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Application of Multi-Frequency Synthetic
Aperture Radar (SAR) in Crop Classification
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Research Branch, Agriculture and Agri-Food Canada
Canada

1. Introduction

The application of remote sensing to agriculture has traditionally focused on the use of data
from optical sensors such as Landsat Thematic Mapper (TM) and SPOT. Due to cloud and
haze interference, however, optical images are not always available at phenological stages
important for crop discrimination. When gaps in data acquisition occur during critical
growth periods, classification accuracies using optical data are often inadequate (Jewell,
1989; McNairn et al., 2002; Blaes et al., 2005). Mid to late season optical images are essential
to achieve accurate crop classification, and this dependency on late-season data reduces the
ability to deliver early-season crop acreage estimates (McNairn et al., 2008a, b; Shang et al.,
2006, 2008). These constraints seriously impede the use of optical data for operational annual
crop mapping. Unlike visible and infrared wavelengths which are sensitive primarily to
plant biochemical properties, longer-wavelength microwave energy responds to the large-
scale structural attributes of vegetation, including the size, shape and orientation of the
leaves, stems, and fruits. The dielectric properties of the vegetation canopy also influence
the magnitude of the radar backscatter. These diverse sensitivities suggest that the
integration of data from optical and radar sensors will generate a synergistic effect. Recent
research has found that this complementarity, in most cases, provides enough information
to separate a wide variety of crop types when an integrated optical-radar dataset is used
(McNairn et al., 2008a; Shang et al., 2006, 2008).

1.1 Airborne multi-frequency SAR applications to agriculture

Although an integrated optical-radar approach can consistently discriminate crops, the
continued dependency on optical data, particularly in cloud-prone regions, is less than ideal
for operational delivery of crop information. A radar-only approach to crop discrimination
and acreage estimation would provide an operational advantage. Until recently, however,
the successful development of a radar-only approach to crop classification has been
hindered because of the availability of radar data with only limited dimensionality. Single
frequencies, and for some sensors single polarizations, do not provide enough information
for accurate discrimination even when multi-temporal acquisitions are exploited (Shang et
al, 2006, 2008). Research campaigns based on airborne SAR acquisitions have explored the
benefits of multi-frequency SAR for crop discrimination. The Jet Propulsion Laboratory’s
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AirSAR is a fully polarimetric SAR sensor operating at P- (0.45 GHz), L- (1.25 GHz), and C-
(5.31 GHz) bands (Lee and Pottier, 2009). The value of multi-frequency fully polarimetric
data has been demonstrated for many land applications. For example, Rao et al. (1993)
studied multi-frequency (P-, L-, C-band) polarimetric AirSAR data over corn fields. It found
that the mean polarization phase difference increases with increasing wavelength. Lemonie
and associates (1994) used the AirSAR data to study the contribution of multi frequency
radar to increased agricultural class separabilities. The study by Baronti and associates
(1995) carried out a three-frequency (P-, L-, and C-band) AirSAR data analysis. It found that
P-band data are effective only in discriminating broad classes of agricultural landscapes.
The integration of L- and C-band helps reveal finer class details.

Much research on the advantages of multi-frequency SAR has also been conducted with
radar scatterometers. For example, Snoeij et al. (1990) used C- and X-band airborne SAR
data to study the general behaviour of the radar signature of different European test sites as
a function of frequency. The study conducted by van Leeuwen (1992) used six-frequency (L-
band at 1.2 GHz; S-band at 3.2 GHz; C-band at 5.3 GHz; Kul-band at 13.7 GHz; and Ku2-
band at 17.3 GHz) radar scatterometer data over beet and wheat fields to examine the
physical meaning of radar model (CLOUD-model: Attema & Ulaby, 1978) parameters in
relation to crops. More recently Inoue et al. (2002) studied multi-frequency (Ka-, Ku-, X-, C-
& L-band) radar backscattering signatures over paddy rice fields and their relationship with
rice canopy growth variables. This research demonstrated that the backscatter coefficients of
higher frequency bands (Ka and Ku) are highly correlated with the weight of heads. Lower
frequency bands such as L-band, are better correlated with fresh biomass while C-band is
better correlated with leaf area index.

