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Multivariate Time Series Support Vector
Machine for Multispectral Remote Sensing
Image Classifications

Pei-Gee Peter Ho
Naval Undersea Warfare Center, Newport Rhode Island
USA

1. Introduction

Satellite and airborne Remote Sensing for observing the earth surface, land monitoring and
geographical information systems are the big issues in world’s daily life as well as country
defense projects. The source of information was primarily acquired by imaging sensors and
spectroradiometer in remote sensing multispectral image stack format. The traditional
image processing either by single picture image processing or compressing pictures stack
via Principle Component Analysis (PCA) or Independent Component Analysis (ICA) into a
single image component for further pixel classification or region segmentation is not enough
to describe the true information extracted from multispectral satellite sensors. In an effort to
significantly improve the existing classification and segmentation performance in this
research, the contextual information between pixels or pixel vectors is characterized by a
time series model for the remote sensing image processing.

Time Series statistical models such as Autoregressive Moving Average (ARMA) were
considered useful in describing the texture and contextual information of an remote sensing
image. To simplify the computation, a two-dimensional (2-D) Autoregressive (AR) model
was used instead. In the first phase, the 2-D univariate time series based imaging model was
derived mathematically (Ho, 2008) to extract the features for further terrain segmentations.
The effectiveness of the model was demonstrated in region segmentation of a multispectral
image of the Lake Mulargias region in Italy. Due to the nature of remote sensing images
such as SAR (Synthetic Aperture Radar) and TM (Thermal Mapper) which are mostly in
multispectral image stack format, a 2-D Multivariate Vector AR (ARV) time series model
with pixel vectors of multiple elements (i.e. 15 elements in the case of TM+SAR remote
sensing) are examined. The 2-D system parameter matrix and white noise error covariance
matrix are estimated for further classifications in the 2nd phase of algorithm development.
To compute the time series ARV system parameter matrix and estimate the error covariance
matrix efficiently, a new method based on modern numerical analysis is developed by
introducing the Schur complement matrix, the QR (orthogonal, upper triangular) matrix and
the Cholesky factorizations in the ARV model formulation. As for pixel classification, the
powerful Support Vector Machine (SVM) kernel based learning machine is applied in
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324 Geoscience and Remote Sensing

conjunction with the 2-D time series ARV model. The SVM is particularly suitable for the
high dimensional vector measurement as the “curse of dimensionality” problem is avoided.
The performance improvement over the popular Markov random field is demonstrated.
The 2-D multivariate time series model is particularly suitable to capture the rich contextual
information in single and multiple images at the same time. A single composite image is
constructed from the vector pixels through ARV based Support Vector Machine
classifications.

2. Remote Sensing Image Data Set

The remote sensing image data of the earth surface is from either satellite or aircraft in
digital multispectral or hyperspectral format. Both multispectral and hyperspectral imaging
techniques are the process of capturing the same scene at different wavelengths that yield a
2-D spatial dimensions and one spectral dimension hypercube. The main properties of a
remote sensing image are the wavelength bands it interprets. As far as remote sensing
physical phenomena is concerned, some are the measurements of the spatial information
reflected by the solar radiation in terms of visible and ultraviolet frequency range of wave
(Schowengerdt, 1997). This type of remote sensing is the passive type. Some are the spatial
distribution of energy emitted by the earth in the thermal infrared. Others are in the
microwave band of wavelengths, measuring the energy returns from the earth that was
transmitted from the vehicle which is the active type of remote sensing (Richards, 1999). The
remote sensing image data is based on the concept of the “spectral signature” of an object
(Prieto, 2000). Therefore, different land covers have different spectral signatures. The system
produces multi-spectral images stack that each pixel is represented by the mathematical
pixel vector which contains a set of brightness values for the pixels arranged in column
form:

Xy

X,

Xy

Table 1. (Bruzzone, 1998) below lists examples of the spectral regions on earth remote
sensing.

