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1. Introduction

In the context of Semantic Web, subsumption, i.e., inference of implicit subclass relationship,
owl:TransitiveProperty, and owl:inverseOf, is a kind of simple yet basic description logic
reasoning [7]. It is usually solved as a transitive closure computation problem [4]. Directed
Graph is an effective data structure for representing such subsumption hierarchies While,
the growing number and volume of directed graphs involved greatly inspire the demands
for appropriate index structures.

Labeling scheme[9] is a family of technologies widely used in indexing tree or graph
structured data. It assigns each vertex a well-designed label with which relationship
between any two vertices can be detected or filtered efficiently. This chapter concerns only
about labeling scheme among diverse index technologies considering its avoiding expensive
join operation for transitive closure computation. Determinacy, compaction, dynamicity,
and flexibility are factors for labeling scheme design besides speedup [11]. However, the
state of art labeling schemes for directed graph could not satisfy most above requirements at
the same time. Even approaches for the directed acyclic graph (DAG) is few.

One major category of labeling schemes for DAG is spanning tree based. Most of them are
developed from their tree versions. The first step of labeling is to find a spanning tree and
assigning labels for vertices according to tree's edges. Next, additional labels are propagated
to record relationships represented through non-tree edges. Christophides et al. surveyed
and compared two such schemes [4], i.e. interval-based [8] and prefix-based [3]. Whereas,
the weak point of above schemes is obvious. Evaluations to the relationships implied by
non-tree edges cannot take advantage of the deterministic tree label characters. Non-tree
labels need not only additional storage but also special efforts in query processing. Also
interval-based scheme studied in [4] has a poor re-labeling ability for updates.

There are also labeling schemes having no concern with spanning tree. Such as bit vector
[10] and 2-hops [5]. Though bit vector can process operations on DAG more efficiently, it is
static and requires global rebuilding of labels when updates happen. Moreover, studies
show that recent 2-hops approach introduces false positives in basic reachability testing.

A novel labeling scheme for XML tree depending on the properties of prime number is
proposed in [11]. Prime number labeling scheme associates each vertex with a unique prime
number, and labels each vertex with the product of multiplying parents' labels and the
prime number owned by the vertex. The effect of updating on vertices is almost the same to
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92 Semantic Web

that in prefix-based scheme. Moreover, the response time for queries and the size
requirements are even smaller than those of prefix-based scheme. However no further work
has been performed on extending the idea of prime number labeling scheme to the case of
DAG.

In this research we expect to find out a labeling scheme for DAG to augment performance in
all of the above requirements as much as possible. By taking a strong connected component
in the graph as one vertex, arbitrary directed graphs (with cycles) can be treated with the
proposed labeling scheme. We are stimulated by the virtues of prime number labeling
scheme exhibited in indexing XML tree. We extend it by labeling each vertex in a DAG with
an integer which equals to the arithmetic product of the prime number associating with the
vertex and all the prime numbers associating with its ancestors. The scheme does not
depend on spanning tree. Thus subsumption hierarchies represented in a DAG can be
efficiently explored by checking the divisibility among the labels. It also inherits dynamic
update ability and compact size feature from its predecessor. The major contributions are as
follows.

- Extend original prime number scheme[ll] for labeling DAG and to support the
processing of typical operations on DAG.

- Optimize the scheme in terms of the characteristics of DAG and prime numbers.
Topological sort and Least common multiple are used to prevent the quick expansion of
label size; Leaves marking and descendants-label improve the performance of querying
leaves and descendants respectively.

- A generator is implemented to generate arbitrary complex synthetic DAG for the
extensive experiments. Space requirement, construction time, scalability, and impact of
selectivity and update are all studied in the experiments.

Results indicate that prime number labeling scheme is an efficient and scalable scheme for

indexing DAG with appropriate extensions and optimizations.

2. DAG and Typical Operations

Given a finite set V and a binary relation E on V, a directed graph can be represented as G =
(V, E). Vand E consist of all the vertices and edges in G respectively. For any pair of vertices
u and u' in G, vertices sequence < vo,U1,Vs, ...,Ur > is called a path, if u = vo, u' = v, and (v-
pv)e B fori=1,2,..,k+1. A directed graph is a directed acyclic graph (DAG) if there is
no path returning to the same vertex. Figure 1(borrowed from [4]) is a DAG.