1.2 Space-borne multi-frequency SAR applications to agriculture

Airborne SAR systems enabled radar scientists to develop methods to derive information of
interest from multi-frequency and multi/full-polarization SAR, often under controlled
experimental conditions. Airborne sensors provide a far greater signal to noise ratio and much
higher spatial resolution compared with spaceborne sensors. However, these airborne
platforms are not suited for large scale operational campaigns. With their wide swaths and
repeat orbits, spaceborne sensors provide a cost effective solution for operational activities.
Since the launch of the first spaceborne radar system in 1965, Radar Evaluation Pod (REP),
many spaceborne radar sensors have been launched (Lacomme et al., 2001). Earth Resources
Satellite (ERS-1 launched in 1987 and ERS-2 launched in 1995) data have been used to
develop many applications in agriculture, wetlands and forestry (Ban & Howarth, 1999;
Bouman et al., 1992; Engdahl et al., 2001; Kohl et al., 1994; Michelson et al., 2000; Paudyal et
al., 1995; Wang et al., 1998). The frequency-polarization (C-HH) of RADARDAT-1 (launched
in 1995) was selected to maximize information for marine applications including sea ice and
ocean features. Nevertheless, scientists developed the use of these data for a wide range of
land applications including agriculture (McNairn et al., 1998a, b, c; Phoompanich et al., 2005;
Ribbes & Toan, 1999; Shang et al., 2006).

The next generation European C-Band sensor, ASAR, has further advanced the use of SAR
for agricultural mapping. The availability of dual like-polarizations (HH-VV) or dual like-
cross polarizations (HH-HV or VV-VH) with ASAR, assists in providing more information
on vegetation type and condition. Radar backscatter varies from one polarization to another
since interaction is dictated by the transmitting polarization relative to the horizontal and
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vertical structure of the canopy. Consequently sensors which have polarization diversity
provide more information on both crop structure and crop condition. The launch of ALOS
PALSAR (L-band: 1.27 GHz) in 2006, followed by TerraSAR-X (X-band: 9.6 GHz) and
RADARSAT-2 (C-band: 5.405 GHz) in 2007, marked the beginning of the multi-frequency
spaceborne SAR era. Availability of data from this suite of satellites has accelerated the use
of SAR for land applications. When used together, a multi-frequency dataset from multiple
SAR platforms holds the promise to provide exceptional information for agriculture. Using
a Canadian example, this chapter demonstrates the application of integrated L-, C-, and X-
band SAR for crop mapping.

2. Study sites and data collection

2.1 Study sites

In 2006 Agriculture and Agri-Food Canada (AAFC) established two research sites close to
their Ottawa (Ontario, Canada) research station. The Canadian Food Inspection Agency
(CFIA) site is a controlled experimental site within the city of Ottawa (centred at 45°13'N,
75°46'W). The second site, Casselman, is a region of private land ownership (centred at
45°37'N, 75°01'W) approximately 50 km east of Ottawa. Both sites support non-irrigated dry
land farming with one crop grown during the relatively short May to September growing
season. The size of the fields in this part of Canada tends to be relatively small, 20 ha on
average. These sites are typical of the crop mix found in this part of Canada, with
production acreages primarily consisting of corn, soybean, cereal and pasture-forage.

2.2 Satellite data collection

(a) CFIA site

Satellite data were acquired from optical sensors (Landsat-5) as well as SAR sensors
(RADARSAT-1, Envisat-ASAR, and ALOS PALSAR) throughout the 2006 growing season.
Acquisitions were targeted to capture crop growth stages of importance for crop
discrimination using optical and SAR sensors (Table 1).