Spetral Signature | Wavelength Radiation source Surface

Visible 0.4-0.7 mm Solar Reflectance
Infrared 0.7-1.1 mm Solar Reflectance
Short Infrared 1.1-2.5 mm Solar Reflectance
Mid Infrared 3-5 mm Solar and Thermal Refl. and Temp.
Thermal Infrared 0.95 mm Thermal Temperature
Radar band Ka 0.8-1.1 cm Thermal Temperature
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Radar band K 1.1-1.7 cm Thermal Temperature
Radar band Ku 1.7-24 cm Thermal Temperature
Radar band X 2.4-3.8 cm Thermal Temperature
Radar band C 3.8-7.5 cm Thermal Temperature
Radar band S 7.5-15 cm Thermal Temperature
Radar band L 15-30 cm Thermal Temperature
Radar band P 30-100 cm Thermal Temperature

Table 1. The spectral signature of different bands used in remote sensing

Thermal Mapper (TM) Remote Sensing Images Data:
The Landsat earth resources satellite system was the first designed to provide global
coverage of the earth surface via remote sensing techniques. Three imaging instruments
have been used with this satellite. These are the Return Beam Vidicon (RBV), the Multi-

spectral Scanner (MSS) and the Thermal Mapper (TM).

Landsat uses multispectral

instruments to record the remote sensing images stack. Figure 1. shows one example of 6
different bands of Thermal Mapper acquired by the Landsat 5 satellite in the area of the
Mulargias lake in July 1996.
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Band 5 Band 7
Fig. 1. Examples of Thermal Mapper

Synthetic Aperture Radar (SAR) Remote Sensing Images Data:

Active remote sensing techniques employ an artificial source of radiation. The resulting
signal scatters back to the sensor which reflect atmosphere or earth characteristics. Synthetic
Aperture Radar is an imaging technology that the radiation is emitted in a beam from a
moving sensor. The backscattered components returned from the ground are measured. An
image of the backscatter spatial distribution is reconstructed by digital processing of the
amplitude and phase of the returned signal. Samples of SAR polarization images are shown
in figure 2.

B

Fig. 2. Saml of Synthetic perture Radar Images (C-HV and L-HV d)

Though SAR images are popular due to its accessibility, the speckle noise is all over the
places which degrades in the image quality.

Hyperspectral Remote Sensing Images:

The other type of multiple spectral images data are produced by spectrometers which is
different from multipectral instruments. One example is the NASA’s Airborne Visible
InfraRed Imaging Spectrometer (AVIRIS) optical sensor that delivers calibrated images of
the upwelling spectral radiance in 224 contiguous spectral bands. The AVIRIS detector
operates with a wavelength of 10 nanometers to cover the entire range. Figure 3 shows the
AVIRIS hyperspectral sample images through different spectral bands.
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Fig. 3. AVIRIS Hyperspectral Image Exaples
Either multi-spectral image stack (TM or SAR) or hyperspectral remote sensing stack are
suitable for demonstrating the classification capability of the newly developed Multivariate
Autoregressive image model based SVM method. Unfortunately, the MOFFET data set of
AVIRIS remote sensing on NASA’s website is no longer available. The remote sensing image
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data for testing algorithm in this chapter is limited to the multispectral (TM and SAR)
images stack for the purpose of comparisons to other classification algorithms.

3. Methodologies on Time Series Remote Sensing Image Analysis

A general scheme of Time Series Remote Sensing Image Processing as described in this
chapter is shown in figure 4 and 5. below:

Single TM Remote Single SAR Remote
Sensing Image Sensing Image

Image system mathematical modeling
2-D Univariate Time Series AR

|

Pixel value estimation error by AR model scalar
parameter optimization

}

Iterative Unsupervised Region Growing Image
Segmentation

l

Result Display and Accuracy calculations

Fig. 4. Univariate Time Series Region Growing image processing system scheme
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Multispectral TM Multispectral SAR
image stack image stack

A A

Image system mathematical modeling
2-D Time Series Multivariate AR

|

Feature vector extractions

|

Supervised Support Vector Machine
Classifications

Scene Segmentation, Result Display and
Accuracy calculations

Fig. 5. Multivariate Time Series AR parameter matrix estimation SVM system scheme

