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1. Introduction

MPEG-4 is a new international standard for multimedia communication [1]. It provides a set
of tools for object-based coding of natural and synthetic videos/audios. MPEG-4 also enables
content-based functionalities by introducing the concept of video object plane (VOP), and
such a content-based representation is a key to enable interactivity with objects for a variety
of multimedia applications. The VOP is composed of texture components (YUV) and an
alpha component [2]-0. The texture component contains the colorific information of video
object, and the alpha component contains the information to identify the pixels. The pixels
which are inside an object are opaque and the pixels which are outside the object are
transparent. MPEG-4 supports a content-based representation by allowing the coding of the
alpha component along with the object texture and motion information. Therefore, MPEG-4
shape coding becomes the key technology for supporting the content-based video coding.
MPEG-4 shape coding mainly comprises the following coding algorithms: binary-shaped
motion estimation/motion compensation (BME/BMC), context-based arithmetic coding
(CAE), size conversion, mode decision, and so on. As full search (FS) algorithm is adopted
for MPEG-4 shape coding, most of the computational complexity is due to binary motion
estimation (BME). From the profiling on shape coding in Fig. 1, it can be seen that BME
contributes to 90% of total computational complexity of MPEG-4 shape encoder. It is well
known that an effective and popular technique to reduce the temporal redundancy of BME,
called block-matching motion estimation, has been widely adopted in various video coding
standard, such as MPEG-2 0, H.263 [5] and MPEG-4 shape coding [1]. In block-matching
motion estimation, the most accurate strategy is the full search algorithm which exhaustively
evaluates all possible candidate motion vectors over a predetermined neighborhood search
window to find the global minimum block distortion position.
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Fig. 1. Computational complexity of MPEG-4 shape encoder.

Fast BME algorithms for MPEG-4 shape coding were presented in several previous papers
[6]-[8]. Among these techniques, our previous work, contour-based binary motion
estimation (CBBME), largely reduced the computational complexity of shape coding [9]. It is
applied with the properties of boundary search for block-matching motion estimation, and
the diamond search pattern for further improvement. This algorithm can largely reduce the
number of search points to 0.6% compared with that of full search method, which is
described in MPEG-4 verification model (VM) [2].

In contrast with algorithm-level developments, architecture-level designs for shape coding
are relatively less. Generally, a completed shape coding method should include different
types of algorithms. In CAE part, it needs some bit-level operation. However, in binary
motion estimation part, a high speed search method is needed. With these algorithm
combinations on the shape coding, implementation should not be as straightforward as
expected and it offers some challenges especially on architecture design. Since MPEG-4
shape coding has features of high-computing and high-data-traffic properties, it is suitable
with the consideration of efficient VLSI architecture design. Most literatures have also been
presented to focus on the main computation-expensive part, BME, to improve its
performance [10]. Additionally, CAE is also an important part for architecture design and
discussed in [11]-[12]. They utilized the multi-symbol technique to accelerate the arithmetic
coding performance. As regards the complete MPEG-4 shape coding, some of these designs
utilized array processor to perform the shaping coding algorithm [13]-[15], while others
used pipelined architecture [16]. They can reach the relative high performance at the
expense of these high cost and high complexity architectures. All of them intuitively apply
the full search algorithm for easy realization on architecture design. However, the
algorithm-level achievement on the large reduction of computation complexity is attractive
and not negligible. This demonstrates that, without the supporting on an efficient algorithm,
the straightforward implementation based on full search algorithm is hard to reach a
cost-effective design.

In this paper, we proposed a fast BME algorithm, diamond boundary search (DBS), for
MPEG-4 shape coding to reduce the number of search points. By using the properties of
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block-matching motion estimation in shape coding and diamond search pattern, we can skip
a large number of search points in BME. Simulation results show that the proposed
algorithm can marvelously reduce the number of search points to 0.6% compared with that
of full search method, which is described in MPEG-4 verification model (VM)[2]. Compared
with other fast BME in [6]-[7], the proposed BME algorithm uses less search points
especially in high motion video sequences, such as ‘Bream” and ‘Forman’. We also present
an efficient architecture design for MPEG-4 shape coding. This architecture is elaborated
based on our fast shape coding algorithm with the binary motion estimation. Since this
block-matching motion estimation can achieve the high performance based on the
information of boundary mask, the dedicated architecture needs some optimization and
consideration to reduce the memory access and processing cycles. Experimental results also
demonstrate the equal performance on full-search based approach. This paper contributes a
comprehensive exploration of the cost-effective architecture design of shaping coding, and
is organized as follows.

