parameters can be estimated
and which can be fixed as they do not deserve an accurate determination (Ratto et al.,
2007). We show in this work that the parameters having GMS; close to zero are not
accessible from the observations and the STICS model.

The total criterion TGMS can be used to predict the ranking of the configurations with
respect to their ability to retrieve the whole set of parameters, and in particular the
ranking of the climates and the observation sets: it is possible to predict which type of
climate and observation set will lead to the better estimation of the whole parameter set.
These results are particularly interesting for screening the possibility of estimating
parameters from a given set of available observations in a given agro-environmental
context, and, following Kontoravdi et al. (2005), promote GSA as an excellent precursor to
optimal experimental design.

From observations on crop status, it is possible to retrieve the soil parameters and the
estimated values allow improving the quality of the prediction of agro-environmental
variables. Among them, some variables are strongly affected by the quality of the
parameter estimates, such as grain yield and protein of the grain, because of their large
sensitivity on the permanent soil parameters. This result is particularly interesting for
agro-environmental work because the criteria based on GSA also allow screening the
possibility of a given set of available observations to predict, through soil parameter
estimates, the variables of interest for crop management.

Finally, it would be helpful to conduct such a study on real data to assess the impact of
model errors on both soil parameter retrieval and link between the proposed criteria.
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