We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



17

Surface approximation from rapidly
varying data: Applications to geophysical
surfaces and seafloor surfaces

1Apprato Dominique, 2Gout Christian and 3Le Guyader Carole
1Université de Pau et des Pays de I’Adour,

2Université de Valenciennes et du Hainaut Cambreésis,

3INSA de Rouen,

France

1. Introduction

We propose an approximation method for surfaces with fault and /or large variations. We use
image segmentation tools, meshing constraints, finite element methods and spline theory.
Curve and surface fitting using spline functions from rapidly varying data is a difficult
problem (see Salkauskas, 1974, or Franke and Nielson, 1984, or Franke, 1982). In the
bivariate case and without information about the location of large variations, usual
approximation methods lead to instability phenomena or undesirable oscillations that can
locally and even globally hinder the approximation (Gibbs phenomenon).

So, we propose a new method which uses scale transformations (see Apprato and Gout,
2000). The originality of the method consists of a pre-processing and a post-processing of the
data. Instead of trying to find directly an approximant, we first apply a scale transformation
to the z-values of the function. In the particular case of the approximation of surfaces, the
originality of the method consists in removing the variations of the unknown function using
a scale transformation in the pre-processing. And so the pre-processed data do not exhibit
large variations. So we can use a usual approximant which will not create oscillations.

In case of vertical fault, we also propose an algorithm in order to find the location of large
variations : the right approach to get a good approximant consists, in effect, in applying
first a segmentation process to precisely define the locations of large variations and faults,
and exploiting then a discrete approximation technique. To perform the segmentation step,
we propose a quasi-automatic algorithm that uses a level set method to obtain from the
given (gridded or scattered) Lagrange data, several patches delimited by large gradients (or
faults). Then, with the knowledge of the location of the discontinuities of the surface, we
generate a triangular mesh (which takes into account the identified set of discontinuities) on
which a Dm-spline approximant (see Manzanilla 1986, Apprato et al., 1987, or Arcangéli et.,
1997, or Arcangéli et al. 2004) is constructed.

We apply our method to different datasets (bathymetry, Lagrange data...): Piton de la
Fournaise volcano in La Réunion island (see Gout and Komatitsch, 2000), Pyrenées
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mountains in France (see Apprato et al., 2000), Marianas trench in the Pacific (see Apprato et
al. 2002). We also give an example around the Hawaiian hot spot. The topography and
bathymetry of the Hawaiian Islands in the Pacific ocean result from the activity of a huge
hot spot combined with the effect of erosion. This hot spot has been more or less active since
the Late Cretaceous, and as a result, the Big Island continues to grow, and to the East a new
island is being formed.

2. Mathematical Modelling for surface approximation from Lagrange dataset

Unfortunately, when applied to the approximation of surfaces from rapidly varying data,
usual methods like splines lead to strong oscillations near steep gradients, as illustrated in
Figure 1. When the location of the large variations in the dataset is known, Salkauskas (1974)
has proposed methods that use a spline under tension with a nonconstant smoothing
parameter, and Hsieh and Chang (1994) have proposed a concept of virtual nodes inserted
at the level of the large variations in the case of an approximant in the context of computer-
aided geometric design. In the more general context where the location of the large
variations in the dataset is not known a priori, Franke (1982) and Bouhamidi and Le Méhauté
(1999) have proposed splines under tension belonging to more general spaces. These
methods give good results in the case of curve fitting, but less accurate results in the case of
surface fitting.

z
p 4
Jixg)
Oscillations
a4
2 X X

Fig. 1. When classical splines (for instance, here a C! spline) are used to interpolate data
points (x;; f (xi )) with large local variations, strong spurious oscillations are generated near
steep gradients.

The new method we introduce here uses scale transformations, and is applied without any
particular a priori knowledge on the data. The philosophy of the method is similar to
interpolation methods based upon anamorphosed data commonly used in geostatistics (see,
for instance, Issaks and Srivastava, 1989). In the first part of this article, a construction of the
scale transformation families is presented. Results concerning the convergence of the
approximation are given. We also show the efficiency of this innovative approach by
applying it to the topography of the summit of the Piton de la Fournaise volcano, located in
the Réunion Island (Indian Ocean, France). This volcano exhibits large and rapid variations

www.intechopen.com



Surface approximation from rapidly varying data:
Applications to geophysical surfaces and seafloor surfaces 349

in steep river valleys in its southwestern part, as well as in a caldera, where the behavior of
the method is tested.
The method we propose uses two scale transformations—namely ¢, for the preprocessing

and y, for the postprocessing. The first one, ¢;, is used to transform the z values

representing the height of the unknown surface finto values (u; ), regularly distributed in an
interval chosen by the user, as illustrated in Figures 2A and 2B. The preprocessing function
9, 18 such that the transformed data do not exhibit large local variations, and therefore a

usual spline operator T; can subsequently be applied without generating significant
oscillations, as shown in Figure 2C. The second scale transformation y , is then applied to

the approximated values to map them back and obtain the approximated values of z (Figure
2D). It is important to underline that the proposed scale transformations do not create
spurious oscillations. Moreover, this method is applied without any particular knowledge
on the location of the large variations in the dataset. Let us consider a dataset

-----

points N(d) tends to infinity. For the purpose of a theoretical study of the approximation
convergence, we introduce a function f:Q— [a,b], such that the data set becomes

d _d_,.d\
(xi 2 =f ))i=1 ..... N@d) "
The functions introduced above have the following expressions, for m € IN :
—Q4: [a, b]—) [a,ﬂ]c IR,

~19 (g o f)em™ Qo f) > T (9 0 f)e H™ Q. ) M)

-V on((pd ofjeHm(Q,[a,b]),

where the preprocessing ¢, and the postprocessing v, are continuous scale transformation
families, where 7 is an approximation operator, for instance a spline, and where H"(Q,)
denotes the usual Sobolev space. More precisely, we introduce a nonempty bounded
connected set Q of R2 with Lipschitz boundary, and an unknown function feH m'(Q, [a,b])
that we want to approximate, this hypothesis allowing to have (p,of) bounded in

