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1. Introduction

The importance of the dynamic side of natural and man-made phenomena has become an
urgent need when trying to mitigate the human impact on environment. Remote Sensing is
one of the most effective way to quantify and map the changes of environmental conditions
on our planet: the tools used for this purpose are called Change Detection Techniques.
Techniques among which an important role is played by those methodologies based on
multi-spectral remote sensing data and exploiting multivariate analysis derived
methodologies, also demonstrating their capabilities through some test cases, covering flood
events and urban growth studies.

Multi-temporal and multi-spectral techniques for Change Detection exist in a wide variety
of approaches, often far too sector oriented and not straightforward. Compression and
decorrelation techniques, on the other side, tend not to exploit the whole spectral content of
remotely sensed data. The Normalized Difference Reflectance (NDR) here introduced is a
general approach for bi-temporal land cover change mapping and detection that exploits the
whole spectral capabilities of panchromatic, multi-spectral or hyper-spectral images. NDR is
a general and simple measure that can be used in the frame of what are called Normalized
Difference Change Detection Techniques (NDCD), which starts using as a input the NDR
derived results. This Chapter includes a large test case which is a good benchmark for NDR
approach, using Minimum Noise Fraction implementation of NDCD for mapping
Hurricane Katrina aftermaths over the city of New Orleans, U.S., thus fusing together urban
and flood change applications.

The purpose of the chapter is to give an overview of multivariate difference-based
techniques for land cover change mapping using multispectral remote sensing data, and to
introduce and demonstrate the Normalized Difference Reflectance approach in the frame of
Normalized Difference Change Detection techniques. Two examples of NDCD results are
given as a complement to theoretical aspects of the methodology, and an application study
has been used as benchmark for the technique performances evaluation, in comparison with
other established Change Detection techniques.
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2. Multivariate Differences in Change Detection

Multi-temporal differencing is an established change detection technique for environmental
mapping and monitoring with remotely sensed data (Singh, 1989; Lu et al., 2004; Coppin et
al., 2004). Following a difference normalization approach, introduced in remote sensing for
vegetation studies with the normalized difference vegetation index (NDVI), a multi-
temporal implementation of this standardization technique for forest change analysis was
first proposed for univariate vegetation indexes (VIs) (Coppin & Bauer, 1994), and then in
comparison with other change detection methodologies (Coppin et al., 2001), always for
forest mapping purposes.

During this work it has been introduced a quantitative method to evaluate land cover
change through multi-spectral variation in radiometric response of surface features. In order
to detect interesting changes, a pair of satellite scenes, geometrically registered and
atmospherically corrected, is to be radiometrically normalized. After that, a map of spectral
variations is produced using a multi-spectral difference index named Normalized Difference
Reflectance (NDR). The NDR is therefore an approach to Change Feature Identification
phase in Change Detection.

The phase of Change Mapping is then performed using NDR measures as inputs for Change
Detection methodologies and techniques, in the frame of what are called Normalized
Difference Change Detection (NDCD) techniques. The NDCD is a technique which, given an
image pair, performs calculations on radiometric normalized reflectance data through the
definition of the normalized difference reflectance (NDR) and produces a standardized
difference of the reflectance values.

The use of NDR and NDCD will be presented through case studies showing change analysis
covering flood events and urban environment: one case is over a flood event occurred in
Bangladesh and exploiting Landsat-7/ETM+ scenes, another case regards the urban
expansion scenario of Washington outskirts, U.S., and exploiting Terra ASTER data, the last
and most complete case study is the analysis of the damages to the urban area of the city of
New Orleans (Louisiana, USA) resulting from the passage of hurricane Katrina, using both
SPOT-4/HRVIR and Landsat-5/TM data.

3. Normalized Difference Reflectance (NDR)

The Normalized Difference Reflectance (NDR) here introduced is a general approach for bi-
temporal land cover change mapping and detection that exploits the whole spectral
capabilities of panchromatic, multi-spectral or hyper-spectral images. Given an image pair,
the NDR produces a standardized difference by analyzing the changes in the reflectance
properties of each spectral band, so without losing any spectral richness as when applying
indexes, feature reduction or compression techniques (Villa & Lechi, 2007).

The image reflectance differences were modified to a normalized version on the sum of
spectral values, in order to minimize the confusion among difference values which are
numerically equal, but come from different land cover change events.