In Section 2 the binary motion estimation in shape coding is described. We describe the
highlights of the proposed fast BME algorithm for MPEG-4 shape coding in Section 3. The
design exploration on CBBME is described in Section 4. In Section 5, the architecture design
based on this BME algorithm is proposed. In Section 6, we present the implementation
results and give some comparisons. Finally we summarize the conclusions in Section 7.

2. BME for MPEG-4 Shape Coding

The MPEG-4 VM [2] describes the coding method for binary shape information. It uses
block-matching motion estimation to find the minimum block distortion position and sets
the position to be motion vector for shape (MVS). The procedure of BME consists of two
steps: first to determine motion vector predictor for shape (MVPS) and then to compute
MVS accordingly.

MVPS is taken from a list of candidate motion vectors. As indicated in Fig. 2, the list of
candidate motion vectors includes the shape motion vectors (MVS) from the three binary
alpha blocks (BABs) which are adjacent to the current BAB and the texture motion vectors
(MV) associated with the three adjacent texture blocks. By scanning the locations of MVS1,
MVS2, MVS3, MV1, MV2 and MV3 in this order, MVPS is determined by taking the first
encountered MV which is valid. Note that if the procedure fails to find a defined motion
vector, the MVPS is set to (0, 0).

Based on MVPS determined above, the motion compensated (MC) error is computed by
comparing the BAB indicated by the MVPS and current BAB. If the computed MC error is
less or equal to 16xAlphaTH for any 4x4 sub-blocks, the MVPS is directly employed as MVS
and the procedure terminates. Otherwise, MV is searched around the MVPS while
computing sum of absolute difference (SAD) by comparing the BAB indicated by the MV
and current BAB. The search range is 16 pixels around MVPS along both horizontal and
vertical directions. The MV that minimizes the SAD is taken as MVS and this is further
interpreted as MV Difference for shape (MVDS), i.e. MVDS=MVS-MVPS.
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Fig. 2. Candidates for MVPS in shape VOP and texture VOP.

If more than one MVS minimize SAD by an identical value, the MVDS that minimizes the
code length of MVDS is selected. If more than one MVS minimize SAD by an identical value
with an identical code length of MVDS, MVDS with smaller vertical element is selected. If
the vertical elements are also the same, MVDS with smaller horizontal element is selected.
After binary motion estimation, motion compensated block is constructed from the 16x16
BAB with a border of width 1 around the 16x16 BAB (bordered MC BAB). Then,
context-based arithmetic encoding (CAE) is adopted for shape coding.

3. Proposed Contour-Based Binary Motion Estimation (CBBME) Method

The basic concept of the proposed BME method is that the contour of video objects in
current BAB should overlap that in the motion compensated BAB, which is determined by
binary motion estimation [9]. Therefore, those search positions, which contour lays apart
from the contour of video objects in current BAB, can be skipped and the reduced number
will be enormous. Moreover, based on the property that most real-world sequences have a
central biased motion vector distribution [23], we use weighted SAD and diamond search
pattern for furthermost improvement.

3.1 Definition of Boundary Pixel

In order to decide whether the pixel is on the contour of VOP, the boundary pixel is
determined by the following procedure:

o If current pixel is opaque and one of its four adjacent pixels is transparent, the
current pixel directly employed as boundary pixel.

Fig. 3 shows the correlation between current pixel and its four adjacent pixels. In the figure,
the light grey area corresponds to the pixels outside the binary alpha map. It can be seen
that the pixels outside the binary alpha map will not be taken into consideration, and the
number of adjacent pixels will change into two or three.
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Fig. 3. The correlation between current pixel and adjacent pixel. Where gray part denotes
pixels outside the VOP.

3.2 Boundary Search (BS)

According to the boundary pixels in VOP, we build a mask for BME process in MPEG-4
shape coding. Fig. 4 shows an example of boundary mask from the ‘Foreman’ sequence. In
this figure, the white area denotes the efficient search position for fast BME, and it is much
more efficient than the fast algorithm 0 illustrated in Fig. 5.

Fig. 4. Example of a boundary ask for shape coding. ite area denotes boundary pixel.

A suggested implementation of the proposed Boundary search (BS) algorithm for shape
coding is processed as follows:

Step 1. Perform a pixel loop over the entire reference VOP. If pixel (x,y) is an boundary
pixel, set the mask at (x,y) to “1". Otherwise set the mask at (x,y) to ‘0.
Step 2. Perform a pixel loop over the entire current BAB. If pixel (i,j) is a boundary

pixel, set (i,j) to be “reference point”, and terminate the pixel loop. This step is
illustrated in Fig. 6(b). Therefore, there is only one reference point in current
BAB.

