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1. Introduction

Throughout history, humans have tried to represent what they see through images. Mapmak-
ers have always sought ways in which to represent both the location and the three dimensional
shape of land. At the beginning, the way to obtain a 3D representation of land was to measure
planimetry and height (as we can identify later by longitude, latitude and height) using basic
measuring devices. Nowadays, the improvements of airborne and spatial instruments make
it possible to produce images by sensing the electromagnetic radiation from the Earth. So,
we can distinguish two classes of remote sensors: optical sensors and radar sensors. Optical
sensors, such as Landsat or SPOT 5, operate around the visible spectrum and provide images
with a fine resolution (less than 5 meters for SPOT 5). Thus, these kinds of sensors become
very useful for civilian applications (cartography, elevation map, agriculture, hydrography,
management of natural hazards, meteorology, geology, deforestation and so on). Consider-
ing the subject of this chapter, the extraction of terrain elevation by stereoscopic images can
give digital elevation models with an error of about 5 meters (Toutin, 2000). However, optical
sensors could be critically useless because of weather conditions or lack of light (i.e. sun).
Thus, the use of radar sensors is a good way to overcome the limitations of optical sensors:
not very sensitive to rain, considered as active sensors (because they have their own source
of energy). Thanks to the signal processing applied to radar signal (pulse compression and
synthetic aperture), radar systems can provide images with a very high resolution (for ex-
ample, Radarsat-2 has an ultra-high resolution mode of about 3 meters for resolution). So,
radar images are considered as additional information to optical images. With regard to these
properties, one can estimate that radar images are used to get elevation terrain. The more in-
tuitive way to extract depth information from remote sensing images is stereogrammetry. As
the brain operates on optical images from eyes, the technique of radargrammetry is applied
to SAR (Synthetic Aperture Radar) stereo data and provides digital elevation models (DEM).
Considering this preamble to the radargrammetric world, this chapter examines one way to
produce digital elevation models (DEM) from a mountainous area (the French Alps) and the
way to improve the accuracy of the DEM. So, we will organize the discussion in three parts.
In part 1, in order to better understand the stereo computation, we need to explain the basic
characteristics of a radar image, which is particularly important to be considered during the
radargrammetric processing. Thus, a radar image can be seen as a distribution of reflected
electromagnetic energy on the ground. So, each element (i.e. a pixel) of an image is described
by its size along the azimuth and range axis. Also, specific characteristics of a radar image are
described as layover, shadowing and foreshortening. Because radargrammetric processing is
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based on fitting images, we need to establish a common reference to radar images and to set
up geographical coordinates for each image. Considering the position of the sensor, we can es-
tablish rigorous radar projection equations that can be compared to the so-called photogram-
metric equations. As the radiometry is important to interpret a radar image, we consider the
main radiometric models and the speckle phenomenon considered as noise in the SAR image.
In part 2, considering a radar image, we will present the basic operations of extraction from
satellite radar data. There are several methods to reconstruct elevation model from radar im-
ages. These images are essentially described as 2D information. So, one has to extrapolate 3D
information from 2D description (as DEM). There are different methods to do this: clinometry,
stereoscopy, interferometry and polarimetry. Since any sensor, system or method has its own
advantages and disadvantages, the choice of a radargrammetric technique depends on the
sensors and the means used during image acquisition. For the stereoscopic method, the ca-
pability of radar image pairing to achieve radargrammetic processing depends on geometric
configuration in relation with the radar trajectory. Considering this radar trajectory, one can
define the radar stereo base, the intersection angle and the parallax. We propose to review dif-
ferent ways to process the matching operations. These ways are correlation operations based
upon searching for match points as area correlation methods or elementary correlation. After
that, we will expose some improvements in the matching process (pyramidal scheme, speckle
filtering). Part 3 will deal with the description of radargrammetric applications on real data
(from SIRC shuttle mission) and the different steps to obtain a DEM. First of all, we describe
the radar image and especially the relations between the satellite route and the ground radar
image. This step is crucial in order to efficiently match the stereo radar images. Also, we ex-
plain the significance of using ground control points (GCPs) to rectify radar images. The next
step is the matching operation between the two stereo SAR images. It consists in determining
the point co-ordinates inside the secondary image for each point in the reference image, which
is called the corresponding pixel. The computation of the 2D normalized cross-correlation co-
efficient is used on SAR images. At this step, we use a hierarchical strategy to reduce process
time and use a filter to get the high accuracy disparity map. Then, we apply the rigorous
radar stereo intersection problem and compute the stereo radargrammetric equations. Using
the solutions, we obtain a DEM from the stereo radar images. This DEM is compared with
a reference DEM. At the end, we move on to the point of improvement of the DEM: obvious
improvements (correction of incoherent points) and further improvements in progress (use of
adaptive correlation windows or polarimetric parameters).

2. Radargrammetric sensors

2.1 Introduction

As the acronym RADAR means “Radio Detection and Ranging”, the basic principles are to
detect and range objects located in front of the radar system. In the context of remote sensing,
a scene (i.e. the terrain) is considered to be imaged by transmitting an incident electromagnetic
wave from the radar, reflecting towards the radar (monostatic consideration) and receiving the
reflected wave.The radar signal is obtained through the conversion of an electrical current on
the antenna surface induced by an electromagnetic field around this antenna and vice-versa.
Thus, the received signal contains information about the scene such as dielectric properties.
Firstly, we can describe the received power Pr through the radar equation:

Pr =
Pt.G2.λ2

c

(4π)3 R4
σ
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where Pt is the transmitted power, G is the gain of the transmitted and received antenna,
λc is the wavelength of the transmitted wave, R represents the distance between the radar
and the scene and σ is the radar cross section. This parameter depends on many parameters
such as the frequency and polarisation state of the emitted wave, the dielectric nature of the
object, geometrical body of the object and so on. For example, buildings forming a corner with
the ground or other buildings, correspond to high reflected energy. Conversely, roughness
surfaces diffuse the incident energy and correspond to low reflected energy.

2.2 Signal processing and radar imaging

The side looking aperture radar (see figure 1) makes it possible to get radar images of the
ground by emitting pulses of electromagnetic waves. The platform (aircraft or satellite) of

height

azimuth

range

R
0

θv

line of site

H

θl

θL

L

l

swath

antenna footprint

NADIR

Fig. 1. Configuration of side-looking

such a radar travels forward in the flight direction or along-track (azimuth axis) with the nadir
directly beneath the platform which is at the height H. The range axis refers to the across-track
dimension perpendicular to the flight direction. The microwave beam is transmitted obliquely
(elevation angle θv to the direction of flight illuminating a swath. The side looking geometry is
necessary to avoid the Doppler ambiguity. Some configurations exhibit a squint angle rather
than an antenna pointing perpendicularly to the flight direction. The footprint of the antenna
is defined through the line of sight of the main beam of the antenna and the aperture angles
(along the range and azimuth axis) of this antenna. This aperture angle refers to the physical
dimension of the antenna (respectively l and L). Swath width refers to the strip of the Earth’s
surface from which data is collected by the radar. The longitudinal extent of the swath is
defined by the motion of the aircraft with respect to the surface, whereas the swath width is
measured perpendicularly to the longitudinal extent of the swath.
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2.2.1 Processing the image

This chapter presents results from data obtained by a pulse radar. The word "resolution"
means the precision to which we can measure the location of a point target and not neces-
sary the capability of the radar to distinguish two targets (volume of confusion). Also, we
can define the unfocused resolution along the range axis δd = cτ/2 and along the azimuth
axis δa which partially depends on the value of R0. At each position for the radar, an electro-
magnetic pulse is emitted with the period repetition commonly known as the inverse of the
pulse repetition frequency (PRF). The pulse duration is very brief compared with the period
of repetition. Thus, the reflected signal is recorded during almost the period repetition minus
the pulse duration. The time of the beginning of the recorded signal is called tp and the end
is referred td. Also, we can define the physical limit of the radar image which is processed in
the slant plane (see figure 2)

• the near range Rp = (c.tp)/2,

• the far range Rd = (c.td)/2.