Hence, for every spectral band the NDR is defined as follows:
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where:

NDR = normalized difference reflectance

Rrorm (post) = normalized reflectance for the post flood scene
Rrorm (pre) = normalized reflectance for the pre flood scene

j = spectral band number

The NDR is a multi-spectral quantity which spans over the range of values from -1 to +1 and
shows the amount of change in surface reflectance for every band in the original data, in
terms of the relative difference in spectral signature of ground objects (-1.00 = maximum
reflectance decrease, 0.00 = no change, +1.00= maximum reflectance increase). This
approach is a quantitative base for building the successive phase of change detection,
through the use of multi-spectral normalized reflectance values. A first and simple visual
inspection of NDR band compositions permits a prompt and clear preliminary assessment
of changes, thus supporting the choice of an apt change detection algorithm or technique for
the phase of change mapping. Figure 1 shows an example of NDR calculated for calculated
for an urban scenario, located in Maryland, U.S, using multi-temporal Terra ASTER data.

a) b) 0

Fig. 1. NDR calculated for an urban scenario, located in Maryland, U.S.: CIR visualization
(RGB=3N,2,1), ASTER scene of April 9th, 2000 (a); CIR visualization (RGB=3N,2,1), ASTER
scene of August 24th, 2003 (b); CIR visualization (RGB=3N,2,1), NDR values derived (c).
Different colours in (c) are inked to different kind of variations in surface reflectance
between (a) and (b) images: grey areas represent not changed features, cyan areas represent
a decreasing response in near infrared (linked to newly exposed areas, construction sites
and new impervious surfaces), red areas represent increasing near infrared response (linked
to phenological conditions of vegetation, going to an April scene to an August one), white
areas represent increased response in all the visualized bands.

This approach allow to promptly visualize in RGB channels different triplets of bands at a
time, thus bringing the user to a straightforward inspection of multi-spectral change
features of surface objects; beginning with this visualization of multi-date information every
end-user has the possibility to decide which may be the best Change Detection Technique to
retrieve a land cover change map. NDR not only permits an easy and straightforward multi-

www.intechopen.com



280 Geoscience and Remote Sensing

spectral comparison and evaluation of land cover changes, but permits enhanced
individualization of radiometric response change, in comparison with simple Reflectance
Differencing (RD). In fact, the same amount of reflectance difference between two surface
features can be due to different land cover changes depending on the reference amount of
spectral response. The NDR approach takes into account this issue and outputs different
values of NDR for the same RD situation, when corresponding to different changes, as
illustrated in the example of Figure 2 and Table 1.

(pre-change: Apr, 2000) (post-change: Aug, 2003)
Fig. 2. Particular of two changed areas in an urban environment, located in Maryland, U.S.:
CIR visualization (RGB=3N,2,1), ASTER scene of April 9th, 2000 (pre-change: A-1; B-1); CIR
visualization (RGB=3N,2,1), ASTER scene of August 24th, 2003 (post-change: A-2; B-2): in
the A area (above) a change in land cover from Bare Soil to Vegetation is highlighted in the
yellow square, whereas in the B area a change in land cover from dark construction asphalt
to paving concrete is highlighted in the yellow square.

Area Land Cover NIR Reflectance Reflectance Normalized
Response Difference (RD) Difference
[760-900 nm] Reflectance (NDR)

Fig.2 Pre (?)_1; B post (A-2; B-2) pre post

A Bare Soil Grass 0311 0412 0.101 0.140

Vegetation
Construction Construction
B Asphalt Concrete 0.103 0.207 0.104 0.335

Table 1. Normalized Reflectance Difference (NDR) results compared with common
Reflectance Difference (RD) results, calculated for particular spots in Figure 2, to show the
enhanced discrimination capabilities of NDR.
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4. Normalized Difference Change Detyection (NDCD)

The further step to exploit the NDR approach defined and described in the previous section
is its implementation in the frame of the so called Normalized Difference Change Detection
(NDCD) techniques.

The NDCD technique uses the NDR defined in Equation (4.1) as input variables for deriving
a land cover/land use change map through the use of one particular change detection
method, thus leading to a specific implementation of the NDCD. Out of a range of
techniques, such as multi-spectral transforms (e.g. Principal Components Analysis and
Minimum Noise Fraction), image classification techniques (both supervised and
unsupervised), image segmentation algorithms, Neural Networks or Support Vector
Machines, one could be used (Lu et al., 2004).

The possible applications and purposes of this approach are manifold and diverse. In the
following we will show the effectiveness of the NDCD for flood mapping. Nevertheless, this
approach is a general one and might be applied not only for such mapping purposes, but
also for urban growth, burnt areas mapping and other land cover change analyses.

During this work we particularly focused our research on the Minimum Noise Fraction
(MNF) (Green et al., 1988; Gianinetto & Villa, 2007) implementation of the normalized
difference change detection technique (NDCD-MNF), where the MNF transform is applied
to the NDR data to obtain the final change detection map, for the case study analysis of the
flood event due to Hurricane Katrina aftermath over the city of New Orleans, in Louisiana,
U.S.. The case study and its results will be presented in the next section.

In order to give a demonstration of how the NDR and NDCD approaches work, in the
following paragraphs a couple of implemented examples are show, covering a flood hazard
mapping case for the monsoonal flood occurred in autumn 2000 and an urban sprawl
assessment case for the suburban areas of Washington, U.S..