4. Univariate Time Series Region Growing

We assume airborne and satellite’s remote sensing can be defined as a collection of random

variables indexed according to the order they are obtained in time-space. For example, we
consider a sequence of random variables x, x,, x;,....... in general, {x } indexed by ¢ is
the stochastic process. The adjacent points in time are correlated. Therefore, the value of

series y, at time / depends in some fashion on the past values x, |, x,_,,........ Suppose

-1
that we let the value of the time series at some point of time 7 to be denoted by x . A

stationary time series is the one for which the probabilistic behavior of R x is
1 2
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identical to that of the shifted set x ., In our remote sensing application,

(> Xk s eeeees "
the 2-D image was scanned from left upper corner to right bottom as a sequence of time
series pixel values. Further, to simplify the numerical calculations, we model each class of
surface textures by 1st order and 2nd order Autoregressive stationary time series models. In
another way of thinking, the two-dimensional Markov model is a similar mathematical
model to describe an image area per remote sensing texture class. By using time series
model, when the within-object interpixel correlation varies significantly from object to
object, we can build effective classifiers. The unsupervised Region Growing is a powerful
image segmentation method for use in shape classification and analysis. The LANDSAT 5
database in the area of Italy’s Lake Mulargias remote sensing image data acquired in July
1996 to be used for the computing experiments with satisfactory results. The advanced
statistical techniques, such as Gaussian distributed white noise error confidence interval
calculations, sampling statistics based on mean and variance properties are adopted for
automatic threshold finding during Region Growing iterations. The linear regression
analysis with least mean squares error estimation is implemented as a time series system
optimization scheme (Chen, 2003). The classification and segmentation results are shown in
Figure 6,7,8.

Remote Sensing Original Image

Fig. 6. Original Lake Region Remote Sensing band 5 image
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round Troe Training infomalion

Fig. 7. Ground Truth Information

Fig. 8. Segmentation Result After Region Growing Based On univariate AR Model
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5. Multivariate AR Model and Error Covariance Matrix Estimation

The remote sensing image data widely used in military, geographic survey and scientific
research such as SAR (Synthetic Aperture Radar), TM (Thermal Mapper ) are in multi-
spectral format. As shown in figure 9, it consists of a stack of images. There are correlations
between pixels in a single image as well as correlations among image slices. The
Autoregressive (AR) model described in univariate time series model was based on Box-
Jenkins system (Box, 1970) which is not enough to describe information extracted from
multi-spectral satellite sensors. The innovative 2-D Multivariate Vector AR form (ARV) time
series model described in this section is aimed to solve the problem.

Fig. 9. Multi-spectral remote sensing image stack

In order to preserve most of the stacking remote sensing information for further

2-D image processing, there are methods such as Classification using Markov Random
Fields and PCA method (Chen, 2002), Independent Component Analysis (Chen, 2002), ...etc
which require data compression before using 2-D single image classification technique. Both
PCA and ICA methods are really time consuming. Lengthy computation time plus
undetermined components to select make them unfeasible. On the contrary, the
computation involved with the multivariate ARV method is the simplest matrix operations
which are faster (roughly 2 times faster in computations). Besides, the classification accuracy
results have shown that this new Multivariate Vector AR method is feasible and superior.
The Multivariate Time Series data analysis model is a generalized vector form of the Box-
Jenkins” univariate time series model. It is also called the ARMAV (AutoRegressive Moving
Average Vector) model. The fact is that each time series observation is a vector containing
multiple factors.