Reachability is a basic concept in DAG. Given two vertices v and w , if there exists a path p

from v to w, we say that w is reachable from v via p, or vi w (or as v=w out of

consideration of p). Known relations, such as parent, child, ancestor, descendant, leaf,
sibling, and nearest common ancestor(s) (nca) are derived from this concept. Queries on
these relations are typical operations on DAG. While, unlike trees, order-sensitive queries
such as preceding/following are meaningless for DAG. In the following discussion, given
vertices v and w in DAG G, we will use parents(v), children(v), ancestors(v),
descendants(v), leaves(v), siblings(v) and nca(v, w) indicating the above queries
respectively (See [4] for formal expressions). Update, including vertices insertions and
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Prime Number Labeling Scheme for Transitive Closure Computation 93

deletions, is another kind of operation worthy of note because it usually brings
reorganizations to the DAG storage and re-labelings to the index structure.

3. Prime Number Labeling Scheme for DAG

The first part of this section shows that the divisibility of integers still could be the evidence
theory of the prime number labeling scheme for DAG. In the second part, we prove that all
of the typical operations on DAG are solvable.

3.1 Prime Number Labeling Scheme for DAG - Lite
Few modifications are required to support DAG reachability testing.

Definition 1. Let G = (V,E) be a directed acyclic graph. A Primme Number Labeling Scheme for
DAG - Lite(PLSD-Lite for short) associates each vertex v € V with an exclusive prime number p[v],
and assigns to v a label Lie(v ) = (c[ v ]), where

v/ Cparents(v) elv’], in—degree(v)>0

O
1, in—degree(v)=0

In Figure 1, PLSD-Lite assigns each vertex an exclusive prime number increasingly from "2"
with a depth-first traversal of the DAG. The first multiplier factor in the brackets of each

vertex is the prime number assigned.

(8 %2 x 84 = 204)(B]

(5 % 204 = 1020) (11 x 204 x 646 x 782 = 1133605068) @) 11 x 204 x 648 x 22678 = 32874573072)

o ks ¥
(7% 1020 x 1133605968 = 8093946611520) (13 x 1133605968 = 14736877584) (7 % 32874573072 = 230122011504) > (13 x 32874573072 = 427369440936)

Fig. 1. Prime Number Labeling Scheme for Fig. 2. Updates in Prime Number Labeling
DAG - Lite Scheme for DAG - Lite

Lemma 1. Let G = (V, E) be a directed acyclic graph. Composite number c[v] in the Lie(v) = (c[v])
of a vertex v€V can be written in exactly one way as a product ofthe form

clv] = plv] - H P[Uf]mvf @)

v/ Cancestors(v)

where my €N.

Proof. Such a product expression can be constructed by performing transitive closure in
terms of Definition 1. On the other hand, an integer has a unique factorization into primes,
and hence the above product expression is unique. ©
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Lemma 1 implies that for any vertex in the DAG with PLSD-Lite, there is a bijection between
an ancestor of the vertex and a prime factor of the label value.

Theorem 1. Let G = (V, E) be a directed acyclic graph. For any two vertices v,w € V where Lijte(v) =
(c[v]) and Liite (w) = (c[w]), vw w < c[v] | c[w].

Proof. Let r =<y, ...,ux > be one of the path length k from vertex v to vertex w, where vy = v, vy
= w and k >= 1. By the definition of reachability, vertex v must be an ancestor of vertex w on
r. Suppose in — degree(w) > 0, by Definition 1, composite number c[w] of label Li(w) =
(c[w]), could be represented as

C[w]:(H{;lp[vi])'C[UO]'Hv’eparems(w)w';evk_, c[v']. Since v, =v, we conclude that c[v]]|c[w].
On the other hand, c[v ]| c[w] implies c[w] = k'- c[v] for some integer k'. By Lemma 1, then

we have thatc[w] = k" p[v] -1, parents(v) p[v']™" . This factorization of c[w] implies that p[v]

is a factor of c[w]. Therefore, vertex v is one of the ancestors of vertex w. The reachability
from v to w is obvious. O