4.1 Flood Hazard, an Example

a) b) <)
Fig. 3. Change Detection for an monsoon flood event, which took place in the Haor region,
North-East of Bangladesh: band composition visualization (RGB=7,5,3), ETM+ scene of
February 28th, 2000 (a); band composition visualization (RGB=7,5,3), ETM+ scene of
October 25th, 2000 (b); Change map derived with Max. Likelihood classification of NDR
values.
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The first example deal with a change detection application for post-flood analysis, a topic
already taken into consideration by previous works of the authors (Gianinetto & Villa, 2006).
The inundation event is a monsoon flooding which drawn the North of Bangladesh and
North-eastern part of India in autumn 2000. A pair of Landsat ETM+ scenes covering the
Haor region in north-eastern Bangladesh (the pre-event image of February 28th was
normalized using post-event image of October 25th as reference) was processed and
radiometrically normalized with Pseudo Invariant features (PIFs) selection and linear
regression, to produce NDR values as using equation 1.

In order to map surface features changes the couple of images was inspected and regions of
change were chosen as ground truth for producing a Maximum Likelihood classification
and therefore a map of changed areas, shown in Figure 3. This way, not only the area
covered by flooding water could be identified, but also the different vegetation phenological
features due to seasonal variations was mapped (Rogan et al., 2002).

4.2 Urban Area, an Example

a) b) 0

Fig. 4. Change Detection for an urban scenario, located in Maryland, U.S., particular of an
area of residential and commercial growth in 2000-2003 period: CIR visualization
(RGB=3N,2,1), ASTER scene of April 9th, 2000 (a); CIR visualization (RGB=3N,2,1), ASTER
scene of August 24th, 2003 (b); Change map derived with ISODATA classification of NDR
values. Gray tones represent not changed features, green hues represent increasing
vegetation vigour, bright areas represent changed surface cover: mainly newly exposed
areas, construction sites and new impervious surfaces.

Another example focuses on a change detection analysis of an urbanized area for urban
sprawl and its impact on environment description (Chou et al., 2005). The area covered by
Terra ASTER satellite data (VIS, NIR and SWIR subset bands) is located in Maryland, U.S,,
in the outskirts of Washington, around 15 kilometres East of the capital’s centre: the pre-
change image dates back to April 9th, 2000 and was radiometrically normalized using post-
change image of August 24th, 2003 as reference, using a linear regression model and PIFs.

After pre-processing and radiometric normalization, the dataset was converted to NDR
values, using equation 1, and an unsupervised approach was chosen to classify changes
occurred between the two dates (Bruzzone & Prieto, 2000). ISODATA classification was then
performed over NDR bands and post classification labelling was utilized to assign to
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retrieved classes a land cover change significance. The results are displayed in Figure 4 for a
small area of detail and class colour code illustrated in caption.

The two examples presented exploit supervised or unsupervised classification of NDR
values to produce change maps of a flood event (see Figure 3) or an urban growth situation
(see Figure 4); the case studies tests showed a good performance in change areas delineation
and identification, as a visual inspection of resulting maps witnesses. It should be pointed
out that those example are only representative of a first assessment of NDR approach as an
aid to Change Detection; in fact, a thoroughly assessment of the NDCD approach
capabilities , together with a comparison with other Change Detection techniques results,
will be done in the next section over the complete case study covering Hurricane Katrina
struck New Orleans city.

5. Application Study — Flood damage assessment with NDCD

5.1 Introductive section

Recent years have seen a tremendous increase in economic and human losses from weather
hazards all over the world. Major global climatic alterations are projected to occur during
the 21st century and there is great concern about expected negative economic and social
consequences resulting from such changes (United Nations, 2007).

Hurricane Katrina was the costliest and one of the deadliest hurricanes in the history of the
USA. It was the sixth-strongest Atlantic hurricane ever recorded and the third-strongest
land falling U.S. hurricane on record. At its highest intensity, Katrina was a category 5 storm
on the Saffir-Simpson scale (Simpson, 1974) with wind speeds of 280 km/h.

The storm made initial landfall at Plaquemines Parish in south-eastern Louisiana on the
morning of August 29 2005, and the cities of New Orleans (Louisiana), Mobile (Alabama)
and Gulfport (Mississippi) bore the brunt of Katrina’s force as it moved inland.

Thanks to the increasing number and observation capabilities of operational remote sensing
satellites, remote sensing technology is becoming more and more used for natural hazards
monitoring and management, with the great advantage of providing a synoptic vision over
a wide area in a short time and in a very cost effective manner (Wang et al., 2002; Brivio et
al., 2002; Sanyal & Lu, 2004; Villa & Gianinetto, 2006). In particular, remotely sensed data
collected both by radar and optical satellites have been largely used for flood extent
evaluation during the last 20 years and now the processing techniques are mature for an
operational use (Imhoff et al., 1987; Hess et al., 1995; Frazier et al., 2003; Wang, 2004; Villa &
Gianinetto, 2006; Gianinetto & Villa, 2007).

This case study exploits a new method for change detection based on the normalized
difference change detection technique (NDCD). The NDCD is a technique which, given an
image pair, performs calculations on radiometric normalized reflectance data through the
definition of the normalized difference reflectance (NDR) and produces a standardized
difference of the reflectance values.