Rd : far range

S

H

O

ground plane

rlg

slant plane (radar image)

R

swath

RP : near range

line of sight <=> slant plane

θv
2θv

2

Fig. 2. Projection to the slant plane and to the ground plane

In order to get a ground-plane radar image, we have to interpole and resample the slant-plane
radar image and be sure that the range resolution is constant along the range axis. Ground-
plane imagery must be obtained with minimal distortion if comparisons with maps taken
from other sensors (for example sensors) are needed.

2.2.2 Range resolution

Actually, the term SAR refers to signal processing that improves the azimuth resolution. Con-
sidering the parameters of the SIR-C mission, the pulse duration is equal to 33.8 µs and the
resulting range resolution is more than 30 kilometers,which is unacceptable for remote sensing
applications. Fine resolution is achieved by transmitting and receiving frequency modulated
radar waves. The modulation is characterized by a wide bandwidth Bp. The echo is processed
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by a matched filter that fine tunes the range resolution δd:

δd =
c

2.Bp

Thus, the range resolution is inversely equal to the bandwidth of the emitted signal. Therefore,
using the parameters of the SIR-C mission and especially the value of Bp (10 Mhz), we can get
a range resolution of about 15 meters.

2.2.3 Azimuth resolution

Crossrange resolution is naturally achieved by use of an antenna with a narrow beam and
specified by θL. If the beamwidth along the crossrange axis is given approximately by
θL ≈ λ/L where λ is the wavelength of the transmitted signal , the corresponding azimuth
resolution δa at range R0 is then δa = λ.R0/L. Considering the SIR-C mission again, the az-
imuth resolution would be about 30 kilometers, which is also unacceptable. The synthetic
aperture processes the received signal by using the fact that the radar views the scene from
slightly different angles. These different views (at each emitted pulse) are obtained because
the radar moves through its synthetic aperture. Considering the response of one point on
the ground, the reflected signal from this point can be seen as a frequency modulated signal
(Doppler frequency). Also, a matched filtering operation is applied along the azimuth axis
under certain assumptions (width of Doppler spectrum and duration of the seen point), we
write the azimuth resolution δa as

δa =
L

2
which gives an azimuth resolution of 6 meters considering the characteristics of the antenna
of the shuttle (SIR-C).

2.2.4 Radar image corrections

The values of resolution given above are usually better than those obtained by the real system.
Also, the signal processing must take into account undesirable effects that affect the perfor-
mances of the radar. Concerning our discussion about radargrammetry, we can note among
these effects:

• the range migration that can be modelled by the parabolic variation of the distance
between the target point on the ground and the radar along the synthetic aperture (this
point is corrected by different processing methods (Carrara et al., 1995)),

• the radiometric variations due to the change of received signal power from the begin-
ning of the swath (near range) to the end of the swath (far range) for each position of
the radar (using well-known ground points as RCS references can correct this effect),

• the motion compensation that corrects the deviation of the antenna from its nominal
flight path.

Despite the corrections, some errors such as bad localization of pixels can still be found on the
radar image. These errors can finally be eliminated by making use of ground control points
such as buildings, cross-roads, mountain tops and so on.
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2.3 Geometric interpretation of a SAR image

Actually, the importance of geometry for the interpretation of radar images recurs throughout
this chapter. As we wrote before, the radar system can be considered as an Èall-weatherÉ
system and contrary to optical imagery, does not need ambient light or an external source of
energy to obtain images. However, upon comparing a SAR image and an optical image, we
can assume that certain properties of an optical image are not included in the radar image.
For example, this phenomenon is clearly visible when looking at pixels farther from the radar,
which appear smaller along the range axis than pixels closer to the radar. Although the cross
range resolution is not affected by the radar imagery process, we suppose that the relief of
the terrain will induce radiometric and, especially, geometric distortion. Thus, if we consider
a ground point with a height h and located at a range R from the radar at the height H, the
position xsol along the range axis is given by:

xsol =
√

R2 − (H − h)2

and means that a single radar image doesn’t give the altitude of a pixel but must be associated
to a height model of the terrain. This is one of the tricky points about the interpretation of a
radar image.

2.3.1 Distortion of a radar image

The projection of a terrain slope on the slant range of the radar induces well-known distortion
that can be expected as regards the planimetry (see figure 3). And, the values of resolution

S

H

O

Projection onto the ground

xsol

Projection onto the slant plane

R

A

B

C

D E

F

A' B' D' C' E'

Fig. 3. Geometrical distortion occurs in the slant radar image.

given above are usually better than those obtained by the real system. Also, the signal pro-
cessing must take into account undesirable effects that affect the performances of the radar.
Concerning our discussion about radargrammetry, we can note among these effects the fore-
shortening effect, the layover effect and the shadowing effect which result from relief displace-
ment.

2.3.2 Foreshortening effect

The foreshortening effect occurs when the radar beam reaches the base of a slope tilted to-
wards the radar before the top of this same slope. The straight segment [AB] and its image
[A’B’] onto the slant range illustrate this effect in figure 3. Thus, the radar measured distance
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seems to be shorter than the real one and this effect is maximum when the radar beam is
perpendicular to the mountain slope.

2.3.3 Layover effect

The layover effect occurs when the radar beam reaches the top of a mountain or a hill before
its base. The straight segment [CD] and its image [C’D’] onto the slant range illustrate this
effect in figure 3. Also, a terrain slope towards the radar produces a viewing permutation
between the top and the base of a mountain on a radar image.

2.3.4 Shadowing effect

The shadowing effect occurs when the radar beam is not able to illuminate the radar scene.
This effect that can be seen in figure 3 considering the straight segment from the point E’,
image of the point E, to the end of the swath. Also, the radar shadow is considered as an
optical shadow and induces a black area on the radar image because no reflected wave comes
from this kind of region (for example, point F is not seen on the radar image). All these effects
are quite severe in order to understand a radar image well and especially in mountainous
areas. Moreover, the incidence angle of the radar beam is another important parameter to es-
timate the influence on the interpreted radar image. So, the efficiency of the radargrammetric
processing must take into account these characteristics.

2.3.5 Geometrical model of the radar position

The capabilities to link each pixel of a radar image to a real position on the terrain is one of
the most important steps of the radargrammetric processing because correction, rectification,
resizing and superimposition processings of the image need to know the geometrical position
of a pixel. The model of the platform (e.g. in our study a satellite) flight path is described in
figure 4 provides relation between radar image indexes and the terrain (Girard, 2003) thanks
to

• radar parameters (frequency, size of the antenna, incidence angle . . . ),

• instantaneous position and motion of the radar platform,

• an ellipsoidal model of the Earth.