Date Resolution (m) Mode Polarization Incidence Angle
Landsat-5 TM
June 5 30
July 7 30
August 22 30
Envisat ASAR
May 27 30 IS3 VV, VH 25.8°-31.2°
June 9 30 IS1 VV, VH 14.5° - 22.1°
July 1 30 IS3 VV, VH 25.8°-31.2°
July 14 30 IS1 VV, VH 14.5°-22.1°
August 5 30 IS3 VV, VH 25.8°-31.2°
September 18 30 1S4 VV, VH 30.8°-36.1°

www.intechopen.com



560 Advances in Geoscience and Remote Sensing

RADARSAT-1
May 18 30 S1 HH 24° - 31°
July 5 30 S1 HH 24°-31°
August 22 30 S1 HH 24° - 31°
ALOS PALSAR
May 19 10 PLR Polarimetric 21.5°
July 4 10 PLR Polarimetric 21.5°
August 19 10 PLR Polarimetric 21.5°

Table 1. Satellite data acquired over CFIA during the 2006 growing season

(b) Casselman site

Optical and radar satellite data were collected over the Casselman site during the 2008
growing season. No cloud-free (less than 20% cloud cover) Landsat data were available due
to poor weather conditions throughout the summer of 2008. The SPOT sensor was
programmed in two week windows through the entire 2008 season. This acquisition
strategy yielded four SPOT-4 images. Six TerraSAR-X scenes were also acquired. Due to the
late start of the TerraSAR-X project, X-band data acquisition did not commence until mid
July. Table 2 gives the details of each satellite acquisition.

Date Resolution (m) Mode Polarization Incidence Angle
SPOT-4
June 5 20
July 7 20
August 22 20
RADARSAT-2
May 27 10 FQ19 quad-pol 38.3°-39.8°
June 9 10 FQ19 quad-pol 38.3°-39.8°
July 1 10 FQ19 quad-pol 38.3°-39.8°
July 14 10 FQ19 quad-pol 38.3°-39.8°
TerraSAR-X
July 19 6 Stripmap VV, VH 43.6° - 44.6°
July 30 6 Stripmap VV, VH 43.6° - 44.6°
August 10 6 Stripmap VV, VH 43.6° - 44.6°
August 21 6 Stripmap VV, VH 43.6° - 44.6°
August 26 6 Spotlight HH, VV 53.9°
September 1 6 Stripmap VV, VH 43.6° - 44.6°

Table 2. Satellite data acquired over Casselman during the 2008 growing season
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2.3 Ground data collection

For both sites, ground truth observations were collected twice over the growing season,
once in early July and once in mid August. The second visit provided an opportunity to
check for errors which might have occurred during the first field visit. During the second
visit, variations in crop growth condition, harvesting, and emergence of under seeded crops
were also noted. Underseeding is a cropping system where a primary species is seeded with
a successive species that emerges at the end of the primary species growth cycle, for
instance, where annual cereal crops are underseeded with a perennial forage crop such as
alfalfa. Wheat in this region is usually harvested between late July and mid August
depending on the planting date. Underseeded wheat fields are thus characterized by rapid
growth of forage after wheat harvest. Harvesting of corn and soybean typically occurs near
the end of October.

In 2006, a total of 240 fields were visited. Table 3 gives details on the number of fields
surveyed per crop.

Crop Type Number of Training Fields | Number of Testing Fields
Cereal 16 17
Corn 35 35
Soybean 30 30
Forage/Pasture 38 39

Table 3. Ground truth data used for CFIA 2006 crop classification

For the Casselman site, a total of 247 fields were surveyed during the 2008 growing season.
The distribution of field surveyed is documented in Table 4.

Crop Type Number of Training Fields | Number of Testing Fields
Cereal 17 18
Corn 45 45
Soybean 41 41
Forage/Pasture 33 34

Table 4. Ground truth data used for Casselman 2008 crop classification

3. Data pre-processing

3.1 Atmospheric correction of optical data

Atmospheric correction was applied to all optical data to retrieve the at-surface reflectance
using the Atcor algorithm in PCI software (Richter, 2004). The Atcor algorithm uses the
MODTRAN 4.2 radiative-transfer code for the radiance to reflectance conversion
(Champagne et al., 2005).