A consequence of Theorem 1 is that whether two vertices have the relation of
ancestor/descendant can be simply determined with PLSD-Lite. For example, in Figure 1,
we have AwD because 2 |1020. Whereas there is no ancestor/descendant relation between F'
and D because 782 t 1020. In this way, finding out all the ancestors or descendants of a given
vertex is realizable by testing the divisibility of the vertex's label with the other vertices'
labels in the DAG or conversely. Averagely (N - 1)/2 divisibility testings have to be carried
out to retrieve all the ancestors or descendants for any given vertex in a IV vertices DAG. We
can determine that D has three ancestors B, C and A by examining divisibility of each vertex
that has label value less than "1020". Vertex E and F' are not the ancestors of D because their
label values cannot divide 1020. Moreover, a vertex is a leaf if any other vertex's label value
could not be divided by its label value. There is also a naive solution to nca evaluating
according to the definition of nca and Theorem 1. First put all the common ancestors of both
vertices into a set. Then filter out vertices whose descendants are also within the set.
Remainings in the set are the nca of the vertices.

PLSD-Lite is also a fully dynamic labeling scheme in the presences of updates as stated in
[11]. Re-labeling happens with the insertion or deletion of a vertex, and only affects the
descendants of the newly inserted vertex or the deleted vertex. After deleting vertex D,
inserting leaf vertex JJ and non-leaf vertex K, we have Figure 2. As a new leaf, vertex JJ does
not affect other vertex in the DAG. Insertion of vertex K only affects descendants G, H, I and
K itself. Vertex H is affected by the deletion of ancestor D at the same time.

However PLSD-Lite lacks enough information to identify parents/child relation, not to
mention finding all the siblings of a given vertex.

3.2 Prime Number Labeling Scheme for DAG - Full

In order to support all of the operations for DAG, PLSD-Lite should be extended by
separately recording the prime number that identifies the vertex and the additional
information about parents.
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Prime Number Labeling Scheme for Transitive Closure Computation 95

Definition 2. Let G = (V, E) be a directed acyclic graph. A Prime Number Labeling Scheme for
DAG - Full(PLSD-Full for short) associates each vertex v € V with an exclusive prime number p[v],
and assigns to v a label Ly (v) = (p[v], ci[v], cp[v]), where

[ eparentsqy Ca '], in—degree(v)>0

a pumn . (3)
calv] = plv] {1, in—degree(v)=0
H‘U’ arents(v p[’UIL ’in—deg’ree(fu)>0
eple] = { T @
1, in—degree(v)=0

We term p/[v] as "self-label", c.[v] as "ancestors-label"(also c[v] in Definition 1), and cp[v] as
"parents-label". In Figure 3, three parts in one bracket is self-label, ancestors-label, and
parents-label. Theorem 1 is still applicable. Moreover, all the operations on DAG are
supported by the following theorem and corollary.

(3,204,2 x 17 = 34) (23,782, 17)
(5, 1020, 3) (11,1133605968,3 x 19 x 23 = 1311)
(7,8093946611520, 5 x 11 = 55) (13, 14736877584, 11)

Fig. 3. Prime Number Labeling Scheme for DAG - Full

Theorem 2. Let G = (V, E) be a directed acyclic graph, and vertex v €V has Luu(v) = (p[v],
ca[v], cp[v]). If the unique factorization of composite integer ca[v] results r different prime
numbers, p1 <... <pr, then there is exactly one vertex w € V that takes pi as the self-label
for 1 < i < r, and w is one of the ancestors of v. If the unique factorization of composite
integer cp[v] results s different prime numbers, p'1 < ... < p's, then there is exactly one
vertex u € V that takes p'; as the self-label for 1 < i < s, and u is one of the parents of v.