For the last item, the figure 4 gives several parameters to describe the model as

• angles λ and φ which are respectively the longitude position and the latitude position,

• Earth’s referential (G, i, j,k) which is established by the centre of the Earth G, the i-axis
towards the Greenwich meridian, the k-axis coinciding with the Earth’s axis of rota-
tion and the j-axis forming a right-handed system with i-axis and k-axis instantaneous
position and motion of the radar platform,

• referential of satellite (S, l,r, t) linked to the satellite and described by the position S of
the satellite, the l-axis colinear to the vector �GS, the t-axis simultaneously perpendicular

to the l-axis and the vector �̇S and the r-axis forming a right-handed system with l-axis
and t-axis.

As described in (Dhond & Aggarwal, 1989), stereoscopic processing needs to know several
parameters which corresponds, for radargrammetry processing, to:

• the wavelength λc of the transmitted wave,

• the azimuth resolution δa and the range resolution δd,
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Fig. 4. Position and motion of a satellite

• the central Doppler frequency fD of the received signal,

• the time t0 for which the values of the position and the velocity of the satellite are
known,

• the initial time tinit of the beginning of the radar image,

• the range distance r0 given for a reference line of the image,

• parameters that make it possible to calculate the behaviour of the satellite (position,
orientation, velocity) for each value of time.

Actually, the position and velocity of the satellite are known at specific values of time which
are called ephemerides. Thus, we have to interpolate the path of the satellite in order to have
all the position and velocity of the satellite along the flight path.

2.3.6 Geographic coordinates of a radar image

Thanks to the parameters describing the flight path of the satellite, it is possible to give geo-
graphic information for each pixel of the radar image. In order to establish this relation and to
measure locations accurately, some references of coordinates are used (Dufour, 2001). In this
chapter, we use the global coordinate system which has been described before (see figure 4).
The ellipsoidal height h of a point is the vertical distance of the point in question above the
reference ellipsoid. The reference ellipsoid is described by the WGS84 system (geodetic) and
the significant parameters defined by

• the semi-major axis a = 6378137.0 meters,

• the semi-minor axis b = 6356752.3 meters.
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Considering a point M defined by its height h and its geocentric coordinates (x,y,z) in the
(G, i, j,k) reference, we can write the above expression:

x2 + y2

(a + h)2 +
z2

(b + h)2 = 1

2.3.7 Radar coordinates and image coordinates

In the radar reference, each pixel of the image gives information about the range distance r
and the time t elapsed since the beginning of the recorded raw data. Another way to describe
a radar image refers obviously to the azimuth u and range r coordinates. Also, a data trans-
formation is feasible via the number of looks N f used to establish the radar image (Curlander,
1991) and the spatial sampling frequency fe along the range axis:

{

t =
N f

fr
.u + tinit

r = c
2 fe

.v + r0

We have to note that the values of u and v are immediately obtained from the radar image. At
this time, we have to set up the coordinates t and r in the defined Earth’s reference.

2.3.8 Range sphere and Doppler cone

We can define the range sphere as the constant distance r of a point M from the radar located
at the position S:

|−→SM| = r

Moreover, the Doppler cone is the cone of equal Doppler frequency and has its apex located
at the centre of the range sphere:

fD =
2
λc

.
�̇S.
−→
SM

|−→SM|
In the case of side-looking radar, the centroid Doppler frequency fD is equal to zero, which
means the cone becomes a plane perpendicular to the velocity vector

−→
SM. Considering the

coordinates

• (x,y,z) of the point M on the radar image,

• (XS,YS, ZS) of the position S of the radar,

• (ẊS, ẎS, ŻS) of the velocity of the radar,

the equations 2.3.8 and 2.3.8 establish a system of 2 equations of 3 unknowns (x,y,z) whose
solutions describe a circle called Doppler circle (see figure 5). The Earth’s model as defined
before and raised of height he finally makes it possible to get two solutions of the given system.
One of these can be eliminated considering the line of site (LOS) (figure 6). Unfortunately,
the different slopes of terrain above the Earth’s ellipsoid that we described before and the
associated effects (especially in foreshortening areas) on the radar image result in more than
one solution.
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Fig. 5. Description of the distance sphere, Doppler cone and Doppler circle

2.4 Radiometric phenomena in an SAR image

The first remark concerns the main difference between the radar image and the optical image.
The Earth’s surfaces reflecting strong energy towards the radar correspond to very bright pix-
els on the radar image (and can appear dark on an optical image). The radar scene reflects
a certain amount of radiation according to its geometrical and physical characteristics. This
part will deal with radiometric phenomena that occur on the ground and which essentially
depend on the electrical properties of the soil and the roughness of the area. Moreover, as
we have seen before, the geometric shape of an area or an object on the ground mainly deter-
mines the radiometry of a pixel and the brightness of a feature could be a combination with
other objects. Another important parameter is the wavelength of the incident radiation wave
and the electromagnetic interaction falls with either surface interaction or volume interaction.
Also, we can separate the interactions into two main topics:

• smooth surfaces that reflect (nearly) all the incident waves towards to a particular di-
rection: specular reflection. If the surface is tilted towards the radar, the corresponding
radar image appears very bright. Conversely, if the surface is not turned towards the
radar (e.g. calm water or paved roads), the surface appears dark on the radar image;

• rough surface that scatters the incident wave in many directions: diffuse reflector.

In order to determine the degree of roughness of a surface, we use to establish (Beckman &
Spizzichino, 1987) a relation between the state of the surface quantified by the average height
variation h, the wavelength of the wave λc and the local incidence angle θi (see figure 7). This
relation is known as the Rayleigh criterion:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h <
λc

8cosθi
lorsque λc ≫ h

h <
λc

32cosθi
lorsque λc ≃ h

Let us consider the local incidence angle: an incidence angle is the angle between the radar
beam and the target object. The value of this angle determines the radar appearance of this
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Fig. 6. Intersection of the Doppler circle and the Earth’s surface

θi θi

incident wave reflected wave

(b)(a) (c)
Fig. 7. Rayleigh criterion: (a) smooth surface, (b) low roughness surface and (c) high rough-
ness surface

target on the radar image. Moreover, we can attach to each pixel of the radar image a local
incidence angle so that we can notice variations in pixel brightness concerning one target
object (rocks, trees, grass, buildings). Finally, we can note that the variation of incidence angles
is less for a satellite radar than an airborne radar because of the height of the platform. Among
the natural Earth’s surfaces, we can characterize (Ulaby, 1981) three kinds of surface

• bare surface where simple reflections occur and the amount of energy towards the radar
depends on the roughness of the soil,

• farmed surface where reflections are quite complex and depend on the crops, the mois-
ture, the direction of the parcels and so on,

• vegetation surface where the reflection phenomena essentially depend on the wave-
length. For example, the waves of the radar band X are only reflected by the top of
the canopy. Lower wavelength waves penetrate the canopy and volume scattering has
to be considered. Finally, some features on the ground can be considered as close tar-
gets,which means these features have two (or more) surfaces (generally smooth) form-
ing a right angle and cause double (or more) bounce reflections (figure 8).
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(b)(a) (c)
Fig. 8. Reflection phenomena: (a) from slope towards the radar, (b) from corner reflector
(double bounce reflection) and (c) multiple bounce reflections.