T .
Let X, =[x,;,X,;, X350, ] —0<i<w
X, =W+ X,  +$X, ,+...+9,X,  +¢& -0¢ -0 ,—..-0¢, 1)

X, : m-by-1 column vector, time series state variable
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&, . m-by-1 column vector, multivariate white noise
¢, k=123,...p m-by-mautoregressive parameter matrix
0,  k=123,...9 m-by-mmoving average parameter matrix

W : m-by-1 Constant Vector ( deterministic DC term )

AutoRegressive Vector (ARV) is reduced to:

X, =W+ X  +9,X ,+...+9,X, , +¢ )

i-p i

Example: m=2, p=2, W=0 of ARV model

X, ¢1,11 ¢1,12 Xy ¢2,11 ¢2,12 Xi o &y
= + + 3)
Vi D202 | Via Dy | Vica &
Estimation of the Multivariate AR model Parameter Matrix:
Optimization Method: Least Squares
Let’s assume the system is a m-dimensional time series
An AR(p) time series model can be expressed as the following regression model:
X, =BU, +¢, “)

where & = noise vector with covariance matrix C v =1,2,....n and n is the total number

of samples.
Therefore, C = E(¢,&!
The Parameter Matrix B = lW o D, .. ¢pJ
_1 — _XlT 7]
T
v-1 X2
Define [J = X, V= - ()
_Xv—p B X T

Let’s also define:
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T = Zn:UVUVT
v=I
X = Zn:XVXVT
S = Zn:Xva

v=l1

The least squares estimation of the B matrix can be found as
X =BU, +e,

XUI'=BUU! +¢U!

Zn:XVUVT = ZH:EUVUVT
v=1 v=1

~

S =BT
Therefore, the estimated parameter matrix is
B=sT"

The error covariance matrix is

L

(6)

(13)

(14)

Where 7 is the total number of samples and #f is the degree of freedom (Glantz,2002). In

normal cases, this parameter can be ignored.
We have

6,6 =X, X[ -BU X
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§el=x X! -ST'U X! - xUIT'S"+ST'UUT'S" (18)
gl =X X -sT">U X -> xulT'S"+sT"Y v UT'S" (19
v=1 v=1 v=1 v=1 v=1
£&r =Y Xx XI'-sT's" —-ST'S" +ST'TT'S” (20)
v=I v=1
£el =x-8sT7's" (21)
v=1
Therefore,
G-t (X -ST'ST) (22)
n—nf
The error covariance matrix C is similar to a Schur complement matrix
Let’s define the Schur complement matrix as
T S"| &|U
M= = or x7] (23)
S X =X,
which is the moment matrix
M=K"K (24)
where
uo X/
UT XT
K=| 7 2 (25)
U, X, |

The least squares estimate can be computed from a QR factorization of the data matrix K .
According to QR decomposition theorem (Anton, 2000), (Moler, 2004), (Cheney, 1999) and
(Chapra 2002), if K is n by (1+(p+1)*m) matrix with linearly independent column

vectors, then K can be factored as

K =OR
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where ( is an #Xn matrix with orthonormal column vectors, and Ris an
n by (1+(p+1)*m) upper triangular matrix.

R, R,
R=1 0 R, (27)
0 O
T
R = R Tl OT 0 (28)
R, R, 0

The submatrices R and R, are upper triangular square matrices of order p X m + l and

m , respectively. The submatrix R, has a dimension of p X m + by m.

According to matrix numerical analysis, the QR factorization of the data matrix K leads to
the Cholesky factorization

M=K'K=R"Q"OR=R"IR=R'R (29)

of the moment matrix.
Therefore,

T ST n U R'R R'R
M:{ j|:z|: v}[UZ’ X:]_RTR_[ 1T1 1 1T1 12 ) (30)
S X X RLR, RLR, +RyRy,

v=Il v

Therefore,

S=R)R, (31)

From equation (13) B = ST~ and equation (22) & __ ! (X -ST'S™)
n-n

we can then derive the estimated parameter matrix B and error covariance matrix C:

é = (R1_11R12 )T (33)

1

n—n

C (RLR,,) (34)
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where again 7 is the sample size and #f is the degree of freedom based on statistical
sampling theory.
The error covariance matrix C is further factorized by Cholesky decomposition. The

diagonal terms of this factorized Cholesky matrix are used as feature vector inputs for
Support Vector Machine (SVM).

C=E"E (35)

Where E is the upper triangular matrix.

Suppose E is an m-by-m upper triangular, lower triangular or diagonal matrix , the
eigenvalues of E are the entries on the main diagonal of E. The eigenvalues of E matrix
are the characteristics that £ contains. Based on theorem, the £ matrix contains the major
information on the estimated error covariance matrix (.