The NDCD was used to detect the damages to the urban area of the city of New Orleans
(Louisiana, USA) resulting from the passage of hurricane Katrina. Flood maps were both
obtained from the image processing of SPOT-4/HRVIR and Landsat-5/TM imagery, with a
suitable spatial resolution for supporting political institutions with a rapid response,
effective and prompt decision maker tool.
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The maps’ accuracy were verified with respect to the inundation maps produced at the
Dartmouth Flood Observatory, Dartmouth College (USA). A comparison was also
performed between the results of the NDCD technique and that of other standard change
detection methods as NIR normalized difference and spectral-temporal minimum noise
fraction technique (ST-MNF).

5.2 Dataset

Remotely Sensed Dataset

The flooding caused by Hurricane Katrina over the city of New Orleans (29° 57' 33" latitude
north, 90° 03' 36" longitude west) was studied using SPOT-4/HRVIR images supplied by
Spotlmage and the Centre National d’Etudes Spatiales (CNES) under the Optimising Access
to Spot Infrastructure for Science (OASIS) Programme and Landsat-5/TM images made
available from the United States Geological Survey’s Earth Resources Observation and
Science (USGS EROS) through the Hurricane Katrina disaster response project.

The SPOT-4/HRVIR data set was composed of:

¢  One 20-meters SPOT-4/HRVIR image collected on January 17, 2005 (scene ID 4
601-290 05-01-17 17:03:19 2 I) with orientation angle of 11.5 degree and incidence
angle of 19.9 degree left and geocoded in UTM-WGS84 F16N projection. This
image was used as pre flood image;

e One 20-meters SPOT-4/HRVIR image collected on September 19, 2005 (Scene ID 4
601-290 05-09-19 16:50:34 1 I) with orientation angle 10.0 degree and incidence
angle 0.3 degree right and geocoded in UTM-WGS84 F16N projection. This image
was used as post flood image.

The Landsat-5/TM data set was composed of:
e One 30-meters Landsat-5/TM image collected on June 19, 2005 (scene ID
5022039000517010), WRS-2 path 022 row 039, used as pre flood image;
¢ One 30-meters Landsat-5/TM image collected on September 7, 2005 (scene ID
5022039000525010), WRS-2 path 022 row 039, used as post flood image.

Additional Dataset

For the urban analysis some additional vector maps were used. The 30-meters National Land
Cover Database Imperviousness Layer (NLCDIL) raster file representing urbanized and
infrastructural features (impervious areas) of the city and surroundings of New Orleans (Yang
et al., 2003), made available by USGS through its website (U.S. Geological Survey, 2006) was
used for deriving separate mapping for the urban areas only and for the non-urban areas only.

5.3 Methodological Approach

Pre-processing

As typical in change detection applications and as envisaged in the earlier part of this work,
about pre-processing of data for change analysis, geocoding and atmospheric correction are
always needed. For this purposes the satellite data were first georeferenced in the UTM-
WGS84  projection, using reference data. Original at-sensor radiance data were
atmospherically corrected using a low resolution Radiative Transfer Code, combined with
aerosol retrieval based on band reflectance ratios and with adjacency correction of path
radiance (Berk et al., 1999; Vermote et al., 1997).
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A further step is the radiometric normalization of multispectral data, carried out using a
parabolic parametric model:

norm raw b (2)
R™ =a,(R™)”

where:

Rrorm = normalized reflectance

Rraw = input reflectance of the slave image

a = multiplicative coefficient of the parametric model
b = exponential coefficient of the parametric model

j = spectral band number

Fig. 6. Example of normahzed d1fference reflectance (NDR) calculated for the Landsat-5/TM
dataset. (a) Spectral band nr.1; (b) Spectral band nr.2; (c) Spectral band nr.3; (d) Spectral
band nr.4; (e) Spectral band nr.5; (f) Spectral band nr.7.
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The radiometric normalization of reflectance data was performed using a parametric
parabolic model based on equation 2 through standard linearized least square matching
based on a parametric model and an iteration approach to solution of the linearized basic
observation equation. The transformation coefficients were computed using standard
linearized least squares matching, through an iteration approach to solution of the
linearized basic observation equation.

Radiometrically normalized data were used for calculating NDR values for both Landsat-
5/TM and SPOT-4/HRVIR data, using the approach described in the previous sections and
calculated with equation (4.1). The NDR values were finally used as inputs for Minimum
Noise Fraction (MNF) transform, thus structuring the implementation of the NDCD-MNF
technique for change mapping and flooded area delineation.

Mapping Hurricane Katrina’s aftermaths in New Orleans

The widespread destruction in New Orleans was mapped using the NDCD-MNF technique.
The SPOT-4/HRVIR and Landsat-5/TM images were first radiometrically normalized using
the parametric model of equation (2.2) and the NDR were computed using equation (4.1).
Following, to the multi-spectral NDR values it was applied the MNF transform, generating
the normalized difference reflectance-Minimum Noise Fraction (NDR-MNF) components.
From all the NDR-MNF components generated, only the first and the second were retained,
being the most representative of a good identification of water related land cover. By visual
interpretation of the post flood images, the final selection of the best representative NDR-
MNF component (component nr.l or component nr.2) was carried out and the final
mapping was realized by using an adaptive threshold. Figure 7 shows the NDR-MNF
component nr.2 for SPOT-4/HRVIR (Figure 7a) and Landsat-5/TM (Figure 7b),
subsequently used for the mapping.