Cm(ﬁ)(with m'>m+1)a property used to establish the convergence of the approximation

(Apprato and Gout, 2000). We also consider a subset A of N = N(d) distinct points of Q such
that

sup 5(x,Ad ): d 2)
xeQ)

where § is the Euclidean distance in R2; the index d represents the radius of the biggest
sphere included in Q that does not intersect with any point of A4, and thus, when d tends

to 0, the number of data points tends to infinity. We also introduce the set Zld of N = N(d)

real numbers such that
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ind eAd,f(x,-d)e Zld 3)

and the sequence Z ¢ of p(d) distinct z values obtained from the ordering of Z a,

vzl ezd i=1,.,p(d),
(4)

a ZEld <32d < 3301 <..< Eg(d)—l < E[()]'(d) =b

where [a, b] = Im( f ). The sequence 74 will be used for the construction of the scale

transformation families in the following section. In what follows, for convenience, we also

write z¢ instead of Z .
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Fig. 2. The preprocessing phase, (A) and (B), transforms the values f(x;) using a scale
transformation ¢, . After preprocessing, B, the local variations in the data have been

drastically reduced. Therefore, it is possible to obtain a regular approximant 79 with no
significant oscillations using a usual C! spline operator (see subsection 2.2), as shown in (C).
A second scale transformation y , is subsequently applied to the values of the approximant

in a postprocessing phase, (D), to map them back and obtain the final approximant. It is
important to mention that the scale transformations used do not create spurious oscillations,

as illustrated in (D).
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2.1 Scale transformations

In this section, we give a construction of the scale transformation families by generalizing
the technique seen in Torrens, 1991. These scale transformations are realistic in the sense
that, as classical transformations, they are monotonous.

Preprocessing of the Data: Family ¢ d of Scale Transformations

The goal of the scale transformation ¢, is to reduce the variations in the data set. We first
construct ¢, and, in order to study the convergence of the approximation, we then

establish the convergence of ¢, to a function ¢ when the number of data points tends to
infinity (i.e., 4 >0): Let [2,8] be an interval of R, and {u;},_, s the following regular

subdivision, fori =1,...,p(d):

- _ _ p-a

a =y <uy <uz <<y <Upg) =p and u; | —u; = o)1 5)
These interval and subdivision are chosen by the user. When dealing with surface
approximation from rapidly varying data, we choose the interval to be [0,1], and an even
subdivision of the {u;} that is used to reduce the local variations of the (z;). After applying
@, , we obtain a new data set (x; ,u;) related to the initial data by u; =¢,(z;). When this
technique is applied to other problems however, for instance in some applications in
imaging when one has an image with homogeneous regions, it can be of interest to increase
the variations between pixel values—the (z;))—; in such a case, Apprato and Gout, 2000
showed that it is possible to choose a nonregular distribution in the interval [o,5] to generate

variations, and therefore to enhance some features present in the image to facilitate its
segmentation.

We introduce ¢ : [a,6] > [a,5] the C* diffeomorphism that transforms [a,6] into [a.8] (such
families of transformations are usually called anamorphosis in the geostatistics literature):

0 =L (—a)ra. ©)

We also introduce the function ¢, , fori=1,..., p(d)-1 and for any z e |.Zi Zi 1 _|,

i+l i

(pd(z)zuiqgm[zz—z,- J+“i+1q(1)m(zz_2i ]+(Zl(z[)(Zi+l_zi)ql()n1[—zz_2i ]+a1(zi+l)(zi+l_zi)qllm[ — ] (7)

i+1 ~Zi i+17Zi Ziy1TZ;

where the ¢, , fori = (0,1), and [ = (0,1), are the basis functions of the finite element of class
Crmon [0,1] (see Ciarlet, 1978) and where, for any i =1, ..., p(d)-1,

j:”i+1_”i

al(zi P and al(zp(d)jzal(zp(d)—lj' <))
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Using relations (5)-(8), we obtain the following results: ¢, implements the interpolation of
the (u;) and ¢, belongs to C™([a,b)):
(i) 0y(z;)=u;, fori=1,...,p(d);

@) pqeC”(ab]).

We now consider a sufficient convergence hypothesis, which implies that the distribution of
the data (z;) has an asymptotic regularity in the interval [a; b] when d tends to 0, and which is
used to establish the convergence of the approximation. This hypothesis is that there exists C
> 0 and an integer m”’ verifying m''>m 22 such that, for d small enough; and for any i =
1,..., p(d)-2, we have

"

m
|- Zitl % |gc[ b-a j . 9)
Ziy2 ~Ziyl p(d)—1

We also suppose that the set A? introduced above is such that there exists C’ > 0 such that

'

p(d) < dcz . (10)

Inequation (10), introduced by Arcangéli (1989), expresses a property of asymptotic

regularity of the distribution of the data set AZin Q. Using a compactness argument, Gout,
2002 established that hypotheses (9) and (10) imply that there exists C” > 0, such that

”?’d”cm ) <C"and

lim ¢4 = @ in C°([a,b]), (11)
d—0

where ¢, is defined by (7), and ¢ is defined by (6).

One can notice that the construction of the scale transformations ¢, made in (7) uses a finite
difference scheme of order 1 to construct, from the u;, the first derivatives of ¢, at the
points z;, i =1, ..., p(d). Moreover, the option retained in (6), which is to cancel the I
derivatives of ¢, at the points z; for any [=2,...,m, could be substituted by the option

consisting in using a finite difference scheme of order | to define these I derivatives. Let us
also mention that we have chosen to construct scale transformations on a finite element
basis in order to be able to study the convergence of the approximation.