The proof of Theorem 2 is obvious according to Lemma 1, the definition of parents-label and
the unique factorization property of integer. It implies that we can find out all the parents of
any vertex by factorizing the parents-label. For instance, since vertex G in Figure 3 has a
parents-label 1311 = 3 x 19x23, vertices B, E and F are considered to be all the parents of G.
We still have the rights to determine the parent/child relation of two vertices by checking
divisibility between one's parents-label and the other's self-label in terms of Definition 2.
Corollary 1 further expresses PLSD-Full's sibling evaluation ability.
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Corollary 1. Let G = (V, E) be a directed acyclic graph. For any two vertices v,w €V where
Lfuli(v) = (p[v], ca[v], cp[v]) and Lfuli(w) = (p[w], ca[w], cp[w]), w and v are siblings ifand
only ifthe greatest common divisor oftheir parents-label, ged(cp[v], cp[w]) # 1.

Proof. Suppose vertex u€V is one of the parents of both v and w where Ly.u(w) = (p[u], ca[u],
cp[u]). Then cp[v] = ki cpf/u] and cp[w] = ki cp[u] hold where ki > 1,k2 >1 € N. Therefore, cp[u]
is the common divisor of cp[v] and cp/w] and hence the greatest common divisor ged(cp/v],
cp[w]) # 1 since cpfu] # 1. On the other hand, let ged(cp/v], cp[w]) #1 be the greatest
common divisor of cp[v] and cp[w], which implies that there exist r >1 prime numbers

plg : p? pf" = gcd(cp[v], cp[w]). According to Theorem 2, the vertices v and w have a set of

parents whose self-labels are prime numbers pi,ps,...,pr respec-tively. Consequently, we
conclude that vertices v and w are siblings. o

Corollary 1 enables us to discover the siblings of a vertex by testing whether the greatest
common divisor of the parents-labels equals 1. In Figure 3, vertex B have two siblings E and
F because gcd(34, 17) =17 #1.

Theorem 2 provides us another measure to obtain ancestors besides doing divisibility
testing one vertex after another. By applying unique factorization to the ancestors-label of
vertex D in Figure 3, three ancestors A, B and C are thus identified by prime factors "3", "2"
and "17" respectively. Though trial division itself could be used to do integer factorization,
we can choose faster integer factorization algorithm alternately especially for small integers.

4. Optimization Techniques

As shown above, PLSD could perform all typical operations on DAG with elementary
arithmetic operations such as divisibility testing, greatest common divisor evaluating, and
integer factorization. Because these elementary arithmetic operations become time-
consuming while their inputs are large numbers, running time is usually estimated by
measuring the count of bit operations required in a number-theoretic algorithm. In other
words, the more number of bits are required to represent the labels of PLSD, the more time
will be spent on the operations. In this section we will introduce several optimization
techniques to eliminate the count and the size of the prime factors involved in the
multiplication for label generation of our scheme. Also another one is proposed at the end of
this section as a complementarity of PLSD for querying descendants.

4.1 Least Common Multiple

In previous definitions, the value of a vertex's ancestors-label is constructed from
multiplying its self-label by the parents' ancestors-labels. However, there is apparent
redundancy in this construction of ancestors-label that power m,' in Equation 2 magnifies
the size of ancestors-label exponentially, but it is helpless for evaluating the operations of
DAG. It is straightforward to remove the redundancy by simply setting m.' to 1 in Equation
2. We have Equation 5 below.
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el =plel- J[  »l
v’ cancestors(v) ©)

The simplification is reasonable because in this case Theorems 1 and 2 still hold. Define
lem(ay,ay,...,an) to be the least common multiple of n integers a1, az,..., an. In particular, for an
integer a we define lcm(a) = a here. Thereafter we have the following equation for
ancestors-label construction.

lem(clvy],...,c[vl]), in—degree(v)>0 and v],...,v, Eparents(v) 6)
efo] = ple] - { ,
, in—degree(v)=0

The equivalence between Equation 5 and 6 can be proved with the property of least
common multiple apparently. Equation 6 implies that an ancestors-label can be simply
constructed by multiplying self-label by the least common multiple of all the parents'
ancestors-labels. Thereafter, the value of an ancestors-label is the arithmetic product of its
ancestors' as described in Equation 5. With this optimization technique, the max-length of
ancestors-label in DAG is only on terms with the total count of vertices and the count of
ancestors. Comparing with Figure 3, Figure 4 has a smaller max-length of ancestors-label.