Step 3. For each search point within +16 search range, check the pixel (x+i, y+j) which
is fully aligned with the “reference point” from the current BAB. If the mask
value at (x+i, y+j) is ‘1", which means that the reference point is on the
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boundary of reference VOP, the procedure will compute SAD of the search
point (x, y). Otherwise, SAD of the search point (x, y) will not be computed, and
the processing continues at the next position. Fig. 6(a) shows an example of this
step. The search points in (x1, y1) and (x2, y2) will be skipped by this procedure,
while the SAD will be computed in (x3, y3).

Step 4. When all the search points within +16 search range is done, the MV that
minimizes the SAD will be taken as MVS. Fig. 7 illustrates the overall scheme of
proposed BS algorithm for MPEG-4 shape coding.

In the worst case, the proposed BS algorithm needs (256+ (16+1)?) determinations to check
whether the pixel is a boundary pixel. For each non-skipped search point, the SAD obtained
by 256 exclusive-OR operations and 255 addition operations was taken as the distortion
measure. However, based on BS algorithm, the number of non-skipped search points was
reduced significantly, and the additional computational load due to BS algorithm was
negligible.

Fig. 5. Example of an effective search area, which has been proposed in reference 0.
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Fig. 6. The illustration of the proposed BS algorithm.
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Fig. 7. Flow chart for proposed BS algorithm.

3.3 Diamond Boundary Search (DBS)

A better solution for block-matching motion estimation is to perform the search using a
diamond pattern because of center-biased motion vector distribution characteristic. This is
achieved by dividing the search area into diamond shaped zones and using half-stop
criterion [17]. Fig. 8 shows an example of diamond shaped zones in a +5 search window,
and each number denotes the search zone in the search procedure.
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Fig. 8. A £5 search window using diamond-shaped zones.

We combine the proposed BS algorithm with diamond-shaped zones, called DBS, and give
different thresholds (Thn) for each search zone for furthermost improvement. The procedure
is explained in below.

Step 1. Construct diamond-shaped zones around MVPS within +16 search window. Se
tn=1.

Step 2. Calculate SAD for each search point in zone n. Let MinSAD be the smallest SAD
up to now.

Step 3. If MinSAD =Thy, goto Step 4. Otherwise, set n=n+1 and goto Step 2.

Step 4. The motion vector is chosen according to the block corresponding to MinSAD.

3.4 Weight SAD (WSAD)

In MPEG-4 shape coding, the reference BAB with minimum SAD will be selected as motion
compensated BAB. However, the BAB with minimum SAD may be far away from the
original. It means that encoder should waste much more bits to code MVDS. Some previous
motion estimation algorithms for color space used the concept of the weighted SAD
(WSAD) to compensate the distortion [24]. In this paper, we proposed the similar concept of
WSAD which takes both SAD and MVDS into consideration as the distortion measure. The
WSAD is given by

WSAD=W*SAD+W,*(| mvds_x |+ |mvds_y | ) (1)
SAD=% ¥ | pia(itu,j+v)-pi(ij) | (2)

where muvds_x is MVDS in the horizontal direction and muvds_y is MVDS in the vertical
direction. W1 and W2 denote the weighting values for SAD and MVDS, respectively. The
WSAD is evaluated in every search points and the BAB with minimum WSAD is selected as
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motion compensated BAB. Based on the experimentation, W1 and W2 are determined as 10
and 7, respectively. The improvement of WSAD on bit-rate can compensate for the
drawback when fast BME algorithm was adopted. Since the number of search points has
been reduced significantly, the computational power due to calculate the WSAD will
increase negligibly.

4. Design Exploration on CBBME

In this section, two approaches are developed based on CBBME. One is the center-biased
motion vector distribution. The other is the search range shrinking. Both of them can further
reduce the computation complexity in BME.

4.1 Center-biased motion vector distribution

The property is obvious that real-world sequences have a central biased motion vector
distribution. This can be achieved by dividing the search area into diamond shaped zones
and using half-stop criterion [17]. Diamond shaped zone has the higher center-biased
distribution. The closer the search area to the center position, the less the number of the
search zone in the search procedure.