Postprocessing of the Data: Family w ; of Scale Transformations

Similarly to the way we constructed the scale transformations ¢;, we now define a scale
transformation family y; that implements the postprocessing of the calculation. We recall

that after the preprocessing, the large local variations in the dataset have been drastically
reduced; therefore it is possible to approximate the data using a usual spline operator T¢
without generating significant oscillations. To map these values back and obtain the
approximated values of z, we need to use a postprocessing step, and therefore need to
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introduce a family y,;, which is almost the inverse of ¢,: as ¢, converges to ¢, we
construct y,; such that y, converges to ¢ ' . To do so, we define the C* diffeomorphism

¢t [a.] > [ab]inverse of ¢ defined in Equation (6):

go_l(u) zwﬂ, . (12)
p—a

We also define y, the function, for i =1,...,p(d)-1, and for any u e [u, u,.,],

l//d(z)zziqgm[ﬂ]+zi+lq(l)m( a— ]*ﬁl(”i)(”m—”i)‘l?m[ — ]+ﬁl(u,+l)(u,»+,—u,)qllm[ a— ] (13)
Up —U; u u

17U i+17U; Upp—U;

where the ¢, , fori = (0,1), and I = (0,1), are the basis functions of the finite element of class
Cmon [0; 1] (Ciarlet, 1977) and where, forany i =1, ..., p(d)-1:

ﬁl(”i):ﬂ and al[”p(d)]: al(”p(d)—lj' (14)

Ujpq1—H4

Under hypotheses (9) and (10), Apprato and Gout, 2000 established the following relations:
(1) (//d(ui)zzhi:l,--',p(d);

i) wgeC"(apl
(iif) there exists C > 0; such that ||l//d||c’”([a B)) =G (15)

) limyy=pinC%(a.p5)

It is important to mention that (15-i) is one of the key points of the algorithm, that (15-ii)
enables us to obtain approximants with high regularity, and that (15-iii) and (15-iv) are used
to establish the convergence of the approximation.

2.2 The spline operator
Given a Lagrange dataset (x;,(p, ° f)x;)= 04 (z; ))l 4, we have to solve the classical problem

of constructing an approximant T¢ of class Ck (with k = 1 or 2 in practice). In this work, we
use a smoothing D spline, as defined in Arcanggli et al., 2004, which has many advantages:
it is possible to implement a local refinement, the matrix of the linear system to solve is
banded, and it is possible to study the convergence of the approximation. We have chosen to
use a smoothing D™ spline and not an interpolation spline because we want to be able to
work with large datasets of up to several hundreds of thousands of points, and in that case,
a smoothing spline is far less expensive than an interpolation spline. We consider the
functional, for any @ belonging to H"(C2),

2

sE@)=(p 0=pser)) |+l (16)

)
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where p? e L(Hm(Q),lRp(d))is defined by pdf = (f(a), € IRP)

0| is the usual
m,Q

semi-norm on H"(Q)), <0> is the Euclidean norm in Rr@), and ¢ a smoothing parameter.

p(d)

We call ag the D -smoothing spline on Q relative to ¢, o f which is the unique solution

of the minimization problem: find ag’ e H™(Q) such that for any @ belonging to H"(Q):
J;’(o;’)s J4(®). 17)

The solution O'g to this problem is also the unique solution of the variational problem: find

o € H™(Q) such that for any @ belonging to Hm(Q):

<pd0§’,pd®> +8(0§’,<D)m,g =<pd(¢>d Of),pd®> (18)

p(d) p(d)
Uniqueness of the solution can be proved using the Lax-Milgram lemma and results by
Necas, 1967 to establish an equivalence of norms.

d

+ , we choose to discretize it on a finite element basis, which enables

In order to compute o

us to obtain a small sparse linear system. We choose the generic Bogner-Fox-Schmit (BFS)
rectangular finite element (see Ciarlet, 1977). In what follows, we use either the BFS of class

d

C0or of class C! in order to obtain a C? or C! approximant. In the following, we write o

instead of T4.

2.3 Convergence results
We first give the convergence of the D spline operator o related to the transformed data
(pgof ) to the function ((o of ) when d tends to 0. We obtain this result using the

convergence of ¢, to ¢, using the fact that Apprato et al., 1987, showed that, for any

function g, we have |im O'g (g)=g.
d—0

Keeping the notation of the previous sections, and since (¢, o f) is bounded in C” (5),
Apprato and Gout, 2000, proved that

limo? (g ° /)= * 1 in c'@). (19)

From this result, using a compactness argument, Apprato and Gout, 2000 established a
theoretical result concerning the convergence of the approximation:

lim Waool@aon)=0"opo s = finH"O@) (20)
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for any ®>0 such that © <m—1 (= continuous embedding of H™ °(Q) into C° (5)) Note

that if we take 1 = 2 and m = 3, the convergence takes place in H*™® (Q)for any © €]0,1].

2.4 Numerical examples

The Piton de la Fournaise is a volcano located in the Indian Ocean, in the Réunion Island,
France. This volcano exhibits strong topographic variations near its summit, due to the
presence of a caldera and of two steep river valleys in its southwestern part, as can be seen
on the picture of the volcano presented in Figure 3. The maximum height of the volcano is
2.6 km, and the depth of the valleys reaches more than 1000 m in several places. Being able
to describe the topography of such regions exhibiting rapid local variations with at least C?
regularity, or even C! regularity, is important in many fields in geophysics. For example,
this description of the topography can be an input to numerical modeling codes that study
the propagation of pyroclastic flows or lava flows, and related hazards; other examples are
seismic site effects and ground motion amplification due to topographic features. In both
cases, to avoid creating numerical artefacts, it is important not to introduce spurious
oscillations in the description of the model itself. Otherwise, it is well known that in the
context of curvilinear spectral element modeling of elastic wave propagation, artificial
diffraction points appear at the edges between elements, which significantly affects the
behavior of surface waves. To demonstrate the efficiency of our method, we create C? and C!
approximants from a set of 8208 data points taken from a DEM of the summit. The data
points in the DEM have been obtained by digitizing a map of the area. In this DEM, the
height is given on an evenly spaced grid of 76 x 108 points, with a grid spacing of 200 m.
Therefore the considered region has a dimension of 15 km in the East-West direction, and
21.4 km in the North-South direction. This DEM is shown in Figure 4 using a top view with
isocontours representing the height of the topography every 0.2 km.