Fig. 7. Normalized Difference Reflectance-Minimum Noise Fraction (NDR-MNF)
component nr.2 used for the mapping. (left) SPOT-4/HRVIR; (right) Landsat-5/TM.
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The criteria used for the threshold selection was based on the detection of the maximum
separability interval between flooded and non-flooded areas. For the SPOT-4/HRVIR and
Landsat-5/TM image data some samples of the selected NDCD-MNF component were
independently extracted, belonging to the urban and non-urban land cover classes, both for
the flooded and non-flooded areas.

For the Landsat-5/TM data set, 900 pixels were selected for the urbanized areas (400 pixels
in flooded area and 500 in non-flooded area), covering nearly 0.2% of the total urbanized
areas, while 1,200 pixels were selected for the non-urbanized areas (700 pixels in flooded
area and 500 in non-flooded area), covering nearly 0.2% of the total non-urbanized areas.

For the SPOT-4/HRVIR data set, 1,500 pixels were selected for the urbanized areas (600
pixels in flooded area and 900 in non-flooded area), covering nearly 0.15% of the total
urbanized areas, while 2,000 pixels were selected for the non-urbanized areas (1,200 pixels in
flooded area and 800 in non-flooded area), covering nearly 0.15% of the total non-urbanized
areas.

For all these samples, the first and second-order statistics were computed and the maximum
separability interval between the flooded and non-flooded areas was identified by testing
different threshold values belonging to the interval; finally the global flood maps were
produced.

Next, using the USGS’s NLCDIL as supplementary input data, three other products were
generated from the SPOT-4/HRVIR and the Landsat-5/TM data sets: i) a flood map for the
‘“urban areas only’; ii) a flood map for the ‘non-urban areas only’; and iii) a ‘fused” flood
map:

i) The flood map for the urban areas only was built using the non-impervious surface
layer of the NLCDIL as mask for excluding from the processing all the image pixels
collected on non-urban areas;

ii) The flood map for the non-urban areas only was built using the impervious surface
layer of the NLCDIL as mask for excluding from the processing all the image pixels
collected on urban areas;

iii) The fused flood map was built fusing together the results previously obtained for the
urban areas only and the non-urban areas only. This processing returned a product
comparable to the global flood map above described, but it has proven more accurate.

To boost the spatial coherency and homogeneity of the final mapping, all the flood maps
were refined with classical segmentation and clumping techniques.

5.4 Performance Evaluation and Comparison to other techniques

The accuracies of all the maps produced with the NDCD-MNF technique were verified
using as ground truth the flood extension map of the city of New Orleans (Figure 8)
produced at the Dartmouth Flood Observatory (Dartmouth College, USA) and provided by
courtesy of Prof. G.R. Brakenridge and Dr. E. Anderson (Dartmouth College, USA).

The potentialities and performances of the NDCD technique for flood mapping were also
compared to following standard change detection methods characterized by different
complexity:
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e Change detection based on the near-infrared normalized difference (Hayes and
Sader, 2001);

e Spectral-Temporal Minimum Noise Fraction (ST-MNF) technique previously
developed by authors for flood mapping (Gianinetto & Villa, 2007).

. Persistent Water
Non Flaoded
Floaded

Fig. 8. 20-meters resolution raster image derived from the vector flood extension map
produced at the Dartmouth Flood Observatory (Dartmouth College, USA).

NIR normalized difference change detection

The simplest change detection technique used to compare the results obtained using the
NDCD-MNF was based on the NIR normalized difference (Hayes and Sader, 2001). Using
only the infrared band (TM4 for Landsat-5/TM and XS3 for SPOT-4/HRVIR) it was
produced a flood map by thresholding the normalized difference between the post-flood
and pre-flood images.

Similarly to the processing carried on with the NDCD-MNF, also using the NIR normalized
difference it were separately calculated: i) a flood map for the urban areas only, ii) a the
flood map for the non-urban areas only, and iii) a global flood map, both for the SPOT-
4/HRVIR and the Landsat-5/TM data set.

Spectral-Temporal Minimum Noise Fraction technique

Another term of comparison for the NDCD-MNF method was the ST-MNF technique
previously developed by the authors (Gianinetto & Villa, 2006; Gianinetto & Villa, 2007).