The typical occurrence of this phenomenon is the corner reflection. Corner reflectors are very
common in urban sites and show up as very bright targets on the radar image.

2.4.1 Speckle phenomena

As the radar image is created through a radar coherent wave, a particular effect modifies the
radiometry of pixels as a noise-like effect inherent in coherent imaging systems. This effect
is obviously visible on large covered-grass areas and looks like a "salt and pepper" texture.
This texture is due to the chaotic response of multiple small targets on the ground whose
global response is seen as a constructive or destructive random process. Thus, this kind of
process randomly produces bright and dark pixels: the radar image is speckled. Many articles
are dedicated to the study of the speckle phenomena (Goodman, 1976). Even it could be
considered as information for special applications, the speckle effect is seen as a multiplicative
noise and degrades the quality of a radar image.

3. Radargrammetric operations

3.1 State-of-the-art

The definition of radargrammetry has been stated by Leberl (Leberl, 1990): “Radargramme-
try is the technology of extracting geometric information from radar images”. To extract the
geometrical characteristics of the ground, four different techniques are implemented: stere-
oscopy, clinometry (Horn, 1975), interferometry (Massonet & Rabaute, 1993) and polarimetry
(Schuler et al., 1996). These are usually combined with SAR systems which have been briefly
presented in this paper. Because the aim of this chapter is only to expose the radargrammetry
as a radar stereoscopic method, the other ones will not be more developed. The first works
on radargrammetry began after the Second World War and the first principles were defined
by La Prade (La Prade, 1963). These works were completed by several mathematical devel-
opments (Gracie et al, 1970) and fully developed by numerous researchers (Rosenfeld, 1968)
(Leberl, 1990) (Polidori, 1997). All of these developments were tested and improved thanks to
several operational measurements both airborne (for example (Azevedo, 1971) mapping the
world’s tropical belt) and spatial (for example (Schrier, 1993) geocoding radar images from
ERS-1 mission). Since the 1980s with the Shuttle Imaging Radar (SIR-A, SIR-B and especially
SIR-C), the European satellite (ERS-2 and ENVISAT), the Canadian sensor (RADARSAT-1 and
2), the number of researchers working on the radargrammetric topic has increased and data
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analysis has become more sophisticated (various incident angles, various frequencies and po-
larisations of the wave and so on).

3.2 Basics of radargrammetry as a radar stereoscopic method

3.2.1 Principle

Stereoscopy is a viewing method that forces our eyes to see, at the same time, two images
taken from different angles. This technique allows us to see in three dimensions as it rein-
forces physiological indicators. The indicators used by stereoscopic method are parallax and
convergence angle and can be defined as follows:

• the parallax P of an observed point is a parameter that is directly connected to the point
elevation and it increases with the altitude of the point,

• the convergence angle ∆θv is defined by the intersection of the two lines of sight of the
radar and this angle increases as the baseline Bs rises.

In figure 9, the same-side stereoscopic configuration is exposed and the description of the
parallax P, the base-line Bs and the intersection angle ∆θv = θv1 − θv2 is given. The latter
parameters have an important function as regards the quality and the accuracy of the terrain
reconstruction.

M

r1

r2

BS

∆θv

S2

θv2
θv1

S1

P

h

Fig. 9. One radar stereoscopic configuration.

3.2.2 Matching step

Stereoscopic techniques applied to radars are influenced by optical techniques (we can com-
pare the baseline Bs in the radargrammetry configuration and the vertex in the human de-
scription), except that SAR images replace optical systems images. But, the main difficulty is
to get used to new and unnatural radar viewing (as we exposed before) and especially when
both geometric and radiometric disparities are large. However, radar images can be viewed
in stereo after training. The point of radargrammetry is to match two radar images by a “reg-
istration” processing. The registration step aligns two images containing the same radar scene
but viewed from different positions. The aim of the matching step is to get a dense description
in order to achieve the accuracy of image registration. The main difficulty of the registering
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operations comes from the dissimilarities between the pair of images that are caused by dif-
ferent imaging configurations. The identification of corresponding image points is the main
feature of the processing. This step is generally achieved by using several methods and we
will present two of them:

• grey-level image matching,

• edge-based method.

The first one is generally computed with the normalised cross-correlation coefficient (Leberl
et al., 1994) and many improvements such as the use of the sum of mean normalised absolute
difference or the least squares solutions are investigated. The second one is based on the fact
that an object or a structure may look quite similar in both images whatever the radar position
(Marr & Hildreth, 1980). However, this method needs some preprocessing (e.g. filtering oper-
ations) in order to be really efficient and the application to , for example, a mountainous area
is not possible because of the small area of edges relatively to the total area of images. Thus,
the combination of both methods can achieve good results (Paillou & Gelautz, 1999).

3.2.3 Disparity measurement and terrain reconstruction

For each pair of images, we get one map of disparities along both the azimuth axis and the
range axis. In the case of a flat Earth, no disparity along the azimuth axis should occur when
radar images come from parallel flight paths. But, because of the lack of precision of the radar
trajectories, azimuth disparities exist and the way to eliminate these is to resample images
into an epipolar geometry. At the end of the radagrammetric processing, the computation of
a disparity map obtained under the flight conditions produces the terrain elevation which is
called DEM (e.g. Digital Elevation Model). The calculated height of each pixel on the image
agrees with the different equations describing the geometry of the flights of path. Moreover, in
order to get a better DEM, the use of ground control points is essential to correct the geometric
model of the terrain and to set up the best stereomodel as regards the solution of the stereo
geometry.

3.3 Radargrammetric processing

As the radargrammetric method was briefly described in the late section, we intend to expose
more precisely all the steps required to reach a terrain elevation thanks to a pair of stereo radar
images.

3.3.1 Acquisition of stereo images

An important radar stereoscopic issue is the way measurements have to be made. Two main
configurations can be considered: same-side (the radar is located on the same side considering
the position of the two radars) and opposite-side (the scene is located between the two radars)
viewing. Considering the same-side configuration (see figure 10), a large baseline (e.g. a large
intersection angle) makes it possible to achieve good geometry for stereo plotting because of
the increase in parallax values. And the higher the parallax value is, the more accurate the ele-
vation reconstruction is. Conversely, the matching processing needs to manipulate images as
closely identical as possible in order to succeed in stereo viewing. That implies a small inter-
section angle. The opposite-side configuration (figure 11) provides a large baseline and thus
precise stereo plotting. Moreover, we can see in figures 11 and 10 the consequence of a range
estimation error (the real point M migrates to the point Me that is located by processing) that
is less significant in the opposite-side case than the same-side one But, the radiometric differ-
ences are so important in the case of opposite-side configuration that the matching operation
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Fig. 10. Same-side configuration and range error consequence

is almost impossible without a preprocessing of images (for example, radiometric inversion).
However, some studies (Toutin & Gray, 2000) demonstrate that we can have conflicting con-
clusions about theory developments and image applications. Anyway, the choice of the pairs
of stereoscopic images comes up regarding the capability to get the parallax values and the
accuracy of the height reconstruction. Thus, a compromise has to be reached between these
two topics and concerns the baseline Bs to the height H of the platform ratio. This ratio can
vary from 0.25 to 2. For example, a study about RADARSAT measurements (Sylvander et al.,
1997) suggests an intersection angle of about 8◦ that corresponds to a value of B on H ratio
equal about 0.3.