Fig. 3. Image of the Piton de la Fournaise volcano in the Réunion Island, Indian Ocean,
France. One can clearly see the summital caldera, and the two steep valleys in the South-
West. The size of the region represented is approximately 40 x 35 km. The height of the
volcano is 2.6 km. Image taken as part of the Space Shuttle SIR-C/X-SAR radar missions,
courtesy of Pete Mouginis-Mark, University of Hawaii.
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In the preprocessing step, we choose a regular distribution of the u; in [, 8] = [0,1] in order
to reduce the large variations in the data set. The approximants are subsequently obtained
by discretizing the D spline in a finite-element space. In the case of the C? approximant, we
use 30 x 40 rectangular CY BFS finite elements, each having four degrees of freedom. In the
case of the C! approximant, we use 15 x 20 rectangular C1-BFS finite elements, each having
sixteen degrees of freedom. In both cases, the smoothing parameter ¢ is taken to be 10-¢.

In Figure 4, we show a three-dimensional representation of the C! approximant after
postprocessing, evaluated on an evenly spaced grid comprising 200 x 200 points. The grid
spacing in the East-West direction is therefore 107.54 m, and the one in the North-South
direction is 75.37 m. From the figure it is clear that the results do not exhibit strong
oscillations, even though the use of such a dense grid for the evaluation of the approximant
is expected to enhance the artefacts generated by the approximation method. To compare
this approximant to the original dataset more precisely, in Figure 5 we present a top view of
the approximated values, with isocontours representing the height every 0.2 km, in addition
to the same plot for the original dataset. It is clear from these plots that the approximant is
very close to the original data, with local variations smoothed as expected. One can notice
that the approximant does not exhibit significant oscillations even in the difficult regions of
the model, particularly the two valleys. To demonstrate this more quantitatively, we
evaluate the quadratic error for the two approximants. In the case of the C? approximant, we
find that the error is 4.96x104; in the case of the C! approximant it is 4.01x10-4. Such values
are considered as very good ones in the context of surface approximation, and show the
efficiency of the proposed approach for this case with rapidly varying data. In the entire
dataset, the maximum error measured is 5.5%, corresponding to an absolute error of 56 m.
This maximum error occurs in a region located on the edge of the steep valleys, where the
local variations are the strongest, as expected. More detailed studies of the approximation
error, and evidence that the rate of convergence is higher in this method than in usual
approaches with no preprocessing, such as thin plate spline or splines under tension can b
found in Schoenberg, 1960.

We have presented a new method to fit rapidly varying geophysical data. The ability to
suppress, or at least significantly reduce, oscillations of the surface near steep gradients has
been demonstrated. The scale transformation families introduced provide more control on
the behavior of the approximant, without any particular a priori knowledge of the location of
the large variations in the dataset. The regularity obtained, which can be C, C!, or higher,
enables us to describe the topography of real geophysical surfaces accurately. We have
shown the good properties of this approach by applying it to the real case of the Piton de la
Fournaise volcano.
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Fig. 4. Three-dimensional view of the C! approximant, after post-processing, obtained for
the Piton de la Fournaise volcano from the Digital Elevation Model. The scale represents the
height of the topography, from 0 to 2.6 km. The image has been generated with no vertical
exaggeration. The approximant has been evaluated on an evenly spaced grid comprising 200
x 200 points. No significant oscillations can be observed, even in the difficult regions of the
model, which are mainly the two valleys, and also the caldera. In this example, we have
discretized the spline using 15 x 20 BFS finite elements, each having sixteen degrees of
freedom.

g £ &

South-March (km)
¢ &

B 2 4 & B W u W
Wwer-Exnt k)

Fig. 5. Comparison between the isocontours obtained from the original dataset of the DEM.
Left : Isocontours of the DEM of the Piton de la Fournaise volcano. The DEM is given on a
grid of 76 x 108 points, with a uniform grid spacing of 200 m. The height of the summit is 2.6
km. One can clearly observe the slopes of the two steep valleys, and the isocontours of the C!
approximant after postprocessing (right), as in the three-dimensional view of Figure 4.
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The general agreement is excellent, and it is important to notice that no significant
oscillations can be observed, even in the two steep valleys. Isocontours represent the height
of the topography every 0.2 km. The gray scale also indicates the height of the topography,
from 0 to 2.6 km.

3. Seafloor surface approximation from bathymetric dataset

3.1 Modelling
The problem of surface approximation from a given set of curves can be formulated as
follows: from a finite set of curves F;, j =1,..., N (the bathymetry ship track curves in our

case) in the closure of a bounded nonempty open set Q c R2 and from a function f defined

onF= (U F |+ construct a regular function @ on Q approximating fon F, i.e.:
j=1,.,N

Oy = - (21)

We can assume that Q is a connected set, with a Lipschitz-continuous boundary (following
the definition of Necas, 1967), that for any integer j, with j=1,....N, F; is a nonempty
connected subset in F, and that, for simplicity, f is the restriction on F of a function, still
denoted by f, that belongs to the usual Sobolev space H"(Q2), with the integer m>1. We also

assume that the approximant @ belongs to H"(Q) (1 C k (6) with k =1 or 2, where o denotes

the closure. The main interest of such a regularity for @is that it allows one to obtain a final
surface that can later be used directly as an input model in a different application, such as
ray tracing, image synthesis, or numerical simulation.