4.2 Search Range Shrinking

With the property on Section 4.1, it is possible to reduce the default search range to a less size
of search range. Default search range is +16 in standard and it is straightforward used in
conventional works. With the aid of WSAD in CBBME and the diamond shaped zones on
search range, we make a search range shrinking technique from +16 to +13 pixels in our
experimentation. Table 1 shows the simulation result of the proposed binary motion estimator
using the above two techniques. This result supports the usage of the +13 shrinking search
range. An important contribution is that the WSAD makes some improvement on bit-rate.
Therefore it takes similar even less bits to represent the shape per VOP in the same quality.

Sequence Full Search (SR=+16) Proposed Architecture with limited
SSB (SR=+13)
Bits/ VOP % Bits/ VOP %
Bream 1599.80 100 1599.27 99.97
News 890.22 100 890.18 100.00
Foreman 1186.94 100 1183.12 99.68
Children 2056.03 100 2055.43 99.97

Table 1. Performance comparison of FS and proposed architecture.

Fig. 9 shows the algorithm flow of CBBME. First, we construct diamond-shaped zones around
motion vector predictor for shape (MVPS) within shrinking search range. Second, we calculate
WSAD for each search point. Let MinWSAD be the smallest SAD up to now. If MinWSAD is
smaller or equal to a threshold (Th) for each search zone, then the motion vector is chosen
according to the block corresponding to MinWSAD; otherwise, it changes to next position and
calculates the WSAD again.
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Fig. 9. Flow chart for the CBBME algorithm.

5. Architecture Design for MPEG-4 Shape Coding

The proposed MPEG-4 shape coding system, as illustrated in Fig. 10 consists of five major
modules: BAB type decision, size conversion, BME, CAE and variable length coding (VLC).
Based on the computational complexity analysis in Fig. 1, it can be seen that BME, size
conversion and CAE take a great part of the processing time. In this section we propose an
efficient architecture for these main modules with some design optimization and
consideration.

BAB (binary aplpha block)
BAB Type ) Size ) ‘ > Intra/Inter
Decision Conversion BME CAE —>
A bitsstream
MVDs ——)
CR >

BAB type : VIC = — — »
data
control

AG »> Frame ¢

bitstream = =— Memory

Fig. 10. Block diagram of MPEG-4 shape encoding.
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5.1 Binary Motion Estimation

Fast motion estimation architectures were presented in several previous papers [12]-[15].
The performance could be high but high cost and high complexity architectures are always
needed. Therefore, a novel and efficient architecture for binary motion estimation using
proposed CBBME algorithm is proposed. Fig. 11 shows the block diagram of the proposed
BME architecture. It mainly consists of a Boundary Pixel Detector, a processing element (PE)
Array, a Compare and Selection (CAS) module and two main memories for search range (SR)
and BAB buffer. Boundary Pixel Detector finds the “reference point” in current BAB and
checks whether the candidate search positions are non-skipped positions. PE Array performs
the binary motion estimation. CAS finds the minimum WSAD and its MVDS for shape
coding.

BAB ol SR
Buffer Shift Buffer

v iy

Boundary VDS
el > B Ll cas P
Array

Detector

Fig. 11. Block diagram of the proposed BME architecture.

A. Boundary Pixel Detector

Boundary Pixel Detector is a design dedicated to our CCBME algorithm. From the analysis
in Section 4, since the search range has been reduced to 13, the search points with one
dimension is 13+13+1=27 and induce a detected region with 27x27 search points. Including
the BAB size of 16x16, totally 42x42 pixels are used as the total search area.

According to the effect on 27x27 search points, a multiple of 3 is considered on architecture
design. In our binary motion estimator, a 3x3 PE array is used. Therefore, we separate the
search positions into a 9x9 sub-search-block (SSB) array structure, and each SSB contains 3x3
search positions for the calculation of PE array. Fig.12 illustrates the detected region and its
related array structure with totally 9x9= 81 SSBs.
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Fig. 12. The 27x27 detected region composes of 9x9=81 SSBs; each SSB contains 9 checking
pixel.