3.2 Speckle filtering of SAR data

Speckle is an inherent phenomenon for coherent systems such as SARs. To suppress speckle,
adaptive radar filters should be applied prior to classification of SAR data. All ALOS
PALSAR, RADARSAT-2, and TerraSAR-X data were speckle filtered, using a 5 X 5 Gamma-

MAP filter.
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3.3 Geometric correction and co-registration

For the purposes of integrating the various data sources, and in order to facilitate
comparisons with ground data, all of the Landsat, SPOT, PALSAR, TerraSAR-X and
RADARSAT-2 data were geocorrected and registered to the same coordinate system (UTM).
A nearest neighbor re-sampling method was adopted with an output resolution of 10 m.

3.4 Trainning and validation site selection

To reduce bias, the training and validation pixels were selected from different fields. For
each crop type, training and validation fields were selected randomly from the total ground
truth data set in ArcGIS (Figure 1). As a first step, a 10m buffer was applied to each field
boundary. The pixels within this boundary buffer zone were excluded from training and
validation to reduce contamination from headlands and mixed pixels. Half of the fields
surveyed were randomly selected and used for training the classification algorithm. The
remaining fields were reserved for quantifying the accuracy of the classification. As a result,
there was no overlap between training and validation pixels.

[ ] Field boundary for corn

fHHH Training site for corn

Validation site for corn

Fig. 1. An example showing the spatial arrangement of the training and validation fields.

4. Methodology

The type of classification methods used can greatly impact the classification results. When
adequate ground truth data are available, supervised classification approaches generally
produce better results relative to unsupervised classifications. Consequently for this study, a
supervised classification was selected. The choice of classification algorithm is influenced by
many factors, including data requirement, sensitivity to variation of training data, and
computational requirements. This study adopted a supervised decision tree (DT) classifier
(McNairn et al., 2008a). DT takes a sequential classification approach (Pal & Marther, 2003).
This non-parametric classifier is appropriate for use with SAR data, which typically are not
normally distributed. A DT classifier can also handle data gaps which are commonly
encountered when cloud masking is applied to optical data.

AAFC developed an in-house DT graphical user interface (GUI) which integrates PCI
Geomatica and the Seeb5 softwares (Rulequest Research, 2008). The DT classifier was run
using boosting over 5 trials with a global pruning of the model of 25%. All classifications
were performed on a per pixel basis without a null class.

www.intechopen.com



Application of Multi-Frequency Synthetic Aperture Radar (SAR) in Crop Classification 563

Pixel-based classifications often result in a salt-pepper appearance, especially when radar
data are used. Therefore a post-classification filter was applied to the resultant maps. For
this study, spatial filtering was accomplished using segments created witin eCognition and
assigning the mode class to each segment. The filtered maps are visually more consistent
and exhibit increased classification accuracies.

5. Results and discussion

5.1 Single-frequency classification performance comparison

The classification accuracies for single frequency imagery are being discussed in this section.
DT classifications were run using single frequencies (L- and C-band) to assess which radar
wavelength provides the highest accuracies. To facilitate this comparison, only L- and C-
band data collected close in time were used.

For the CFIA site, three pairs of data collected in 2006 were compared using data with the
same polarization. Comparisons were restricted to pairs of data acquired within a seven-day
window to avoid significant variations caused by plant growth between the two acquisition
dates.

Polarization Pasture/ Overall
Sensors | Frequency Used for Date F Soybean| Corn |Wheat A
. orage ccuracy

Comparison
PALSAR L-band VV/VH May 20| 24.1 57.5 84.1 14 49.7
ASAR C-band VV/VH May 27| 60.0 50.7 817 | 49 55.7
PALSAR L-band VV/VH July 5 | 18.0 67.0 | 86.7 | 11.8 54.0
ASAR C-band VV/VH July1l | 70.6 65.2 | 888 | 33.0 68.1
PALSAR | L-band HH I\J/Iual}; 250 55.8 493 | 838 | 9.2 54.8
RSAT-1 | C-band HH l\ﬁj‘g’ 158 798 | 540 | 610 | 81 | 528

Table 5. Comparison of single- and two-date PALSAR, ASAR, and RADARSAT-1 2006 crop
classification accuracies (producer’s) over the CFIA site

For the two acquisition windows (late May and early July) and considering overall accuracy,
C-band data performed better than the L-band data using VV and VH polarizations. For
larger biomass crop such as corn, the two frequencies (VV/VH) are comparable. For lower
biomass crops, such as forage, the shorter wavelength C-band performs better.