Let us define, for any v belonging to H"(Q), pv = YF where p is a linear operator and let us

introduce the convex set K = {v e H™(Q), pv=pf } Then we consider the minimization
problem of finding o € K such that for any ve K :

|O-|m,Q < |v|m,Q 4 (22)
where |0|m o 18 the usual semi-norm on H"(Q). If L(F) is equipped with the usual norm

1/2

N
”VHO,F - Z jvzds ) (23)

J=1F,

and under the hypothesis that for any p € P,,_, (f) P|p = 0= p =0, we know, based upon a

compactness argument (Necas, 1967), that the function

defined by
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1/2
el = (el g+l @

is a norm on H"(Q) which is equivalent to the usual norm ||0||m o on Hm™(Q). Then the

that is convex, nonempty, and closed in H"(Q)). Hence we could take the solution @ = o
when m > k + 1. Unfortunately, it is often impossible to compute o using a discretization of
problem (22), because in a finite dimensional space, it is generally not possible to satisfy an
infinity of interpolation conditions. Therefore, to take into account the continuous aspect of
the data on F, we instead choose to define the approximant @ as a fitting surface on the set:

solution o of the interpolation problem (22) is the unique element of minimal norm in K

{(xl,xz,x3)eIR3,x3 = f(x1,x2),(x,x2) € Fj, j =1,...,N}. (25)

In this work, we propose to construct a variant of the “smoothing Dm-spline,” seen in
previous sections, that will be discretized in a suitable piecewise-polynomial space. The use
of such spline functions has been shown to be efficient in the context of geophysical
applications such as Ground Penetrating Radar data analysis (Apprato et al., 2000) or the
creation of Digital Elevation Models describing topography (Gout and Komatitsch, 2000).
Let us present in this section the theoretical aspects of the method. We first introduce a
functional . that we shall minimize, defined on H"(F) by

7o ()=~ f|||(2)’F bl o 6)

where g|v|fn - is a smoothing term, &> 0 being a classical smoothing parameter. The key idea

2
here is that the fidelity criterion to the data |||v— f |||0 . honors their continuous aspect. We

now need to numerically estimate this L2-norm, which is done using a quadrature formula.
In this respect, the approach is quite different from more classical techniques that usually
simply make use of a large number of data points on F in order to solve the approximation
problem. For any integer j, j=1,...,N, and any 7 >0, let {; }1sl‘sL be a set of L = L(j) distinct

points ¢; =¢;(j) € F jsuch that max 6(s;,¢;.1) <n, where J is the Euclidean distance in
1

1i<L—
R2 This relation implies that the distance between two consecutive ¢; is bounded by 7, it
also enables one to study the convergence of the approximation when 7 tends to 0. The {¢; }

will also be the nodes of a numerical integration formula. Let us also introduce a set
(A )131'3 ; of real numbers (that will be the weights of a quadrature formula) such that

Ai=2;(j) >0, and let us define, for any v e c? (fj),vn >0,
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17 (v)= zﬂ“iv(gi)’ (27)

and for any ve C° (f])

l(v) = ﬁ: 17 (v) . (28)

In what follows, we will suppose that, for any v e HM(f ) and any 7 > 0, there exists C > 0
such that

T T )

When this hypothesis is satisfied, one can consider ! as a theoretical quadrature formula for

||v||(2) » - Note that in some case (N=I), I(v) is a quadrature formula for the curvilinear
L

integral J.vds . Note also that in most applications the F; are polygonal curves, and one can,

F
therefore, use a classical quadrature formula (e.g., Arcangéli and Gout, 1976, or Gout and

Guessab, 2001).
For the discretization, we proceed like in Section 2, using a finite element space.

3.2 Application to surface reconstruction from bathymetry ship track data in the
Marianas trench

Detailed bathymetry maps are essential in several fields in geophysics, such as
oceanography and marine geophysics. Historically, over the past decades, research vessels
have collected a large number of depth echo soundings, also called SONAR (for “SOnic
Navigation And Ranging”) bathymetry ship track data. Many of these measurements have
been compiled to produce global bathymetry maps (e.g., Canadian Hydrographic Office in
1981). In recent years tremendous advances in satellite altimetry have enabled researchers to
produce very detailed bathymetry maps independently of satellite gravity field
measurements. However, long-wavelength variations of the depth of the ocean floor are
difficult to constrain using satellite altimetry, and ship track data are still often used instead
for that purpose. It is, therefore, of interest to address the issue of producing a bathymetry
map from a given set of SONAR bathymetry ship tracks. Let us mention that SONAR ship
tracks are typically acquired as a discrete set of measurement points, as opposed to
continuous recording. However, the typical horizontal interval between measurement
points is always small compared to expected bathymetry variations; therefore, in the context
of this study the dataset can be considered as consisting of smooth continuous lines.

As presented in Url, 2009, in order to understand the shape of the seafloor, oceanographers
go out on ships and collect sonar data. Sonar data are collected using echosounders and
side-scan sonar systems. The digital data are then converted into maps and images.

How does this work?
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Echosounders : Since World War II echosounders have been used to determine water depths
of the oceans. Echosounders are usually attached to the hull of a ship. The echosounder
sends an outgoing sound pulse into the water. The sound energy travels through the water
to the ocean bottom where it is reflected back towards the source, received, and recorded.

Fig. 6. Sound travels from the ship to the seafloor and is reflected back. The time it takes is
converted into distance yielding water depth. (Credit : www.womenoceanographers.org)

The time that it takes for the sound to make the round trip to the seafloor is accurately
measured. Water depth is determined from the travel time and the speed of sound in water.
Water depth can be estimated simply by using an average sound speed and the following
relationship: Distance = speed X time/2, (the time is divided by 2 to take into account the
round trip from the echosounder to the seafloor). The unique drawback of such an
echosounder is that it will only give one depth at each time. That is why multibeam
echosounder have been created...