3.3.2 Correlation matching operation

The most common image matching method is area correlation. For a given area in the pri-
mary image, the matching computation has to detect the closest one in the secondary image
by searching for the best matched area. The difference of position is the value of the parallax
or disparity. The classical method of finding match areas is to use an analytical metric com-
parison and the zero-mean normalized cross-correlation (ZNCC) can be applied to searching
for windows of radar images. These windows are usually squared and the size is (2n+1) by
(2n+1) pixels, so a centre pixel can de defined. The ZNCC is often used because of robustness
on the radiometric variations of the radar image and the result is given by the cross-correlation
coefficient ρ. This coefficient ρ can be stated as follows:

ρ =
E[I1 I2] − E[I1]E[I2]

√

V(I1)V(I2)
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Fig. 11. Opposite-side configuration and range error consequence

where I1 and I2 represents the amplitude value of the pixels of the window. The mean or
mathematical expectation E[Ii] is calculated thanks the following expression:

E[I1,2] =
1
N

N

∑
k=1

Ik
1,2 (1)

where N represents the number of pixels inside the window. Moreover, the variance expres-
sion V(.) about the window Ii is given by:

V(I1,2) = E[(I1,2 − E[I1,2])
2] (2)

The value of ρ is bounded by (-1) and (+1) and the windows are considered matched for the
maximum value of ρ. The coefficient ρ is calculated for each position (azs and rgs) of the
researching window in the researching area. Also, we get a correlation surface obtained with
the values of the coefficient ρ and the maximum of this surface gives the disparity dispaz along
the azimuth axis

dispaz = |azs(max) − azr|
and the disparity disprg along the range axis

disprg = |rgs(max) − rgr| .

This step is carried out for each point of the primary image in order to get the disparity map.
The figure 12 illustrates the correlation computation applied for one pixel inside the primary
image. Considering the assumptions of radiometric distortions in a radar image, the cross-
correlation computation does not work very well on such degraded images (shadowing effect
for example). That is the reason why the choices of the viewing configuration and the value of
BS are very important. Especially in mountainous areas, a large part of unmatched pixels can
occur because of the shortening and layover effects. Finally, the choice of the greatest value
of ρ for a given correlation computation is not necessarily the optimum criterion but must be
considered with other parameters. Several methods can be applied to improve the matching
operation.
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Fig. 12. Matching operations between primary image and secondary image.

3.3.3 Epipolar geometry

The use of smaller correlation windows is one way to limit the false matching result. For
example, an epipolar constraint (Zhang et al., 1995) can be applied and reduce the research of
the matched window along the azimuth axis. Considering parallel flight paths at a constant
altitude and using the epipolar geometry, we can reduce the search area assuming that for a
given point in an image, the corresponding point is located on the same azimuth line. Ideally,
the search area can be reduced on a thin strip of one pixel thickness on the epipolar line.
Practically, it is better to have a reduced search area one to 3 pixels wide along the azimuth axis
because the estimation errors can lead to mistaken parameters. Finally, the epipolar geometry
considerably reduces the size of the search area and also reduces computing time. Moreover,
it limits false matching because for one pixel to match, there are fewer candidates on the
other images than a larger window. The second way uses a partial knowledge of the terrain
elevation that limits the research along the range axis: knowing the minimum and maximum
elevation of the area, we compute the minimum and the maximum disparities along the range
axis.

3.3.4 Pyramidal procedure

Another way can be considered as a hierarchical strategy used to reduce processing time and
to make it possible to work with large images (Denos, 1992). The principle is quite simple:
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from the original image, we build an image pyramid. At each level, the image size is reduced
by a factor 2k corresponding to the kth-iteration step. The images are reduced by transforming
the pixels gray levels: in the reduced image, each pixel value corresponds to other pixels in the
previous image. There are several possibilities for the transformation law: a simple one i.e the
average of 4 pixels to get one pixel (see figure 13) in the reduced image or a more elaborated
law i.e a Gaussian filter (Burt & Adelson, 1983) whose impulse response is given as follows:

wk(u,v) =
1

2kσI

√
2π

exp(−u2 + v2

22kσ2
I

)

where σI is the standard deviation of the image I(u,v). For each iteration, the matching pro-

Fig. 13. Radar images with growing resolutions: from the first step (a) to the final step (c)

cess makes it possible to establish an approximate disparity map. Thus, we are able to predict
the disparity offsets at the next level of the hierarchical process, reducing computation time
and speckle errors. With increasing interaction, we obtain better accuracy for each level. At
the final step, the last disparity map is used to produce the Digital Elevation Model. In this
way, some DEM have been produced by using very large areas such as the one computed
thanks to the RADARSAT-1 data about 8,000 by 8,000 pixels.

3.3.5 Speckle filtering

As previously developed, the speckle phenomenon affects the interpretation of a radar im-
age and is undesirable for radargrammetric applications. Speckle reduction is required prior
image analysis in order to improve the use of radar images. The reduction operations called
speckle filtering may be very subtle because we have to get rid of the speckle effect but not of
the edges and structures in the image (figure 14). Several studies (Denos, 1992) (Jacquis, 1997)
prove that speckle filtering could be efficient in order to improve radargrammetric processing.
But, other works about the needs to remove the speckle effect (Dowman et al., 1993) demon-
strate that speckle filtering does not improve the results of radargrammetric computation.
Anyway, speckle reduction can be achieved in two ways:

• multi-look processing that refers to the division of the radar beam in N f narrow sub-
beams and the result is independent as regards the speckle effect. The N f images are
summed and averaged to form the final image (Porcello et al., 1976). However, this
simple method degrades the azimuth resolution by a factor of N f ,

• filtering techniques applied to the SAR image (Frost et al., 1982) (Lee, 1981) (Kuan et al.,
1985) (Wu & Maître, 1990).
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Fig. 14. Speckle filtering

The consequence of the filters on the radargrammetric performances depends on the correla-
tion method. In our case, the computation of correlation matching based on the radar image
radiometry can be improved thanks to median or Lee filters. As an overall conclusion, the fil-
tering step is not essential to set up a radargrammetric tool kit but the application of a speckle
filter to specific areas of the radar image could be beneficial in order to cancel the bad matching
operations.