In each SSB, 9 checking pixels are included. In addition, in order to detect boundary pixels
and obtain the bordered MC-BAB, a border with the width of one pixel around the 42x42
search area, called bordered search area, is applied. As depicted in Fig. 13, the pixels in the
grey area are the border pixels. This range indicates the total needed pixels in memory.
Boundary Pixel Detector first selects a boundary pixel (i,j) as “reference point” in 16x16
current BAB. Based on the reference point, a 27%27 detected region is generated as shown in
Fig. 14. Each pixel in detected region, called checking pixel, denotes whether the correlative
search position is non-skipped search position or not. If the checking pixel belongs to a
boundary pixel, the correlative search position is denoted as non-skipped search position.
Hereafter, Boundary Pixel Detector detects 9 checking pixels, which are relative to the coding
SSB in detected region. As shown in Fig. 14, the pixels in the dark area are used for detecting
boundary pixel. If all of the checking pixels in light grey area are not boundary pixels, it
means that all search positions in the SSB are skipped search positions. Therefore, the coding
SSB will not be processed in PE Array. Otherwise, the PE Array calculates WSAD of these 9
search positions in coding SSB.
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Fig. 13. (a) 44x44 bordered search area, (b) 16x16 current BAB.
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Fig. 14. The relation between search positions and detected region.

B. PE Array and CAS

PE array architecture which performs the binary motion estimation algorithm is shown in
Fig. 15(a). The array is the 3x3 architecture and totally consists of 9 PEs. In this architecture,
18-bits reference data (denoted as Ref[17:0]) are read from SR buffer, and 16-bits current data
are read from BAB buffer. The reference data are broadcasted to all PEs (Ref[17:2] for PE1,
PE4 and PE7; Ref[16:1] for PE2, PE5 and PES; Ref[15:0] for PE3, PE6 and PE9 respectively),
while the current data is delayed and fed to the corresponding PE. Each PE calculates the
WSAD of a search position in coding SSB. It is noted that only the non-skipped SSB, which is
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detected from Boundary Pixel Detector, is processed in PE Array.
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Fig. 15. Architecture of (a) PE Array (b) PE element (c) CAS unit.
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The weighted data is calculated by adding absolute MVDS in both horizontal and vertical
directions and shifting right one bit. From the analysis in our previous paper [9], the ratio for
V2/V1 will not make large difference from 0.5 to 0.8. And in that range our WSAD is indeed
better than the result for SAD. For reducing the computational complexity, V1 and V2 in (1)
are determined as 1 and 0.5, respectively. The architecture of PE element is shown in Fig.
15(b). It produces WSAD with the sum of weighted data and SAD, where Wn means the
WSAD value for each PE element from n=1 to 9.

The architecture of Compare and Selection (CAS) module is shown in Fig. 15(c). It finds the
smallest WSAD and its MVS in coding SSB and feedbacks the smallest WSAD as the input for
the next SSB.

5.2 Size Conversion
In MPEG-4 shape coding, rate control and rate reduction are realized through size
conversion. Fig. 16 shows the block diagram of size conversion module.

BAB Down Up ACQ
Buffer Sample Sample Detector

v 4
v

Buffer 0 Buffer: 1

Fig. 16. Block diagram of size conversion module.

It consists of three major units: down-sample, up-sample and accepted quality (ACQ)
detector. The bordered BAB is read from BAB buffer and down-sampled to 4x4 and 8x8 BAB
in “SC Buffer_0” and “SC Buffer_1” respectively. Then, the 4x4 BAB is up-sampled to SC
Buffer_1, and 8x8 BAB is up-sampled to ACQ detector by up-sample unit. ACQ detector
calculates the conversion error between the original BAB and the BAB which is
down-sampled and reconstructed by up-sample unit. ACQ also needs to determine the
conversion ratio. In down-sample procedure, several pixels are down-sampled to one pixel,
while interpolated pixels are produced between original pixels in up-sample procedure. To
compute the value of the interpolated pixel, a border with the width of two around the
current BAB is used to obtain the neighboring pixels (A~L), and the unknown pixels are
extended from the outermost pixels inside the BAB. The template and pixel relationship
used for up-sampling operation can be referred as in MPEG-4 standard and [15].

Since the implementation of the down-sample and ACQ detector is relatively simple, we
only address the design of up-sample unit here. The block diagram of up-sample unit is
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shown in Fig. 17. Due to the window-like slicing operations, the up-sample can be easily
mapped into a delay line model. A delay line model is used to obtain the pixels in A~L,
which determine interpolated pixels (P1~P4). Based on the pixels in A~L, four 4-bits
threshold values are obtained from “Table CF”. “UP_PE” generates corresponding values
for comparison. After comparison between threshold values and the values from “UP_PE”,
four interpolated pixels (P1~P4) are stored in “Shift Register” and outputted later.

top-border
I L
(Afz) > Up-sampled
Originzl Uy data
PE | ) —»
data Delay Co e » Shift »
Line Table Tpar 4 | Register
3%k 7 (1P A
(E~D
left-border
" Decoder

Fig. 17. Block diagram of up-sample unit.