How are water depths turned into a map?: As a ship steams ahead through the water,
multibeam echosounders provide water depths for a swath of the seafloor. The water depths
are located in space using satellite navigation. From these data, oceanographers can make
maps of the seafloor that resemble topographic maps of land areas. In the early times,
bathymetry maps were drawn by hand. Contours (lines) of equal water depth were drawn
through a grid of numbers that had been plotted on a sheet of paper. Colors, put on by
hand, indicated regions of equivalent water depth. Eventually computers took over and
produced paper charts of the data, contoured and automatically colored. Now computer
softwares enable individual scientists to process the data and display them on their own
computer monitors. Maps can be imported into graphic software applications and
annotations and other marks can be added.

"Side-scan"sonars: Similar to the multibeam echosounder, the sound transmitted by a side
scan sonar instrument travels to the seafloor, bounces off the seafloor, returns to the
instrument, and is recorded In the case of a side-scan sonar, it is the intensity or strength of
the returning acoustic signal that is recorded. This is controlled primarily by the slope of the
seafloor and by what the seafloor is made of. A stronger return is received if the seafloor
slopes down to the instrument. Also, the return is stronger if the seafloor is made of bare
rocks. The strength of the return is much lower if the seafloor is covered by mud or sand.
Volcanoes and other features that stick up above the surrounding seafloor will cast acoustic
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shadows. These shadows are just like the shadow behind a person when a flashlight is
shone on him.

Fig. 7. Cartoon from a NOAA web site showing the swath of seafloor insonified by the
multibeam echosounder. (Credit : NOAA and GSC)

Converting intensity into an image: The strength of the sound recorded by the side-scan sonar
instrument is converted into shades of gray. A very strong return, say from bare rock, is
white; a very weak return is black. The echo strengths that fall between these two extremes
are converted into different shades of gray. Historically, side scan sonar data have been
displayed on a hard copy paper recorder. The paper chart used to be the most convenient
method for displaying and storing these data (as well as bathymetry data). Since the 1980s
or so, software and hardware have been developed to process side scan data using
computers and display the data on computer screens.

Fig. 8. Left : Hull-mounted multibeam sonar (left) and towed side scan sonar (right). NOAA
- Right : The side scan sonar instrument is towed by the ship. Sound is transmitted into the
water and images are made based on the strength of the recorded return. (credit : NOAA)

We select the region of the Marianas trench (Figure 9). The trench is located in the North
Pacific ocean, east of the South Honshu ridge, parallel to the Mariana Islands. It corresponds
to the subduction zone where the fast-moving Pacific plate converges against the slower
moving Philippine plate. It is also the place on Earth where the oceans are the deepest,
reaching a maximum depth of slightly more than 11 km in the so-called “Challenger Deep”
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area (Figure 9). This region is ideal to test our surface approximation technique because it
has been thoroughly studied; therefore, many ship track datasets are available. We select a
45 x 45 km area, corresponding to latitudes between 11.2+ and 11.6+ North, and longitudes
between 142+ and 142.4+ East. We use 16 tracks from the database assembled by David T.
Sandwell and coworkers at the University of California, San Diego (http://topex.ucsd.edu).
Each individual track contains between 62 and 152 points giving depth for a given latitute
and longitude. The total number of points in the whole dataset is 1576. The depth varies
between 6779 and 10952 m. As can be seen on Figure 9, the ship track coverage of the area is
nonuniform. Note in particular the lack of data in the north-east and south-east corners.
Fortunately, data coverage is much better near the center in the deepest part of the trench.
We create an approximant using 169 quadrangular Bogner-Fox-Schmit finite elements
defined on a regular 13 x 13 grid in the horizontal plane in the area under study. As
underlined in the previous section, these elements enable us to obtain an approximant with
C! regularity. Figure 9 shows a 3D view of the final surface obtained, as well as the original
set of ship tracks. For display purposes, the approximant has been evaluated on a regular
200 x 200 grid of points and a vertical exaggeration factor of 3 has been applied. By
comparing with Figure 9 and with the ship tracks, one can see that the smooth surface
obtained correctly reproduces the general characteristics of the bathymetry of the region,
and behaves satisfactorily even in the areas where the data coverage is sparse.
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Fig. 9. LEFT : We focus on a 45 x 45 km region in the south-west of the Marianas trench. We
use 16 bathymetry ship tracks, each containing between 62 and 152 points. The entire set of
curves contains 1567 points. Each point gives depth for a given latitude and longitude. On
this top view the coordinates have been mapped using the Universal Transverse Mercator
(UTM) projection. The depth in the dataset varies between 6779 and 10952 m. One can see
that the ship track coverage is nonuniform. For instance we have little information in the
north-east and south-east corners of the area. RIGHT : We construct a bathymetry map from
the set of 16 ship track data curves using a regular grid of 13 x 13 quadrangular Bogner-
Fox-Schmit finite elements of class C!. For display purposes, the approximant obtained has
been evaluated on a regular 200 x 200 grid of points, and a vertical exaggeration factor of 3
has been applied. The original 16 ship tracks are also shown (dashed lines) to illustrate the
quality of the obtained surface. The isolines represent bathymetry every 500 m. By
comparing with Figure 9 (right), one can see that we are correctly reproducing the general
trends of the bathymetry of the area.
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The quadratic error is equal to 3.29 x 105, which is a very satisfactory result (unusually low
in the context of surface approximation, e.g., Apprato et al. (2002); as a comparison, a usual
Dm-spline (Arcangéli, 1989) applied to the same data set using the same finite-element grid
gave an error of 6.4 x 104).

3.3 Application to surface reconstruction from bathymetry ship track data and
Lagrange data around Hawaiian hot spot

To demonstrate the efficiency of our method, we also give a numerical example from a set
of 7049 data points (both bathymetry and Lagrange data) around the Big Island in Hawaii.