In this case only the global flood maps were generated for both the Landsat-5/TM and
SPOT-4/HRVIR data set by processing together both the impervious and non-impervious
land cover features. Starting from the pre-processed normalized images, a synthetic n-band
file (with n=8 for SPOT-4/HRVIR and n=12 for Landsat-5/TM) was created including first
the reflective bands of the pre flood scene followed by the homologous bands of the post
flood scene, stacked together. To this Spectral-Temporal merging it was applied the MNF
transform and a thresholding to derive the flood extension map, whereas a complete
description of the ST-MNF technique can be found in (Gianinetto & Villa, 2007).

www.intechopen.com



Multivariate Differencing Techniques
for Land Cover Change Detection: the Normalized Difference Reflectance Approach 289

5.5 Results and Discussion

Sampling for accuracy assessment

The testing samples used for the accuracy assessment of the flood maps were selected
following a stratified random sampling approach over the datasets. In detail, accuracy test
samples were collected as:

a) For the SPOT-4/HRVIR data set:

i) 9,921 samples on reference ground truth data (1.0% of the total) for the urbanized
areas: 4,017 samples in flooded areas (40.5%) and 5,904 samples in non-flooded areas
(59.5%).

if) 13,568 samples on reference ground truth data (1.0% of the total) for the non-
urbanized areas: 8,158 samples in flooded areas (60.1%) and 5,410 samples in non-
flooded (39.9%).

iif) 11,812 samples on reference ground truth data (0.5% of the total) for the whole area,
6,449 samples in flooded areas (54.6%) and 5,363 samples in non-flooded areas
(45.4%).

b) For the Landsat-5/TM data set:

i) 8,726 samples on reference ground truth data (2.0% of the total) for the urbanized
areas: 3,401 samples in flooded (39.0%) and 5,325 samples in non-flooded areas
(61.0%).

ii) 11,608 samples on reference ground truth data (2.0% of the total) for the non-
urbanized areas: 6,580 samples in flooded areas (56.7%) and 5,028 samples in non-
flooded areas (43.3%).

iif) 15,596 samples on reference ground truth data (1.5% of the total) for the whole area:
7,878 samples in flooded areas (50.5%) and 7,718 samples in non-flooded areas
(49.5%).

Mapping accuracy using the NDCD-MNF technique

Flood maps for the ‘urban areas only’ and for the ‘non-urban areas only’, along with a
‘fused’ flood map were obtained by thresholding the NDR-MNF component nr.1.

Regarding the flood mapping in the urban areas only, the data processing performed on the
Landsat-5/TM imagery led to higher accuracy than those performed on the SPOT-4/HRVIR
imagery (Table 2, Figure 9). For the former it was obtained a best Overall Accuracy (OA) of
92.05% and a kappa coefficient (K) of 0.83, while for the latter the results gave an OA of
86.37% and a K of 0.72.

The threshold selection was not a critical issue for the Landsat-5/TM data, while for the
SPOT-4/HRVIR data, approaching to the upper (positive) limit of the separability interval
the accuracy became worse (OA=72.30, K=0.48). In any case, regardless the threshold value
selection, the mapping based on the Landsat-5/TM images was always superior to those
based on the SPOT-4/HRVIR images.

On the contrary, with respect to the flood mapping in the ‘non-urban areas only’, the data
processing performed on the Landsat-5/TM imagery led to lower accuracy than those
performed on the SPOT-4/HRVIR imagery (Table 3, Figure 10). For the former it was
obtained a best OA of 75.70% and a K of 0.49, while for the latter the results gave an OA of
86.31% and a K of 0.71.
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Fig. 9. New Orleans (Louisiana). Flood mapping in the urban areas only using the NDCD-
MNF technique. (left) Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-
5/TM data.
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Fig. 10. New Orleans (Louisiana). Flood mapping in the non-urban areas only using the
NDCD -MNF technique. (left) Derived from SPOT-4/HRVIR data; (right) Derived from
Landsat-5/TM data.

The threshold selection was not a critical issue both for the Landsat-5/TM and for the SPOT-
4/HRVIR data. In any case, regardless of the threshold value selection, this time the
mapping based on the SPOT-4/HRVIR images was always superior to those based on the
Landsat-5/TM images.
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Threshold Overall Accuracy * K coefficient
value (%)

SPOT-4 /HRVIR data set -2.0 85.72 0.70
-1.5 86.37 0.72
-1.0 84.96 0.69
0.0 72.30 0.48
Landsat-5/TM data set -1.0 89.69 0.79
0.0 90.52 0.80
1.0 92.05 0.83
2.0 91.16 0.81

* Values in bold indicate the best accuracy.
Table 2. Flood mapping in the ‘urban areas only’ using the NDCD-MNF technique.
Threshold selection and mapping accuracy.

Threshold Overall Accuracy * K coefficient

value (%)
SPOT-4 /HRVIR data set 0.0 85.56 0.69

0.5 86.31 0.71

1.0 86.17 0.70

2.0 84.0 0.65
Landsat-5/TM data set -1.5 75.59 0.49

-1.0 75.70 0.49

-0.5 75.11 0.48

0.0 74.34 047

* Values in bold indicate the best accuracy.
Table 3. Flood mapping in the ‘non-urban areas only’ using the NDCD-MNF technique.
Threshold selection and mapping accuracy.

The reason of the poor mapping in non-urban areas using the Landsat-5/TM dataset may be
found in the closeness of the post-flood image (September 7, 2005) to Katrina landfall
(August 29, 2005). In the Landsat-5/TM post-flood image many wet areas (rain-washed),
mainly located in non urbanized areas (impervious surfaces), were incorrectly detected as
flooded. This phenomena was not observed in the SPOT-4/HRVIR post-flood image
because of the longer time elapsed from the passage of Katrina (September 19, 2005).