5.3 Context Based Arithmetic Encoder (CAE)
CAE architecture mainly comprises the context generation unit and the binary arithmetic
coder [18]-[19]. Fig. 18(a) shows the block diagram of CAE module for our design.

MC Current
BAB BAB
¢ ¢ "ol Template for intra CAE
Shift
Register B Template for inter CAE
CcX
20 bit
[ e < T
pO yhit
SSI?’I?)eOI < (ol ol of of ] -~ MIntaBAB

vL v Colol W[ ]~ (1T (g TmapaB
Bit | {¥ Re-
rtow [ €] Nomlise ] - ] ]
L |R
R | (T T e

(@ (b)
Fig. 18. (a) Block diagram of CAE module. (b). [llustration of the Shift Register.

l bitstream

As mentioned before, for pixel-by-pixel processing in CAE, it basically uses the raster scan
order. Since most of the execution time is spent on the context generation in the CAE, the
“Shift Register” is used to obtain context and the related operation is illustrated in Fig. 18(b)
[20]. Data in the shift registers can be effectively reused and thus this redundant data
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accesses can be removed. In Fig. 18(b) all the rectangles are represented as registers. Pixels in
current BAB and MC-BAB are first loaded into the Shift Register, and then shifted left one
bit at every clock cycle. Registers in context box are arranged such that various contexts can
be achieved. For intra-CAE mode, the first three rows of Shift Register are used to store
current BAB. The first two rows of Shift Register are used to store current BAB and the last
three rows are used to store MC-BAB in inter-CAE mode. Therefore, the context (cx) and
coded bit (bit) are obtained from Shift Register per cycle.

6. Implementation Results and Comparisons

We use three MPEG-4 test video sequences of CIF (352x288) format for experiment: Bream,
News and Foreman. The three sequences characterize a variety of spatial and motion
activities. Each sequence consists of 300 VOP’s of arbitrary shape. A search range of +16
pixels is used and frame-based lossless shape coding is performed for all the test sequence.
The comparisons of SAD and WSAD using full search algorithm are shown in Fig. 19. In this
figure, the correlations between bit-rate and the ratio of W2 to W1 (W2 /WWI1) are also shown
in Fig. 19.
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g 1658~ VL
= 1638
o
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1634 \ \ \ \
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9
© 908 .
b= O...
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O
906 | S
904
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Fig. 19. Performance comparisons of SAD and WSAD using full search algorithm.

It can be seen that the result of using WSAD as the distortion measure takes less bits than
that of using SAD except “News” in W2/WI= 0.4. This is because the “News” sequence is a
low motion video sequence, and WSAD is of no benefit in such sequence. As the result of
Fig. 19, WI and W2, which is derived from (1), are determined as 10 and 7, respectively.
Based on the weighting values, the average number of bits to represent the shape per VOP is
shown in Table 2. The percentages compared to the results of full search, which uses SAD as
the distortion measure, are also shown in Table 2. An important contribution is that the
WSAD makes some improvement on bit-rate, and it can compensate for the inaccuracy of
motion vector when the fast search algorithm is used.

Sequence Full Search with SAD Full Search with WSAD
Bits/VOP % Bits/VOP %

Bream 1659.35 100 1636.46 98.62

News 909.43 100 906.10 99.63

Foreman 1213.73 100 1197.55 98.67

Table 2. Performance comparison of SAD and WSAD based on full search algorithm in
bit-rate (IW1=10, W2=7).

Fig. 20 shows the comparison of various search algorithms. It can be seen that the proposed
BS and DBS algorithm take less search points than FS algorithm and the algorithms
described in 0-0.
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Fig. 20. Performance comparisons of various search algorithms.

Table 3 shows the number of search points (SP), and Table 4 shows the average number of bits
to represent the shape per VOP. The percentages compared to the results corresponding to the
full search in MPEG-4 VM are also shown in these tables. “BS” denotes the proposed
algorithm without using diamond search pattern and “DBS” denotes the proposed algorithm
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using diamond search pattern. Table 5 shows the runtime simulation results of various BME
algorithms. It is noted that the BME algorithm 0 takes much more computational complexity
because of the generation of the mask for effective search area.