Fig. 10. Hawaiian Islands. From lower right to upper left, the Big Island (Hawaii), Maui,
Kahoolawe, Lanai, Molokai, Oahu, Kauai, and Niihau islands all make up the state of
Hawaii, which lies on more than 2,000 miles from any other part of the United States. The
small red dot on the Big Islands southeastern side denotes a hot spot on Kilauea Volcanos
southern flank. Kilauea has been erupting almost continuously since January 1983, and is
one of the world'’s best studied volcanoes.

The maximum height of the big island is 4.7 km, and the depth of the seafloor reaches more
than 4 km in several places. To get seafloor data, radar scan sonar are used. From the
dataset, with the knowledge of the large variations, we have made a triangulation on each
region using the software Mefisto. We give the C! approximant (see below). We also
evaluate the approximant obtained at the 7049 data points of the dataset. To estimate the
error quantitatively, we then evaluate the quadratic error on the dataset: we obtain a value
of 5.65 10-5, which is a satisfactory result.
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Fig. 12. A 3D view of the entire zone of the Hawaiian islands from a large dataset (one
million data points).
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4. Surface approximation from surface patches

The problem of constructing a surface from given patches on this surface appears, for
instance, in geophysics or geology processes like migration of time-maps or depth-maps.
The problem of surface approximation from surface patches can be posed as follows: from a
finite set of open subsets w;, j = 1,..., N (surface patches in our case) in the closure of a

bounded nonempty open set Q c R2, and from a function fdefinedon 2= |J Iz construct
j=1,..N

a regular function @ on Q approximating fon =, i.e.: d>|E =flz-

The modelling corresponds to the one of the case of bathymetry dataset. The difference only
rests on the fidelity criterion (see (23) for the case of bathymetry dataset) which is:

1/2

Moz -| 2 2

7=l o,

The functional (26) becomes : J (v)z |||v— f |||(2) _ +g|v|2m o and the introduced minimization

&

problem has a unique solution (using Lax-Milgram lemma, see Gout (2002), or Apprato et al.
2

(2000)). The main difficulty consists in approximating |||v -f |||0 _. It is done using

quadrature formulae. The discretization is done using the finite element method.
Convergence results and numerical examples are given in Apprato et al. (2000) and in Gout
(2002).

5. Non regular Surface approximation: application in Geosciences

5.1 Modelling

The right approach to get a good approximant of a non regular surface consists in applying
first a segmentation process to precisely define the locations of large variations and faults,
and exploiting then a discrete approximation technique. To perform the segmentation step,
we propose a quasi-automatic algorithm that uses a level set method to obtain from the
given (gridded or scattered) Lagrange data several patches delimited by large gradients (or
faults). Other approaches for fault detection can be found in Gutzmer and Iske 1997, or in
Parra et al. 1996.

Then, with the knowledge of the location of the discontinuities of the surface, we generate a
triangular mesh (which takes into account the identified set of discontinuities) on which a
Dm-spline approximant is constructed. To show the efficiency of this technique, we will
present the results obtained by its application to a dataset in Geosciences.

The main goal of this work is thus to give a quasi-automatic algorithm to determine the
location of the large variations and the faults of the surface in order to use specific methods
that rely on splines under tension with a nonconstant smoothing parameter near the
identified set of discontinuities. Likewise, if one wants to use finite element methods in the
discretization step, it is well known that to correctly reproduce the set of surface
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discontinuities (both of the function—faults—and/or its derivatives—creases), there are
some constraints regarding the triangulation of the domain of definition of the function: in
particular, as shown by Arcangéli et al. , 1997, the edges of the triangles of the triangulation
should not intersect the set of discontinuities, here denoted by D (Figure 13).

As a consequence, it is generally necessary to consider a number of different connected open
subsets Fi, commonly called patches (Figure 13), and mesh them as done in Figure 13. Let us
note that to improve the results, an adaptative mesh refinement can be made near the set D.
Then, it would be possible to use a finite element approximant. Unfortunately, because of
difficulties linked to the geometry and the number of data points, finite element methods
turn out to be hard to use. In this work we will use therefore a D™-spline approximant
whose definition takes into account the particular structure of the surface domain, as
introduced in Arcangéli et al. , 1997. The algorithm is summarized in Diagram 1. To have
more details about the segmentation method that will be exploited to locate the set of
discontinuities D of the surface, please see Gout et al. 2008. To do the segmentation process,
the input surface is converted into a grayscale image composed of pixels whose brightness
values are given by the z-coordinate of the data points on each node of a regular grid. So, it
is easy to apply segmentation tools developed in image processing (see Le Guyader et al.,
2005, or Caselles et al., 1997, or Gout and Le Guyader, 2006 and 2008, or Gout et al. 2005, or
Forcadel et al., 2008, ) to surface approximation applications. As mentioned in Diagram 1, it
would be possible to also work with random datasets on a surface (see Gout et al., 2008), but
this paper primarily aims at showing the efficiency of the proposed strategy in the case of
regularly distributed points. We then use a finite element method to mesh the surface taking
into account the identified set of discontinuities D. The approximation operator and the
convergence of the method when the number of data tends to infinity is discussed in
Arcanggéli et al. 1997.

Fig. 13. Top : Examples of prohibited and allowed triangles in the domain triangulation: the
identified set of discontinuities D must be taken into account. Middle : Example of a set of
discontinuities D and the three different subsets F1, F2, F3 it delineates. Bottom : Following
the set of discontinuities D, a triangulation is made: no triangle intersects the set of
discontinuities.
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input
LAGRANGE DATASET

L |

“Large Variation Algorithm" (Apprato et Gout, 2000)
(surface fitting method with a good approximation of the
large variations).
Aim :
> Getting an approximant on a gridded dataset that
reliably reproduces large variations

DETECTION of DISCONTINUITIES

Automatic localization of large variations/fault(s)
- Conversion of the gridded data into an image (RAW datafile)
- Segmentation process (image-based methods to find fault

lines).
Meshing MESHING
process Triangulation construction taking into
account the set of discontinuities

!