When two dates of HH SAR data are used (one in May and one in July), L-band produced
an overall accuracy of 54.8%, slightly higher than C-band’s 52.8%. For larger biomass corn
crops, L-band performs significantly better than C-band with accuracies of 83.8% and 61.0%,
respectively. For lower biomass crops, such as cereal and pasture-forage, L-band was less
effective. With lower biomass and a less random vegetation structure, greater penetration
into the crop canopy due to the longer wavelength can be expected, which would include
greater contribution from the underlying soil, as well as from vegetation-soil interactions
(Freeman & Durden, ; Hill et al., ). C-band outperforms L-band for lower biomass crops.
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For the Casselman study site, two pairs of TerraSAR-X (TSX) and RADARSAT-2 (RSAT-2)
imagery collected close in time were selected for comparison. Table 6 documents the
classification results derived using data acquired over Casselman during the 2008 growing
season.

Polarization Pasture/ Overall
Sensors |Frequency| Used for Date Soybean | Corn | Wheat o
) Forage Accuracy
Comparison

TSX | X-band VV/VH July 16 69.1 582 |48.0 | 852 59.9
RSAT-2| C-band VV/VH July 19 47.1 647 | 50.7 | 428 54.2

TSX | X-band VV/VH | August9 | 59.1 794 | 710 | 618 71.0
RSAT-2| C-band VV/VH |August10| 39.6 738 | 562 | 36.8 574
Table 6. Comparison of single-date TerraSAR-X and RADARSAT-2 crop classification
accuracy (producer’s) over the Casselman site from the 2008 growing season

For both acquisition windows (mid July, early August), X-band data outperformed the C-
band data. When comparing overall accuracies, the mid July X-band data produced a crop
map with an accuracy 5.7% higher than for C-band data acquired only three days later.
Comparing data acquired in early August, X-band provided significantly better accuracies -
an overall accuracy of 71% or 13.6% higher than the C-band data. In August the X- and C-
Band data were acquired only one day apart. Examining the individual class accuracies, X-
band performed better in identifying all crop types later in the season. Among all crop
types, X-band provided dramatically higher accuracies for wheat. A 42.4%increase for mid
July and 25% increase for early August are noted for the wheat class, when X-band results
are compared with those of C-band. For the same wheat class, X-band data also performed
better than C-band later in the growing season. At mid season (mid July), results derived
from X- and C-band are similar for corn, with a difference of less than 3%.

5.2 Multi-frequency classification comparison

To evaluate the benefits of a multi-frequency SAR approach for crop classification, four
datasets from the CFIA site were analyzed. Table 7 provides the classification accuracies
derived using single-frequency (L- or C-band) and two-frequency (L- and C-band)
approaches.

Folarization Pasture/ Overall
Sensors (Date) Frequency | Used for Soybean| Corn | Wheat
. Forage Accuracy
Comparison
1 ALOS (May?20) L-band VV/VH 241 575 | 841 | 14 49.7

1 ASAR (May27) Cband | VV/VH | 600 | 507 | 817 | 49 55.7

1 ASAR (May27) C-&L-

+1 ALOS (May20) band VV/VH 60.9 61.9 708 | 408 60.6
1 ALOS (July 5) L-band VV/VH 18.0 67.0 86.7 | 118 54.0
1 ASAR (July 1) C-band VV/VH 70.6 65.2 88.8 | 33.0 68.1
1 ASAR (July 1) C-&L-