Sequence | Full Search Ref. 0 Ref. 0 Proposed (BS)| Proposed
(DBS)
SP SP % SP % SP % SP %

Bream | 10,504,494 | 6,495,838 | 61.84 | 1,560,221 | 14.85 | 367,115 | 3.49 | 67,232 | 0.64

News 747,054 403,131 | 53.96 6,568 0.88 | 24,923 | 3.36| 2,048 | 0.27

Foreman | 9,085,527 | 5,093,409 | 56.06 | 1,564,551 | 17.22 | 287,272 | 3.16 | 57,214 | 0.63

Table 3. Total search points for various search algorithms.

Sequence| Full Ref. 0 Ref. 0 Proposed (BS) | Proposed (DBS)
Search

Bits/VOP|Bits/VOP| % |Bits/VOP| % [|Bits/VOP| % |Bits/VOP| %
Bream | 1659.35 | 1659.35 [100.00] 1683.28 |101.44] 1655.78 | 99.78 | 1669.58 |100.62

News 909.43 909.43 [100.00] 902.68 | 99.26 | 910.82 [100.15] 908.39 | 99.89

Foreman| 1213.73 | 1213.73 |100.00] 1219.47 |100.47] 1209.35 | 99.64 | 1219.23 |100.45

Table 4. Average bit-rate for various search algorithms.

Compared with the full search method, the proposed fast BME algorithm (BS) needs 3.5%
search points and takes equal bit rate in the same quality. By using the diamond-shaped
zones, the proposed algorithm (DBS) needs only 0.6% search points. Compared with other
fast BME 0-0, our algorithm uses less search points, especially in high motion video
sequences, such as ‘Bream’ and ‘Foreman’.

Sequence Full Ref. 0 Ref. 0 Proposed (BS) Proposed
Search (DBS)
ms ms % ms % ms % ms %

Bream | 57718.67 | 62776.36 | 108.76 | 7782.83 | 13.48 | 8678.02 | 15.04 | 1738.24 | 3.01

News 3830.13 | 4202.36 | 109.72 | 35.05 092 | 574.04 | 1499 22.16 | 0.58

Foreman | 44877.19 | 52574.24 | 117.15 ) 7507.74 | 16.73 | 6487.52 | 14.46 | 1703.88 | 3.80

Table 5. Runtime simulation results of various search algorithms.

Table 6 shows the number of non-skipped SSB per PE. Due to the contribution of the
proposed CBBME algorithm, the number of non-skipped SSB is reduced largely. It can be
seen that the average number of non-skipped SSB is much less than the total number of SSB,
which is denoted as 81 per PE. In the worst case, the additional non-skipped SSB is usually
in the positions with large motion vector, which does not tend to be the adoptive MV.
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Sequence Average  non-skipped|Maximum non-skipped SSB
SSB per PE per PE
Bream 12.78 33
News 10.73 16
Foreman 10.94 24
Children 13.40 46

Table 6. Average and maximum number of non-skipped SSB per PE.

Therefore, in the binary motion estimator, the number of non-skipped SSB is limited to 32
from experimentation in maximum situation. For average situation, we set the number as
12.In our architecture, the processing cycles for various BAB types are shown in Fig. 21.

BME (average/maximum)
& BMC
(400/780)
Inter
BAB | BAB MVPs Size Intra CAE
—» Decision —» (35>‘ —» Conv. —@» CAE > (303/610)
(19) (264) (303/610)
A -
»
0 19 54 318 1098 1703~ Time (cycle)
B : VLC(3~2x)

[ BAB e 2.3
] BAB type 0

] BAB type 4 for I -VOP
u BAB type 1

BAB type 4, 5, 6
M for B-,P-VOP

Fig. 21. Processing cycles for various BAB types.

Totally seven types of mode are described for BAB. The number in parentheses indicates the
latency of that module with average and maximum number of cycles. Notice that the
processing cycles of BME and CAE depend on the content of BAB. To complete one BAB
processing in the worst case scenario, our architecture requires 1708 clock cycles, including:
19 clock cycles for mode decision, 35 clock cycles for identifying MVPS, 264 clock cycles for
size conversion, 780 clock cycles for BME, and 610 clock cycles for inter CAE.

Actually, few literatures explored the architecture design of shape coding. In [10], they only
designed the BME. We can extract our data for BME part as comparison in Table 7. In terms
of the whole shape coding,

E. A. Al_Qaralleh’s [10] Proposed

Gate count 11582 10523

One BAB  processing|563 780

(cycles)

Comment Partial design Completed design
(Only BME implemented)

Table 7. Comparison with BME only.

Table 8 illustrates some results with different architectures. For our design the size of BAB
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buffer and SR buffer are 16x16 and 44x44 respectively. The average and maximum numbers
of non-skipped SSB are determined as 12 and 32 from experiments.