3.3.6 Computation of the radar stereo model

The objective of this step is to extract three-dimensional geometric data from radar stereo pairs
of images by using the coordinates (position and velocity) of the satellite along the flight path.
The results of such a computation is to calculate the coordinates (x,y,z) in the chosen reference
as described in part 2.3.5. In the case of monocular observations, the height information h is
known and we have to get the position of this point. Therefore, we can establish the system
given the coordinates (x,y,z) according to the value of h of one point and the corresponding
position (Xi,Yi, Zi) and the velocity (Ẋi, Ẏi, Żi) of the satellite indexed by i ∈ 1,2:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x − Xi)
2 + (y − Yi)

2 + (z − Zi)
2 = r2

i
(x − Xi)Ẋi + (y − Yi)Ẏi + (z − Zi)Żi = 0
x2 + y2

(a + h)2 +
z2

(b + h)2 = 1
(3)

Alternatively, the binocular observations use the diversity of the vision angle to get the co-
ordinates of the point (stereoscopic method). In the radar image, a pixel is referenced by its
range and azimuth indexes. On the one hand, the range distance locates the point on a range
sphere that the centre is the radar position: this is the range sphere. On the other hand, the
azimuth position of a pixel can give the Doppler cone which is replaced by a plane in our case
because of the null Doppler frequency at the perpendicular direction of the radar beam. The
intersection of the range sphere and the Doppler plane provides two solutions but only one is
obviously the right one according to the direction of the radar beam. The solution (x,y,z) of
the search point satisfies the following equations system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x − X1)
2 + (y − Y1)

2 + (z − Z1)
2 = r2

1
(x − X1)Ẋ1 + (y − Y1)Ẏ1 + (z − Z1)Ż1 = 0
(x − X2)

2 + (y − Y2)
2 + (z − Z2)

2 = r2
2

(x − X2)Ẋ2 + (y − Y2)Ẏ2 + (z − Z2)Ż2 = 0

(4)
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where the position (X1,2,Y1,2, Z1,2) and the velocity (Ẋ1,2, Ẏ1,2,dotZ1,2) of the radar are re-
quired to obtain a solution. Mathematically speaking, the above system is oversized because
we have 3 unknowns for 4 equations. Thus, one of the 4 equations seems to be useless. How-
ever, the choice of the unused equation is not arbitrarily made but we must base our judge-
ment on the practical measurements (see the next part 4.4.4 and especially the Stereoscopic
localisation in the geocentric reference section)

3.3.7 Using the disparity map

In order to obtain the relief of the scene which corresponds to the height h of each pixel of the
radar image (see figures 1 and 9), we can use the disparity map which has been set up for the
correlation step for a pixel which is located at the value of rg along the range axis. Generally,
we can consider the baseline BS described by the co-ordinate BSr

along the range axis and BSh

along the height axis. The expression of the disparity p which is also the value of parallax is
given by (Leberl, 1990):

p =
√

r2
g + (H − h)2 − H2 −

√

(rg − BSr
)2 + (H + BSh

− h)2 − (H + BSh
)2 − BSr

where the parallax p depends on the value of rg for a given height h. Thus, the expression
of h is the root of a quadratic degree equation. In the case of parallel flight paths with the
same height H of the two flight paths (e.g. BSh

is null or BSr
= BS), the expression of h can be

exhibited as:

h =
2 H BS + 2 H p −

√

4 H2 B2
S + p ∆

p + BS

with specifying that

∆ = 8 BS (H2 − r2
g + rg BS) + p (4 B2

S + p2 + 4 p BS) + 4 p (H2 − r2
g + rg BS)

This expression can be more simple in the case of a plane front wave, which means the height
of the radar H is much greater than the height h of the point and also than the parallax p:

• considering the parallax along the ground range:

h =
p

cotθv1 ± cotθv2

• considering the parallax along the slant range:

h =
p

cosθv1 ± cosθv2

where the sign (-) is about the same-side configuration and the sign (+) the opposite-side one.
The latter expressions are used for the SIR-C configuration and are available for altitudes less
than 3,000 meters. Finally, the results of a DEM can exhibit empty or inconsistent areas because
of the nature of the terrain (for example low radiometric levels). In order to improve the
reconstruction of an elevation model, some operations such as interpolation could be applied
to known areas (for example, to constrain flatness in the case of lakes).
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4. Radargrammetric experimental results

4.1 Introduction

This part is dedicated to the application of the radargrammetric operations described in the
latter parts, on raw data recorded by the shuttle Endeavour during the SIR-C mission (Evans,
2006). We obtained first results by using preprocessed radar images (Fayard et al. 2006) (Fa-
yard et al., 2007a) (Fayard et al., 2007b). Therefore, we will present in this section the DEM of
a mountainous area (French Alps) obtained through radargrammetric processing.

4.2 Description of SIR-C images

For our studies, we have several images obtained by the SIR-C mission during the month of
April, 1994. The interesting area is around the French and Italian Alps. For obvious reasons,
we prefer to deal with mountain areas in order to get elevation information rather than urban
or lake areas. Thus, the stereoscopic pair of radar images is the PR17310 and PR17429 part
of flight as described in figure 15. This part is also very interesting because we can obtain

Fig. 15. Elevation map of the interesting area get from Google Maps

elevation information thanks to the IGN maps published about this region. The two flight
paths are close as regards the time consideration (PR17429 on the 10th of April 1994 at 6h31
and PR17310 on the 12th of April 1994 at 5h34) so the radiometric difference due to season
modifications (snow) are not present as we can see in figure 16. Moreover, the SIR-C raw data

(a) SAR image from the PR17429 viewing (b) SAR image from the PR17310 viewing

Fig. 16. SAR images of the interesting area
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is also recorded with the viewing parameters which are quite important for radargrammetric
processing.

4.3 Preprocessing images

As it was mentioned before (part 2.3.5 about the geometrical model of the radar position),
we have to describe images taking into account the co-ordinates in order to apply matching
parameters. This description requires precise information about satellite trajectory.

4.3.1 Parameters of satellite tracks

In a previous section (in the part 3.3.6 about the computation of the stereo model), we drew the
readert’s attention to the importance of knowing the position and the velocity of the satellite
during the viewing flight in order to resolve the equations (3) and (4). We cannot use the
flat Earth model or strictly parallel flight in the case of raw data. Therefore, it is possible to
evaluate all the positions and velocities of the satellite along its track thanks to certain viewing
parameters:

• time duration τi defined by the time tinit of the beginning and the time tend of the end
of the recorded data,

• data sets giving the position and the velocity of the satellite at three moments tDS1 , tDS2

and tDS3 (these moments are 4.5 seconds apart).

Thus, the interpolation of the satellite track is possible in order to link, for each pixel of the
radar image, a value of the position and the velocity of the satellite along the azimuth axis.
Moreover, because this interpolation is not sufficient in order to get the absolute position of
radar pixels, the geocentric co-ordinates of each corner of the radar images are used to refer
images to the geocentric reference. The co-ordinates of these points, latitude and longitude,
are given considering the null height:

• PNRET (e.g. Near Range Early Time),

• PNRLT (e.g. Near Range Last Time),

• PFRET (e.g. Far Range Early Time),

• PFRLT (e.g. Far Range Last Time).

The figure 17 describes the geometry of the viewing path and the corresponding parameters.
Also, the definition of an absolute reference for radar images is essential to get the height of
the pixels and to apply epipolar transformation on radar images.