A global ‘fused’ flood map was obtained by fusing together of the urbanized and non-
urbanized flood maps separately computed with the NDCD-MNF technique (Figure 11). In
this case, the comparison of global results from the Landsat-5/TM (OA=84.03% and K=0.68)
and SPOT-4/HRVIR (OA=86.36% and K=0.73) data processing are similar, with a little
advantage for the SPOT-based mapping. This result is justified by the non homogeneous
accuracy of the Landsat-based mapping in urban and non urban areas, as previous
described (Table 2 and Table 3).

A simpler and less computational expensive global flood map was derived by processing
together both the urban and non-urban areas in a single step (Figure 12). Differently to the
previous cases, the NDR-MNF component nr.2 was used this time for the thresholding of
both the dataset.
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Fig. 11. New Orleans (ouisiana). Global ‘fused’ mapping ‘using‘thé NDCD-MNF echnique.
(left) Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-5/TM data.
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Fig. 12. New Orleans (Loisiana). Global flood map using: the NDCD-MNF technique. (left)
Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-5/TM data.

Again the Landsat-5/TM data processing led to lower accuracy (OA=77.32% and K=0.54)

than the SPOT-4/HRVIR data processing (OA=83.20% and K=0.67), when compared to
ground truth data, mainly due to its lower accuracy in the non-urban areas (Table 4).
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Threshold Overall Accuracy * K coefficient
value (%)

SPOT-4 /HRVIR data set -2.0 66.11 0.28
-1.0 82.02 0.63
-0.5 83.20 0.67
0.0 82.24 0.65
1.0 75.92 0.53
Landsat-5/TM data set 0.0 76.60 0.53
1.0 77.32 0.54
2.0 75.81 0.51
3.0 72.50 0.45

* Values in bold indicate the best accuracy.
Table 4. Global flood mapping using the NDCD-MNF technique when processing together
both the impervious and non-impervious surfaces. Threshold selection and mapping
accuracy.

This time, for the SPOT-4/HRVIR dataset both the NDR-MNF component selection and the
threshold selection are critical and the accuracy largely depends upon their correct
identification. Regarding the NDR-MNF component selection, when using component 1
instead of component 2, as in previous cases, for the Landsat-5/TM data processing we had
a little decrease in the mapping accuracy (from 77.32% to 75.50% for the OA), while for the
SPOT-4/HRVIR data processing a greater decrease in the mapping accuracy was observed
(from 83.20% to 67.74% for the OA).

The foremost advantage of this single step global mapping is that no urban mask is
required, so no a priori information is needed to separate impervious from non impervious
surfaces. On the other hand, the mapping accuracy is always worse when compared to the
global ‘fused” map obtained by fusing together of the urbanized and non-urbanized flood
maps separately computed (Figure 11). For the SPOT-4/HRVIR data it was observed a
decrease in the OA from 86.36% to 83.20% and a decrease in the K from 0.73 to 0.67, while
for the Landsat-5/TM data it was observed a larger decrease both in the OA from 84.36% to
77.32% and in the K from 0.68 to 0.54 (Table 4).

Comparing the mapping accuracy of the NDCD-MNF to the NIR-normalized difference
change detection

Using the NIR-normalized difference change detection it was generated a global flood map
by processing together both the urban and the non-urban areas (Figure 13) and a global
‘fused” flood map by processing separately the urban and the non-urban areas (Figure 14).
This technique seems to be insensitive to both the data set used (SPOT-4/HRVIR or
Landsat-5/TM) and to the data processing adopted (global or ‘fused” map), leading to an
OA between 81.66% and 82.75% and a K between 0.63 and 0.66. Table 5 shows a summary of
results.

When comparing the NDCD-MNF to the NIR-normalized difference change detection it
emerged the superiority of the former in all the “fused” products (OA=86.36 and K=0.73 for
the SPOT-4/HRVIR data set and OA=84.36 and K=0.68 for the Landsat-5/TM data set) and
a better accuracy for the latter with respect to only the Landsat-5/TM global flood map
(OA=82.03% and K=0.64).
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Fig. 13. New Orleans (Luisiaa). Global flood map‘ping using the NIR-normalized
difference technique. (left) Derived from SPOT-4/HRVIR; (right) Derived from Landsat-
5/TM.
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Fig. 14. New Orleans (Louiiana). Global ‘fused’ map usihg the NIR-normalized difference
technique. (left) Derived from SPOT-4/HRVIR; (right) Derived from Landsat-5/TM.
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Threshold Overall Accuracy * K coefficient
Value (%)
SPOT-4 /HRVIR data set -0.100 79.13 0.59
-0.075 81.07 0.62
-0.050 81.73 0.63
-0.025 80.83 0.61
Landsat-5/TM data set -0.35 79.92 0.60
-0.30 82.03 0.64
-0.25 81.95 0.64
-0.20 80.16 0.60

* Values in bold indicate the best accuracy.
Table 5. Global flood mapping using the NIR-normalized difference change detection
technique. Threshold selection and mapping accuracy.