DDBME [16] Natarajan’s [21] Proposed
Current BAB size 16x16 bits RAM 16x16 bits SRAM  |16x16 bits SRAM
SR buffer size 16x32 bits RAM 47x32 bits SRAM  |44x44 bits SRAM
Access from SR buff to  |4096 5828 Average: 1348
obtain one MV (Bytes) Maximum: 3328
Latency to obtain one MV|1039 1039 Average: 360
(cycles) Maximum: 740
One BAB processing 3034 N/A 1708
(cycles) (without pipelinig) (without pipelining)

Table 8. Architecture analysis and comparison for various binary motion estimations.

Table 8 also lists the architecture comparisons between the proposed and some previous
works in [16] and [21]. In [16] it adopts the data-dispatch technique and is named as
data-dispatch based BME (DDBME). [21] is Natarajan’s architecture which is modified from
BME-based Yang's 1-D systolic array [22]. In their design, they use extra memory, SAP module,
to process the bit shifting and bit packing for the alignment of BAB. It also results in a
computation overhead. In our design, we have used the Boundary Pixel Detector for the
alignment of boundary of BAB. Accordingly, no SAP memory is needed. Furthermore, the
proposed CBBME design needs less data transfer and latency to obtain one motion vector
compared with [16] and [21], because we consider the skipping on redundant searches.
Compared with the implementation for one BAB processing in the worst case, our design also
requires less cycles than [16] with the same base of non-pipelining work. Only 56% cycles of
[16] is needed in our approach.

Fig. 22(a) shows the synthesized gate count of each module and Fig. 22(b) shows the chip
layout using synthesizable Verilog HDL. There are 7 synchronous RAMs in the chip. Two
1600x16 bits RAMs are used for frame buffer. Two 48%22 bits RAMs are used for SR buffer.
One 32x20 bits RAM is used for SC buffer, one 32x18 bits RAM is used for MC buffer and one
32x20 bits RAM is used for BAB bulffer, respectively. The chip feature is summarized in Table
9. Total gate count is 40765. The chip size is 2.4x2.4 mm? with TSMC 0.18pym CMOS
technology and the maximum operation frequency is 53 MHz

W BME(10523)

M Size Conversion(4453)

3% 8%
14% 35% B CAE(6836)

O Prob. Table for CAE(4221)

O BAB Type Decision(914
23% 15% yp ision(914)

M MVPs(749)

B VLC(2459)
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(b)
Fig. 22. (a) Synthesized gate count of each module. (b) Chip layout of shape coding encoder.

Technology TSMC 0.18pm CMOS (1P6M)
Package 128 CQFP
Die size 2
2.4%2.4 mm
Core size 2
1.4x1.4 mm
Clock rate 53 MHz
Power dissipation 35mW
Gate count 40765

Memory size
(bits)

Frame buffer: 2x1600x16
SR buffer: 2x48x22

SC buffer: 32x20

MC buffer: 32x18

BAB buffer: 32x20

Table 9. Chip Features.

7. Conclusion

MPEG-4 has provided a well-adopted object-based coding technique. When people migrate
from compressed coding domain to object coding domain, the complexity issue on shape
coding is converged. In this paper we propose a fast binary motion estimation algorithm
using diamond search pattern for shape coding and an efficient architecture for MPEG-4
shape coding. By using the properties of shape information and diamond shaped zones, we
can reduce the number of search points significantly, resulting in a proportional reduction
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of computational complexity. The experimental results show that the proposed method can
reduce the number of search points of BME for shape coding to only 0.6% compared with
that of the full search method described in MPEG-4 verification model. Specifically, the fast
algorithm takes equal bit rate in the same quality compared with full search algorithm. The
proposed algorithm is simple, efficient and suitable for real-time software and hardware
applications. This architecture is based on the boundary search fast algorithm which
accomplishes the large reduction on computation complexity. We also apply the approaches
on center-biased motion vector distribution and search range shrinking for further
improvement. In this paper we report a comprehensive exploration on each module of
shape coding encoder. Our architecture completely elaborates the advantages of the
proposed fast algorithm with a high performance and regular architecture. The result shows
that our design can reduce the memory access and processing cycles largely. The average
number of clock cycles for one binary alpha block processing is only 1708, which is far less
than other designs. The system architecture is implemented by synthesizable Verilog HDL
with TSMC 0.18pm CMOS technology. The chip size is 2.4 x 2.4 mm? and the maximum
operation frequency is 53 MHz.
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