Note that the theory behind QR decomposition, Cholesky factorization and the Schur
Complement form will be detailed in section 5.2, section 5.3 and section 5.4 respectively.

5.1. Numerical Simulation
The following 2 simulated experimental examples will explain and verify the multivariate
ARV model algorithm described above.

Example 1:
From Equation (3)
|:X,- :| _ ¢1,11 ¢1,12 |:x,'_1 :| N ¢2,11 ¢2,12 |:X,~_2 :| N |:51,' :| (36)
Vi ¢1,21 ¢1,22 i ¢2,21 ¢2,22 Vi &y,
B, - |:¢1,11 ¢1,12 | _ (0.5 0-28} (37)
¢1,21 ¢1,2z ] _1 3 1

B, = %% ¢2,12_ [ 10.35 —0.4:| o
b bn| |03 -05
Let B = [Bl Bz]
0.5 028 035 -04
o 9)
1.3 1 -03 -05
1 05
€= (40)
05 1.5
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The 200 simulated 2 elements vector of Multivariate Time Series random process data set

V 00., Was generated by defining this 2nd order ARV parameter matrix:

10.8778 —2.1116]
2717  4.0011
1.8159  6.3244
1.5357  6.9345
1.2415 4.9586 | where ) was defined in (5) (41)
0.5507 2.3339

3.2515 12.5413
12.8186  10.1881

After multivariate ARV time series model estimation process, we get the estimated:

- 0.5985 0.2055 0.3347 —-0.3394 @)
11.4657 1.0258 —0.5929 —0.4753
~ | 1.1896 0.6626
- (43)
0.6626 1.7277

We can see that both the estimated parameter matrix and error covariance matrix by the
above least squares algorithm is accurate by measuring a small percentage of matrix norm
of matrices difference:

B~B C~C
Example 2:
05 13 035 -03
= (44)
028 1 -04 -0.5
1 0.5
- (45)
05 1.5
Estimation result:
_ (46)

~ 1035437 1.3809 0.4864 —-0.27223
0.25398 1.0096 -0.36946 -0.47929
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The estimated parameter matrix is also accurate in this 2nd example.

5.2 QR Algorithm
To find the eigenvalue decomposition is to find a diagonal matrix A and a nonsingular
matrix S such that

A=SAS™ (47)

Two problems might occur. First is that the decomposition may not exist. Secondly, even if
the decomposition exists, it might not be robust enough. The way to solve the problems is to
get as close to diagonal as possible. Ideally we would like to find the Jordan canonical form
of the matrix, however, this is not practical to do in finite precision arithmetic. Instead we
compute the Schur decomposition of the matrix 4 =7BT", where Bis the upper triangular
and T'is unitary. Every square matrix has a Schur decomposition which can be computed
using an iterative algorithm. The algorithm is called the QR algorithm since it performs a
QR factorization in each iteration. The eigenvalues of 4 are on the diagonal of its Schur
form of B. Since the unitary transformations are perfectly well conditioned, they do not
magnify errors. The diagonal elements of B are the eigenvalues of 4 if 4 is symmetric and
B is diagonal. In this case, the column vectors of T are orthonormal eigenvectors of 4. In
general, the large off-diagonal elements of B measure the lack of symmetry in 4. In the
non-symmetric case, the eigenvectors of 4 are the column vectors of G =T7X , where X is a
matrix contains the eigenvectors of the upper triangular matrix B. The QR algorithm
computes the eigenvalues of real symmetric matrices, real nonsymmetric matrices and
complex matrices. The singular values of general matrices are computed using the Golub-
Reinsch algorithm which is based on the QR algorithm.

5.3 Cholesky Factorization

In mathematics, the Cholesky factorization (or decomposition) (Kreyszig, 1999) is named
after Andre-Louis Cholesky, who found that a symmetric positive-definite matrix can be
decomposed into a lower triangular matrix and the transpose of the lower triangular matrix.
The lower triangular matrix is the Cholesky triangle of the original, positive-definite matrix.
Cholesky's result has since been extended to matrices with complex entries.