Comparing the mapping accuracy of the NDCD-MNF to the Spectral-Temporal Minimum
Noise Fraction technique

Using the ST-MNF technique it was generated a global flood map by processing together
both the urban and the non-urban areas on the basis of the MNF component nr. 1 for both
the data set (Figure 15).

The threshold selection here revealed to be not a critical issue for the mapping accuracy. By
using the ST-MNF technique, the Landsat-5/TM data processing led to higher accuracy
(OA=90.17% and K=0.80) than the SPOT-4/HRVIR data processing (OA=81.87% and
K=0.63) when compared to ground truth data. Table 6 shows a summary of results.

- IMersistent Water
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Fig. 15. New Orleans (Louisiana). Global damages mapping using the ST-MNF technique.
(left) Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-5/TM data.

A comparison between the NDCD-MNF and the ST-MNF shows that the former always
performed better on the SPOT-4/HRVIR data set, regardless the data processing used for
the global mapping used (with or without urban areas masking). While with respect to the
Landsat-5/TM data set, results are more difficult to analyse. Looking at the OA only it
seems that the ST-MNF led to higher accuracy (OA=90.17 for ST-MNF and OA=84.36 for
NDCD-MNF), but the K score of the NDCD-MNF is higher for the ‘fused” map (K=0.68 for
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NDCD-MNF and K=0.63 for ST-MNF). So it is difficult to say which performed better with
respect to the overall situation.

Threshold Overall Accuracy * K coefficient
value (%)

SPOT-4 /HRVIR data set -1.0 81.76 0.63
-0.5 81.87 0.63
0.0 81.43 0.62
1.0 79.33 0.58

Landsat-5/TM data set -1.0 89.37 0.78
0.0 89.79 0.79
0.5 90.12 0.80
1.0 90.17 0.80
2.0 89.71 0.79

* Values in bold indicate the best accuracy.
Table 6. Global flood mapping using the ST-MNF technique. Threshold selection and
mapping accuracy.

5.6 Summary and Coclusions

This case study tested the normalized difference change detection technique effectiveness
for change mapping, also in comparison with other literature methodologies, starting from
the processing of the normalized difference reflectance data.

The radiometric normalization of data influenced the accuracy of the mapping. A
parametric normalization with coefficients calculated with standard linearized least squares
adjustment and iterative solution was found a better solution than a standard linear
normalization, and thus adopted. However, the general definition of the NDCD leaves the
possibility to develop processing techniques based on different radiometric normalization
schemes.

Using its MNF implementation, the NDCD technique was used for mapping and evaluating
the havoc on the city of New Orleans (Louisiana, USA) wreaked by Hurricane Katrina
landfall in August 2005, using both a SPOT-4/HRVIR and a Landsat-5/TM data set.

As a term of comparison for evaluating the potentialities and performances of the NDCD-
MNF technique, several other standard change detection methods have been tested: from
the simple NIR normalized difference to the more complex Spectral-Temporal Minimum
Noise Fraction technique.

Comparing the global mapping accuracy when using the SPOT-4/HRVIR data, the NDCD-
MNF technique always leaded to better results than all the others methods here taken into
consideration. Moreover, results were better when processing separately the urban and the
non-urban areas in the so called ‘fused” product.

With regards to the Landsat-5/TM data, the NDCD-MNF technique poorly performed in
the non-urban areas (probably due to the closeness of the post-flood image to Katrina
landfall), thus affecting the final global mapping. However, with respect to the only urban
areas, which may be of major interest in most cases, the NDCD-MNF always performed
better.

Finally, regarding the threshold selection, a number of studies [Yuan et al., 1998; Chen et al.,
2003] have pointed out that a major weakness of all spectral change detection approaches is
that the selection of a minimum threshold to signify change is often arbitrary [Warner,
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2005]. For example, a threshold value of two standard deviations above the mean is
sometimes selected (Sohl, 1999). To address this problem, some studies used a noise model
to select the threshold (Dwyer et al., 1996). As an alternative, other studies have developed a
systematic method using training data (Chen et al., 2003). In their approach, areas of change
are digitized, as well as a surrounding window of no change. These training areas are then
classified into ‘change” and ‘no change’ classes, using a small number of arbitrarily chosen
thresholds spread over a wide range of possible values. Based on the accuracies of these
classifications, the range of thresholds is narrowed successively to focus on the region where
the accuracy is highest. In this iterative fashion, an optimal threshold is selected.

The accuracy gained through NDR approach derived changes mapping have been proven
very satisfying most of the times, with Overall Accuracies percentage figures ranging from
80% to over 90% of correctness, that is to say error percentage in change mapping around
10% which is to be considered as a really good result for analysis performed and based only
on remote sensing satellite data.

Nevertheless, more testing and a more fine tuning of the processing chain can be
implemented and done in the future, including not yet explored land cover change
application fields, and the good results achieved until now are a great encouragement to
continue on the path already traced with the works described in this chapter.
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