D™-SPLINE APPROXIMATION
- From the initial dataset (gridded data or scattered data)
- Discretization on a finite element space (Argyris C' or C° triangle)

]

EVALUATION of the APPROXIMANT
output

VISUALIZATION (GMT.. VTK..)

Surface approximation & visualization

Diagram 1. Presentation of the modelling.
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5.2 Numerical examples

In this section we give an example based on real data values which come from the Vallée
d’Ossau, Pyrénées mountains, France. The ground penetrating radar (GPR) technique is
based on the principle that high-frequency electromagnetic waves may be reflected at
boundaries separating heterogeneous regions of the subsurface. This technique is a very
high resolution geophysical tool, with a penetration depth of a few tens of meters (100 m in
the best conditions), depending on the underground physical properties and on the radar
wave frequency used. Usually, GPR surveys are conducted with a constant offset between
transmitter and receiver and a single-fold coverage. The time unit is the nanosecond, the
frequency range is between 10 MHz and 1 GHz. The propagation velocity range is between
0.01 and 0.3 m/ns, for example 0.12 m/ns in limestone, 0.07 m/ns in silts. In this study, we
have used a frequency of 100 MHz, an offset of 1Im and we have obtained a penetration
depth of about 10 m.
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Fig. 14. View of the Three-dimensional data block. A and B correspond to two horizons. In
this work we will use the dataset corresponding to Horizon A.

The studied area is located in the Western Pyrénées (30 km south of Pau, Béarn, France) in
the Vallée d’Ossau which is an old glacial valley. 2D experiments were conducted and gave
information on the sub-surface structures in the area. The interface between the limestone
bedrock and the fluvio-glacial deposits has a depth varying between 2-3 and 12-13 m with a
weak general dip from the north to the south (about 2). Above this interface, the fluvio-
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glacial deposits show several sedimentary figures, with meter or decameter scale, which
could correspond to old fluvial channels. However, this 2D acquisition cannot give us
enough information to precisely describe the structures present on the site. The solution was
to conduct a 3D GPR experiment on a part of the area, in order to obtain 3D information. So,
a 3D GPR data acquisition on the area described above has been conducted. The single-fold
GPR data were acquired along north-south profiles. The acquisition area corresponds to a
rectangle of 38m x 35m. Throughout the whole acquisition work, a constant distance of 1m
was maintained between the transmitter and receiver antennae, and both antennae were
oriented perpendicularly to the profile direction. Each trace was vertically stacked 256 times
in the field. The sampling rate was 0.676ns and the trace length 300ns. Figure 14 shows the
3D view of the cuboid. Continuity of reflectors is better in the inline direction because the
number of traces is higher (141 for inline instead of 77 for crossline sections). A strong and
continuous reflector (called Horizon A) appears at about 250 ns and is present on all the
traces. According to the field observations and the first interpretation with the 2D profiles,
this lowermost reflector can be interpreted as the interface between the limestone bedrock
and the fluvio-glacial deposits. In order to test our algorithm, we have modified the dataset
to create a fault. 2D and 3D views of the considered dataset are given in Figure 15 and 16
respectively.

Fi. 15. Le Two-dimensional view of the geologica dataset 949 data points) containing a
fault in correspondence to the boundaries with the white regions. Right: Two-dimensional
view of the locally C! approximant of the geological surface with the fault.
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Fig. 16. Three-dimensional view of the dataset corresponding to the geological surface with
the fault (8949 data points).

Fig. 17. Three-dimensional view of the locally C! approximant of the geological surface with
the fault. The approximant has been evaluated on an evenly space grid made of 150x150
points. The same scale and colormap are used for each surface. The general agreement is
excellent. No oscillations are present.
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Here are the parameters used when running the proposed algorithm on this second real
world example:

- The triangulation is made of 400 triangles;

- The adopted generic finite element is the Argyris triangle (class C?);

- The smoothing parameter ¢ is chosen equal to 10-;

- The evaluation grid is 150 x 150.

The quadratic error on the 8949 data points turns out to be equal to 2.332 10-3. The obtained
approximant is depicted in Figures 15 (right) and 17 where a 2D and a 3D view are given
respectively. As it appears, no oscillations are present and excellent reconstruction results
can be achieved.

6. Conclusion

We have developed a novel and efficient algorithm for approximating non regular gridded
data exhibiting large and rapid variations and/or complex fault structures. The main steps
of the proposed strategy consist in (1) accomplishing a pre-processing phase to define the set
of discontinuities of the surface, (2) generating a triangular mesh taking into account these
discontinuities, (3) applying a specific (known) finite element domain decomposition
method and using a spline operator that relies on scale transformations (which seems to be
very useful in controlling the behavior of the surface in the presence of steep gradients not
found by the segmentation process) to produce the final approximating surface. Compared
with conventional data fitting methods that exist in the literature, the proposed algorithm is
able to suppress or at least decrease the undesired oscillations that generally arise near steep
gradients, thus ensuring a faithful and accurate representation. The presented numerical
examples illustrate the efficacy of the method.
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mineralogy, hydrology and geology. This book covers latest and futuristic developments in remote sensing
novel theory and applications by numerous scholars, researchers and experts. It is organized into 26 excellent
chapters which include optical and infrared modeling, microwave scattering propagation, forests and
vegetation, soils, ocean temperature, geographic information , object classification, data mining, image
processing, passive optical sensor, multispectral and hyperspectral sensing, lidar, radiometer instruments,
calibration, active microwave and SAR processing. Last but not the least, this book presented chapters that
highlight frontier works in remote sensing information processing. | am very pleased to have leaders in the field
to prepare and contribute their most current research and development work. Although no attempt is made to
cover every topic in remote sensing and geoscience, these entire 26 remote sensing technology chapters shall
give readers a good insight. All topics listed are equal important and significant.
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