Any square matrix A with non-zero pivots can be written as the product of a lower
triangular matrix L and an upper triangular matrix U; this is called the LU decomposition.
However, if A is symmetric and positive definite, we can choose the factors such that U is
the transpose of L, and this is called the Cholesky decomposition. Both the LU and the
Cholesky decomposition are used to solve systems of linear equations. When it is applicable,
the Cholesky decomposition is twice as efficient as the LU decomposition.

5.4 The Schur Complement Form

Let’s understand what is Schur complement form. It is a block of a matrix within the larger
matrix which is defined as follows. Suppose A, B, C, D are respectively pxp, pXq, g%p and g%q
matrices, and D is invertible. Let
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M:[A B} (48)
C D

so that M is a (p+q)*(p+q) matrix.

6. Support Vector Machine classifier

Support Vector Machine (SVM), a new class of machine learning with superior classification
capability over other learning algorithms . It can be analyzed theoretically using concepts
from statistical learning theory (Vapnik, 1998) and at the same time to achieve good
performance when applied to real problems. We have implemented software on top of
SVM-KM matlab toolbox developed by Dr. A. Rakotomamonjy of INSA, France for remote
sensing image classification and region segmentations. The results on both Multivariate AR
model (ARV) and non-AR pixel-by-pixel based methods are reasonably good. Of course, the
ARV’s additional contextual information gives a better performance. The main idea of this
classification is to construct a hyperplane as a decision surface in a way that the margin of
separation between positive and negative classes is maximized. The support vector machine
can provide a good generalization performance on pattern classification problems. The SVM
constructs models that are complex , it contains a large class of neural networks, radial basis
function and polynomial classifiers as the special cases. Nevertheless, it is also simple
enough to be analyzed mathematically due to the fact that it can be shown to correspond to
a linear method in a high dimensional feature space nonlinearly related to input space. By
use of kernels, all needed computations are performed directly in the input space. There are
different cases of SVM, the first case is the linear separable data to be trained on linear
machine. The 2nd case is the nonlinear SVM trained on non-separable data, this will result in
a quadratic programming problem. The SVM can work with high dimensional data as the
method is less dependent on the statistical distribution of the data. The SVM avoids the
“Curse of Dimensionality” problems typically experienced in statistical pattern
classifications (Chen, 1999).

SVM were specifically designed for binary classification. The multiclass applications on
SVM is still an on-going popular research topics. A few straight forward methods have been
proposed in such a way that multiclass classifier can be constructed by combining several
binary classifiers. Some other researchers are proposing to create multi-classifiers that
process multi-class data at once but it is most likely less accurate. The multi-class remote
sensing SVM classifier we developed that describes in this chapter is based on One-Again-
One pairwise with majority votes.

Support Vector Machine Concepts
The SVM in most cases is competitive among the existing classification methods. It is

. T
relatively easy to use. We assume the data vectors X =[X,,X,, ...... x, ]

X; j=1...n where 7 is the number of features in the feature space

Let’s also consider simple case of two classes data set :
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Define classification output indicator vector ¥ = [, V,,...c..... >V ]T

1 1f x; inclassl

i = —1 1if x, inclass 2

A hyperplane W' X+b =0 is to be found to separate all data.

Where w is an weight vector and b is a bias from the origin.

A separable hyperplane is shown in figure 10.

X
Fig. 10. Optimal hyperplane separator (in the case of 2 dimension feature space)
To illustrate the concept of SVM kernel mapping, we show in figure 11 how to map the
input space to a feature space such that the non-separable input space can be separable in

the feature space. This is done by nonlinear mapping to higher dimension and constructing
a separating hyperplane with a maximum margin.
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Fig. 11. Map training data nonlinearly into a higher dimensional feature space

Feature space kernel mapping example:

Figure 11 shows the basic idea of SVM which maps data into dot product space (feature
space) F by a nonlinear mapping:

O:RY > F (49)
The dot product is

k(x,y) = (@(x) - D(y)) (50)

If Fisinhigh dimension, the right hand side of equation will be expensive to compute.