+1 ALOS (July 5) band VV/VH 61.1 77.6 924 | 484 73.9
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2 ALOS (May20, Jul5) L-band HH 55.8 49.3 83.8 9.2 54.8
2 RS1 (May18, Jul5) C-band HH 79.8 54.0 61.0 8.1 52.8
2 ALOS (May?20, Jul5) C-&L-
+2 RS1 (May18, Jul5) band HH 87.5 73.2 82.1 24.8 69.8
2 ALOS (May20, Jul5) L-band VV/VH 54.2 67.4 83.6 375 64.7
2 ASAR (May27, Jull) C-band VV/VH 74.1 61.2 91.6 52.6 72.2
2 ASAR May 27,Jul1) | C-&L-
+2 ALOS (May20, Jul 5) band VV/VH 724 84.5 95.7 69.6 82.9

Table 7. Producer’s accuracies using multi-frequency SAR classifications from the 2006 data
acquired over CFIA

Results in Table 7 clearly confirm the benefits of a multi-frequency solution for crop
identification. For a single-date dual-polarization (VV/VH) comparison, there is an increase
of 4.9% in overall accuracy in late May compared to result derived using ASAR alone. When
compared with result derived from May ALQOS, there is an increase of 10.9%. When early
July L- and C-band data are integrated together in the classifier, a similar improvement in
accuracy (5.8%) was observed. When multiple dates (one in May and one in July) of L- and
C-band were used a 15% gain in accuracy was observed, even though only a single
polarization (HH) was used. Two dates of dual-frequency and dual-polarization SAR from
PALSAR (L-band) and ASAR (C-band) produced a map with an overall accuracy of 82.9%.
For the Casselman site, comparisons were made between classifications using a single
frequency (C- or X-band) and results achieved by integrating these two frequencies (Table
8). The multi-temporal X-band data on its own was capable of identifying crops with an
overall accuracy of 84.9%. Consequently, adding C-band SAR to the classification brought
only modest improvements in overall accuracy. Nevertheless C-band did assist in boosting
accuracies for most individual crop classes.

Sensors Polarization Pasture/ Overall
Frequency | Used for Soybean | Corn | Wheat
(Date) . Forage Accuracy
Comparison

4 RSAT-2 C-band VV/VH 66.2 82.9 76.1 64.0 754

5 TerraSAR-X| X-band VV/VH 83.2 83.6 87.3 84.1 84.9
4 RSAT-2+5| C-&X-

TerraSAR-X band VV/VH 84.1 86.8 89.9 85.6 87.3

Table 8. Producer’s accuracies of multi-frequency SAR classification from 2008 growing
season over Casselman

6. Conclusions and future research

A multi-year and multi-site study by Agriculture and Agri-Food Canada demonstrated the
improvements brought by integrating multiple frequencies (L-, C-, and X-band) of SAR data
for crop classification. Penetration into the crop canopy is dependent upon SAR frequency
and results indicate that the differences in this depth between frequencies are advantageous
for crop identification. The case study presented here concludes that when multi-temporal
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multi-frequency SAR data are used, satisfactory crop classification (above 85% accuracy) can
be achieved using a SAR-only dataset.

Even with these promising results, further improvements in accuracy would be desirable
prior to implementing a radar-alone solution for crop classifications. The acquisition
planning associated with the datasets used in the research was limited by several factors.
TerraSAR-X data collection did not begin until mid season due to a late start in the project.
In future growing seasons, a more complete data set will be collected. This study also did
not permit comparisons among all three frequencies as TerraSAR-X, ASAR, RADARSAT
and PALSAR data were not all collected over either site. The programming of PALSAR in
concert with TerraSAR-X and RADARSAT-2 was not successful. In future growing seasons,
all three sensors have been programmed over the Casselman site. These methods will also
be evaluated in future growing seasons over a third site in the Canadian prairies, which will
represent a more complex cropping system with a greater variety of crops. Lastly,
acquisitions of data in RADARSAT-2’s polarimetric mode will permit assessment of
polarimetric parameters derived from multi-frequency SAR for improved crop
classification.
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