4.3.2 Epipolar resampling

In the section (part 3.3.3 about the epipolar geomtry), we moved on to the epipolar procedure
that reduces the execution time for matching computation. This procedure makes it possible
to limit to a thin width of azs pixels (azs is equal to one in theory) the search in the secondary
image of the corresponding point of pr (which is in the reference image) as can be seen in
the figure 18. There are two steps to put the radar images in the epipolar geometry: forward
localisation and backward localisation. For each point pr in the reference image (e.g. #1),
forward localisation is set up by using the system described by (3) and a given set of values
of the height h. The result of this forward localisation is a set of points which are the solutions
(x,y,z) of (3) for each value of h and a given value of r1. We have to note that the value of
r1 is calculated thanks to the image co-ordinates az1 (along the azimuth axis) and rg1 (along
the range axis) of a pixel and the position of the satellite corresponding to this pixel hence
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the importance of determining the satellite track parameters. Inversely, for the secondary
image (e.g. #2) and from the knowledge of the height h and the co-ordinates (x,y,z) of a
given point, we search for the least value of the solution r2 of the system (3) according to the
position and velocities of the satellite related to the image #2. This solution r2 also gives the
azimuth position az2 of the corresponding pixel (because the radar beam is perpendicular to
the flight path) and the calculation of the co-ordinate rg2 is easy thanks to the value of r2 and
the radar position (X2,Y2, Z2). This step is repeated for each point in the image #1 and thus the
corresponding points establish the epipolar line Ps in the image #2. To obtain the epipolar line
Pr in the reference image #1 from the epipolar line Ps in the secondary image #2, we have to
apply the same operations i.e. forward localisation then backward localisation except that for
the forward localisation from a given point of Ps, the corresponding point is calculated for only
one height hmean. All these operations are summarized in figure 19. In order to illustrate the
achieving epipolar lines, we propose an example of epipolar line in the working area which is
shown in the figure 20 from a specific point: the peak of Agrenier. This point is located in the
working area by its co-ordinates azr and rgr in the radar image reference. For the mentioned
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Input data Output results
Image co-ordinates Height Range Geocentric co-ordinates

azr (index) rgr (index) h (m) r1 (m) x (m) y (m) z (m)

1841 614

500

346,181.72

4,501,176.05 536,781.38 4,472,535.72
1,000 4,501,729.01 537,104.25 4,472,653.93
1,500 4,502,281.18 537,426.02 4,472,773.02
2,000 4,502,832.56 537,746.71 4,472,892.99
2,500 4,503,383.16 538,066.31 4,473,013.85
3,000 4,503,932.97 538,384.84 4,473,135.57
3,500 4,504,482.01 538,702.30 4,473,258.16
4,000 4,505,030.27 539,018.69 4,473,381.61

Table 1. Forward localisation applied on the peak of Agrenier.

area, the IGN map gives approximately a set of heights from hmin = 500 meters to hmax = 4,000
meters. The step increment of height ∆h is set to 500 meters thus we obtain 8 points for each
value of h by the forward localisation. These points are described in the geocentric reference
with the values (x,y,z) (see table 1) Also, for each output result described in table 1, we obtain
the solutions r2 and the corresponding points identified by image co-ordinates (see table 2).
The output results describe the epipolar line in the secondary image (e.g. image #2) and this
line is drawn in the working area of the PR17429 image in figure 21. Considering this figure,
we notice the following:

1. the calculated corresponding point is on the epipolar line,

2. the calculated epipolar line does not pass through the actual corresponding point i.e.
the peak of Agrenier.

The result is that the corresponding point is correctly found on the epipolar line and the ac-
curacy of the localisation is not sufficient to retrieve the right corresponding point. Also, this
inaccuracy must be corrected in order to set up the right disparity map.

4.3.3 Use of ground control points (GCP)

Because of the geode model inaccuracy, the quality of the terrain elevation reconstruction will
be low. Also, we have to refine the stereo model parameters and some GCPs are required. In
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our studies, we choose 8 GCPs which cover the full terrain elevation range and are located al-
most at the border of the image. These GCPs are listed in table 3 just as the difference between
the actual and the calculated positions of the GCPs. This comparison can be made thanks to
the height information of GCPs and the forward and backward localisation operations. We
note an average difference along the azimuth axis of about 6.25 pixels with a standard devi-
ation value of 0.46 pixels and respectively 3.25 and 0.89 pixels along the range distance. So,
the global correction which is applied to the secondary image reference makes it possible to
recalculate the epipolar line (figure 22) that is passed through the actual corresponding point.
In figure 22, we can see the search for an area about 3 pixels wide.

Input data Output results
Geocentric co-ordinates Height Range Image co-ordinates

x (m) y (m) z (m) h (m) r2 (m) azs (index) rgs (index)
4,501,176.05 536,781.38 4,472,535.72 500 272,640.34 1233 239
4,501,729.01 537,104.25 4,472,653.93 1,000 272,459.73 1,232 225
4,502,281.18 537,426.02 4,472,773.02 1,500 272,279.67 1,232 212
4,502,832.56 537,746.71 4,472,892.99 2,000 272,100.16 1,231 198
4,503,383.16 538,066.31 4,473,013.85 2,500 271,921.20 1,230 185
4,503,932.97 538,384.84 4,473,135.57 3,000 271,742.78 1,229 172
4,504,482.01 538,702.30 4,473,258.16 3,500 271,564.90 1,228 158
4,505,030.27 539,018.69 4,473,381.61 4,000 271,387.57 1,228 145

Table 2. Backward localisation applied on the peak of Agrenier.
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Fig. 21. Drawing the epipolar line in the PR17429 image

name of the GCP
difference difference

∆azs ∆rgs

Peak of Agrenier 6 3
Les Ourgières 6 3

Peak of Clapouse 7 4
Dent du Ratier 6 3

East of Col Garnier 7 5
Peak of Fond Queyvras 6 3
SE peak of Rochebrune 6 2

Top of Assan 6 3

Table 3. Difference of the co-ordinates of actual GCPs and their calculated corresponding
points.

4.4 Radargrammetric processing

At this step of the entire processing, we obtain preprocessed images to which the specific
radargrammetric processing will be applied: matching processing, disparity map and terrain
elevation.

4.4.1 Confidence in correlation coefficient

After computing the matching operation which is described in part 3.3.2 (see the section Cor-
relation matching operation), we obtain the disparity map. However, the values of disparity
should be considered according to the confidence in correlation coefficient. The highest value
inside a correlation surface can be perfectly detected and the corresponding position is obvi-
ous: this corresponds to a high confidence of correlation. But, this maximum position cannot
clearly obtained so the confidence correlation is considered as low (see figure 23). For this
case, additional noise can modify the results of the disparity map and so applying the speckle
reduction and pyramidal procedure should strengthen the correlation results.
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Fig. 22. Drawing the corrected epipolar line in the PR17429

4.4.2 Speckle filtering

In our application, we use two methods to reduce speckle effect. The first one is the multi-
look technique which has been described before (see part 3.3.5 about the speckle filtering) and
the value of N f is equal to 4 in order not to degrade the azimuth resolution regarding the
value of SIR-C parameters. Moreover, a Lee filter is applied to the radar images so the edges
are preserved, which could be important considering the mountainous area. Several tests are
done and the best results are obtained by using a 5 by 5 pixel window (that seems to be correct
as regards the heterogeneous area). Although the speckle reduction improves the quality of
the terrain reconstruction, it is not sufficient for certain areas.

4.4.3 Pyramidal computation

This method has been developed in the above section 3.3.4 and the results of this procedure
will now be exposed. Firstly, we obtain the disparity map of our working area without the
pyramidal steps within 50 minutes of computation using a 1.8 GHz workstation with 1GB of
RAM. The resulting disparity map is described in figure 24. After that, we apply the pyra-
midal approach to the radar images and the resulting disparity map is obtained within 24
minutes of computation using the same workstation as before. This first consequence speaks
in favour of the pyramidal scheme. Moreover, the quality of disparity map described in figure
25 is obviously better than the one in figure 24. Also, we can note two advantages of applying
the pyramidal steps: computation time reduction and disparity map quality improvement.