7. Experimental Results

The UK village remote sensing data set were used and the Multivariate Time Series SVM
performance is compared with other existing classification techniques. This image data set
was kindly offered by Italian Remote Sensing Research group (Serpico 1995, Bruzzone 1999).
It consists of a set of 250x350 pixel images acquired by two imaging sensors installed on a
1268 Airborne Thematic Mapper (ATM) scanner and a PLC band, full polarimetric NASA
JPL SAR sensor. For performance comparison, Table 2 shows the experimenting results of
the classification accuracies by several remote sensing popular classifiers (Ho, 2008):

Method 1: Structured Neural Networks (TLN) by University of Genoa, Italy (Serpico 1995)
Method 2: K-mean + PCA (Ho, 2008)

Method 3: K-mean + ICA (Ho, 2008)

Method 4: K-mean + (PCA+MRF) (Ho, 2008)

Method 5: FCM + (PCA+MRF) (Ho, 2008)

Method 6: Multivariate ARV Support Vector Machine (Ho, 2008)
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Method 1: Structured Neural Networks (TLN) method:

This method uses the architecture of structured multilayer feedforward networks. The
networks are trained to solve the problem by the error backpropagation algorithm. They are
transformed into equivalent networks to obtain a simplified representation. It is considered
to be a hierarchical committee that accomplishes the classification task by checking on a set
of explicit constraints on input data.

Method 2: K-mean + PCA:

Principal Component Analysis (PCA) is a technique to reduce multidimensional data to a
lower dimension for analysis. By constructing the transformation matrix which consists of
eigenvectors and ordering the eigenvalues, the statistically uncorrelated components can be
extracted. It is an unsupervised approach that finds the best features from data. K-means
clustering is a form of stochastic hill climbing in the log-likelihood function. The contours in
the feature space represents equal log-likelihood values. It iteratively calculates the mean
vectors in the selected classes. As more data are inputted, it dynamically adjusts until there
is no change on mean vectors.

Method 3: K-mean + ICA:

Independent Component Analysis (ICA) is a computational method to separate a
multivariate signal into additive subcomponents which are statistically independent and at
least one of which is a non-Gaussian source signal. Method 3 is the same as Method 2
except that PCA is replaced by ICA.

Method 4: K-mean + (PCA+MREF):

Markov Random Field (MRF) theory provides a basis for modeling contextual constraints in
image processing. It is a model of the joint distribution of a set of random variables. The
estimated pixels based on MRF model form a new image. PCA is applied to each pixel
vector of the new image stack. This is followed by K-mean operation.

Method 5: FCM + (PCA+MREF):

Fuzzy-C-Mean (FCM) is an iterative clustering method. In every iteration of the classical K-
Means procedure, each data point is assumed to belong to exactly one cluster. But in FCM,
we relax this condition and assume that each sample has some graded or fuzzy membership
in a cluster. Method 5 is the same as Method 4 except that K-mean is replaced by FCM
operation.

Method 6: Multivariate ARV Support Vector Machine

This method was newly developed as described in the sections earlier.

Figure 12,13,14,15 show the results of region segmentation by this novel multivariate Time
Series model based SVM classification method as described in this chapter.

Figure 12. is the original th-c-hh (one example of 15 remote sensing input data). Figure 13. is
the Multivariate AR - SVM without smooth post-processing result. Figure 14. is the
Multivariate AR - SVM with post-processing result and Figure 15. is the Multivariate AR -
SVM with post-processing and tone re-scaling result.

Method 1 | Method 2 | Method 3 Method 4 | Method 5 | Method 6
Accuracy | 86.49% 64.93% 65.79% 72.46% 75.27% 87.11%

Table 2. Classification performance comparison
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The followings are the color bar and crop identifications in UK village remote sensing image
data set:

— Class 1: Sugar Beets
— Class 2: Stubble
— Class 3: Bare Soil
E— Class 4: Potatoe
— Class 5: Carrots

Figure 12. Original th-c-hh (one example of 15 remote sensing input data)

Figure 13. Multivariate AR - SVM without smooth post-processing result

Figure 14. Multivariate AR - SVM with post-processing result

Figure 15. Multivariate AR - SVM with post-processing and tone re-scaling result

8. Conclusion

This chapter has focused on contexture information in order to improve remote sensing
pixel classification accuracy. The study of time series is primarily concerned with time or
spatial correlation structure. The time series model has its world wide applications in the
area of finance and oceanography but not much in remote sensing image processing. We
took the big challenge to develop this new idea for remote sensing information processing.
As we mentioned earlier, the time series models were started from univariate system to
move gradually toward complicated multivariate matrix structures in order to solve the
multiple image pixel stack problems. The system optimization and image pixel estimation
solutions were changed from simple derivative, linear system to complex matrix
decompositions by numerical analysis. It does open up a new era away from traditional
approaches as far as remote sensing image processing is concerned. Numerical methods are
the arithmetic operations to solve the mathematically formulated problems. Although they
are involved with large numbers of tedious calculations, the most recent fast and efficient
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digital computer can solve them quickly. The role of numerical analysis in solving the
engineering problem has increased dramatically. They are capable of handling large systems
of equations, nonlinearities and geometries that are often impossible to solve analytically.
The remote sensing data mining is huge. The system is initially gained by empirical means
through observations and experiments. As new measurements are taken, the generalizations
might be modified or newly developed. On the other hand, generalizations can have a
strong influence on the observations. Hopefully the conclusions can be drawn eventually.
From an electrical and computer engineering problem solving perspective, a system’s
mathematical model has to be usefully expressed. We are hoping that system mathematical
modeling and the powerful numerical methods that take full advantage of fast computing
tools can resolve most of the remote sensing issues. Take one example in this chapter: the
Multivariate Time Series model with system parameter matrix estimation and error
covariance matrix (solved by Cholesky decomposition and the stable QR algorithm) might
be able to capture remote sensing research attentions for their complex unsolvable image
stacking problems. Though originality of this method exists, the algorithm stability does
require years of testing by researchers and interested parties. The novel Estimation of
Parameters Matrix of Multivariate Time Series techniques we developed in this chapter can
be useful not only for image classification but also good for other research areas such as
accurate stock market predictions, video prediction for wireless multimedia applications,
adaptive frame prediction for scalable video coding ...etc. The reasons are that multivariate
time series can handle multiple data factors at every single time stamp. It can also expand
the traditional Digital Signal Processing capability which is mostly in univariate time
sequences. Advanced methods for automatic analysis of multisensor and multitemporal
remote sensing images is still on-going in the years to come. Image processing and pattern
recognition researches have been going on for over half century since the digital computer
was invented. Many excellent and useful tools such as Maple, Matlab, IDS, Labview ...etc
have been created accordingly. Millions of image processing algorithms and great research
results were also published. Remote sensing, image processing and pattern recognition
related community have generated many journal papers and held developer conferences
each year around the world to exchange ideas. Still, none of the “final” universal optimal
algorithm has been done successfully yet. Take an example of the remote sensing texture
classifications, it is difficult to obtain a good texture representation and to have the true
adaptive function for segmentation for all kinds of remote sensing data.

9. Future Work

Though the multivariate ARV model was developed, to select the optimal order of an ARV
model is one of complicated problem to solve. The error covariance matrix C has to be
computed and the order selection criterion such as famous Akaike’s Final Prediction Error
(FPE) (Akaike, 1971) criterion, Schwarz’s Bayesian Criterion (SBC) (Schwarz, 1978) and
Lutkepohl’s improved order criterion (Lutkepohl, 1985) has to be determined in order to
decide the optimal ARV system order. As far as today’s most decent and generalized data
classification method -Support Vector Machine, there are still many holes to be filled and
explored. To mention a few, improving system model formulation for extracting more
useful feature vectors for SVM , new kernel functions developments for better SVM
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classification performance, convex and non-convex optimization theory, intelligent numeric
computational methods ...etc are the open research area for the near future.
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