4.4.4 Stereoscopic localisation in the geocentric reference

Thanks to the disparity map, we can reconstruct the terrain elevation by resolving the system
(4). We remember this system is oversized because of 3 unknowns described by 4 equations.
So, we have to choose the equation to be removed by studying the sensitivity of induced
errors. This sensitivity corresponds to a correlation success when errors of about plus or minus
10 pixels are applied to the actual location of corresponding points along the azimuth axis or
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Fig. 23. Different values of confidence in correlation coefficients

configuration #1 configuration #2
azimuth(m) range(m) azimuth(m) range(m)

longitude 340 0.14 13.5 19.4
latitude 438 0.13 9.8 23.5
height 404 0.8 16 37

Table 4. RMS errors (in meters) resulting from a one pixel error in the disparity map along
the azimuth axis or the range axis and considering the two configurations of the binocular
system.

the range axis. Thus, by resolving 3 of the 4 equations of 4, we obtain the co-ordinates (x,y,z)
which are described in the geocentric reference as latitude φ, longitude λ and height h and
compared with the actual terrain model. The resulting error is calculated as a root-mean
square operation applying to all the pixels of the working area. The results for a location
error of one pixel are summarized in table 4. Two configurations of an undersized system
are studied: the first one (configuration #1) uses the two iso-Doppler equations and one iso-
range equation and the second one (configuration #2) uses two iso-range equations and one
iso-Doppler equation. The result is obvious: it is better to chose the second configuration
because an error of one pixel along the azimuth axis induces an error of less than one meter
regarding the height reconstruction although the sensitivity along the range axis seems to be
less in the first configuration. Another conclusion from this study is that the minimum of the
correlation surface does not occur at a null shift along the azimuth and the range axis. That
means this shift induce errors in the localisation and in the height reconstruction. These errors
are calculated thanks to the GCPs which are used for the correction of the image indexes (see
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Fig. 24. Disparity map without the pyramidal procedure

section 4.3.3 about the use of ground control points). The conclusion is that the errors are less
than the resolution values both for the localisation (latitude and longitude) reconstruction and
for the height reconstruction.

4.4.5 Post processed DEMs

Thanks to the transformation applied at this step, we can reconstruct the terrain elevation of
the working area which is seen in figure 20 by resolving the system described through config-
uration #2. In order to quantify the accuracy of our elevation reconstruction, we compare it
with the SRTM (Shuttle Radar Topography Mission) DEM (see figure 26). We need to apply a
resampling operation to our DEM because its resolution is higher than that of the SRTM . In
this way, the DEM we obtain (which we can called the raw DEM) and the comparison with
the SRTM DEM are shown in figure 27. The first results of the comparison are described in
table 5 and show that an error of height reconstruction of less than 50 meters occurs for only
46.4 percent of pixels. Moreover, only 80 percent of pixels exhibit an error less than 200 meters.
These results mean that post processing must be applied to the raw DEM. This post processing
consists in removing the obvious errors which are detected by a comparison between neigh-
bouring areas. The choice of the worked area is done thanks to an eye examination and the
connected disparity is not computed to obtain the DEM. Also, the calculated DEM is not com-
plete but more accurate than the raw one and the corresponding errors are shifted to a blank
pixel (see figure 28). After removing these bad disparities, we can compare this corrected and
post processed DEM with that of the STRM and the results of the comparison are described
in table 5. The examination of the results shows us that more than 98 percent of pixels present
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Fig. 25. Disparity map with the pyramidal procedure by using three levels of resolution

number of consideration of height errors
nature of DEM considered < 20 m < 50 m < 100 m < 200 m

points % ǫmoy % ǫmoy % ǫmoy % ǫmoy

raw DEM 2938 21.9 9.8 46.4 22.9 65.9 37.4 80.0 55.2
corrected DEM 2126 29.5 9.8 61.6 22.7 85.5 36.3 98.7 49.6

Table 5. Percent of errors and average errors ǫmoy of the calculated DEMs.

an error of less than 200 meters (in comparison with the 80 percent without post computation)
and the pixels whose height error is less than 50 meters are more than 61 percent (46.4 percent
before). Considering the relief type and the resolution values, these results are close to the
results obtained by other satellites (Toutin, 2000) (Toutin & Gray, 2000).

5. Conclusion and further developments

This chapter has dealt with the relevance of using stereoscopic radar images in order to re-
trieve the relief of terrain. Firstly, the basic characteristics of the radar image (SAR image)
were described and the parameters which were different from those of an optical image were-
pointed out especially the image resolution and set up in the slant plane. Other characteristics
such as the geometric and radiometric distortions were described in the rest of the section.
These distortions have to be taken into account in radar stereoscopic applications in order to
determine the better viewing parameters and avoid the consequences of specific radar image
geometry (for example, foreshortening) and radiometry (for example, speckle effect). In the
second part, we presented the radargrammetric method applied to radar images and how
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Fig. 26. SRTM DEM of the working area

they can be compared to the optical stereoscopic method. The aim of radargrammetry is to
extract the height information of a radar scene from a stereo pair of radar images. Compared
with the optical method, radargrammetry is based on the geometry of the visualisation flight
path over the scene and the parallax induced by two views of a point characterized by its
elevation. This parallax is also called the disparity between a primary image and a secondary
image. The disparity is defined for each pixel in the radar image and is determined by match-
ing computation in order to set up a disparity map. This disparity map of all the radar scenes
is essential to reconstruct the height elevation by resolving a stereo-model which is described
by range sphere and Doppler circle equations for each position of the radar. The accuracy of
the terrain reconstruction depends on the quality of the disparity map and also on the success
of the matching operation. This operation can be improved by several processing steps and
especially the reduction of the speckle effect and the pyramidal approach. We can note that
the geometry of the viewing scene also influences the achievement of the 3D co-ordinates of
the terrain. At the end of the discussion, we illustrated radargrammetric processing by using
SIR-C data over the French Alps. We showed all the steps required to obtain an acceptable
DEM: from the registration of each pixel of the radar image regarding the satellite path (posi-
tion and velocity) to post processing the DEM by removing the obvious bad reconstruction to
choosing the better stereo-model and to using GCPs in order to refine the radar images. The
resulting DEM of our radargrammetric processing is almost identical to the DEM which can
be obtained thanks to specific matching and filtering operations. One of the advantages of our
method is the simplicity with which an acceptable DEM is obtained.
However, it is possible to apply new methods to further improve the crucial matching step
and this is what we will be working on next. We will investigate the improvement of the
radargrammetric tool kit along two axes. The first one deals with the opportunities to apply
some optical methods during the correlation step. Especially, the work will deal with stereo
matching algorithm with an adaptive window in an SAR context. Depending on the statistical
behaviour of the radar signal, we can manage the size of the correlation window in order
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(a) Raw DEM described in the geocentric refer-
ence
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(b) Difference between the raw DEM and the
SRTM DEM

Fig. 27. Quantification of the raw DEM
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(a) Corrected DEM
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(b) Difference between the corrected DEM and
the SRTM DEM

Fig. 28. Quantification of the corrected DEM.

to improve the confidence of the correlation during the matching computation. The second
method concerns the registration of the different areas of the image considering polarimetric
parameters. Because certain areas inside an SAR image are not cooperative to the matching
cooperation (e.g. shadowed or foreshortened areas), these kinds of areas could be matched
together regarding the polarimetric parameters of the areas.
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