4.2 Topological Sort

Previous selection of prime number for the self-label of a vertex is arbitrary only on
condition that no two vertices have the same self-label. A naive approach is assigning each
vertex met in depth-first search of DAG a prime number ascend-ingly. Unfortunately,
Equation 5 and 2 imply that the size of a vertex's self-label has influence on all the ancestors-
labels of its descendants. So vertices on the top of the hierarchy should be assigned small
prime numbers as early as possible. Topological sort of a DAG can solve the problem.

"A topological sort of a dag G = (V, E) is a linear ordering of all its vertices such that if G
contains an edge (u, v), then u appears before v in the ordering."[6]. Thus assigning prime
numbers ascendingly to vertices with this ordering results in small self-labels precedences in
the hierarchy. One of the topological sort of the DAG in Figure 1is "A, C, E, F, B, D, G, H,
I". Let the self-labels to be the first 9 prime numbers "2, 3, 5, 7,11,13,17,19, 23" respectively,
then we get Figure 5.

4.3 Leaves Marking

As an optimization for reducing label size, even numbers such as 21, 22,..., 2nare used as self-
labels for leaf vertices in [11], which gives us another method to identify leaves. However,
the prime number theorem indicates that the growth of prime number is slower than that of
power of 2, so self-labels of even number leaves increase dramatically. An alternative is to
follow the rule of PLSD-FULL and simply setting leaf's ancestors-label to be negative. Then
whether a vertex is a leaf could be determined by the sign of its ancestors-label. It is a
meaningful technique in the case of existing large number of leaves in a DAG.
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Fig. 4. PLSD-Full with Least Common Fig. 5. PLSD-Full with Topological Sort
Multiple Optimization Optimization

4.4 descendants-label

Divisibility testing and unique factorization both can be used for querying ancestors as
discussed in section 3.1t is feasible to spend more storage space on adding another label for
helping to evaluate descendants(v) in consideration of existing timesaving integer factoring
algorithms. In the same idea of ancestors-label, we extend PLSD-Full by adding the
following so-called "descendants-label".

v’ Echildren(v) calv'], out—degree(v)>0

cale) = plo] - { ?

Clearly, Equation 7 is just like Equation 3 except in the reverse hierarchy. Now descendants
query, descendants(v), can be evaluated by factoring descendants-label in the same way
provided by Theorem 2. In section 5 we will give empirical results on querying descendants
and leaves using this technique.

1, out—degree(v)=0

5. Performance Study

This section presents some results of our extensive experiments conducted to study the
effectiveness of prime number labeling scheme for DAG (PLSD).

5.1 Experiment Settings

Taking the queries on RDF class hierarchies as an application background for DAG, we
setup test bed on top of RDF Schema Specific DataBase(RSSDB v2.0) [2], which is a
persistent RDF store that generates an Object-Relational (SQL3) representation of RDF
metadata. In this case, each vertex in a DAG stands for a class in the RDF metadata, and
each edge in a DAG stands for the hierarchy relationship between a pair of classes in the
RDF metadata. In our configuration, RDF metadata is parsed and stored in PostgreSQL
(win32 platform v8.0.2 with Unicode configuration) through the loader of RSSDB.

Though least common multiple, topological sort, and leaves marking are optional
optimization techniques, they are integrated in our default PLSD-Full implementation.
PLSD-Full without these optimizations and PLSD-Lite are ignored for their apparent
defects. Furthermore, based on this default implementation of PLSDF-Full, descendants-
label is employed to examine its effects on descendants query. We also provide the Unicode
Dewey prefix-based scheme and the extended postorder interval-based scheme by Agrawal
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et al. The former is an implementation to the descriptions in [4], and the latter is a com-
plementary to the scheme released with the source code of RSSDB v2.0. Hence, there are
totally four competitors in our comparisons, namely, default PLSD-Full (PLSDF), PLSD-Full
with descendants-label (PLSDF-D), extended postorder interval-based scheme (Plnterval)
and Unicode Dewey prefix-based scheme (UP-refix). All the implementations are developed
in Eclipse 3.1 with JDK1.5.0. Database connection is constructed with PostgreSQL 7.3.3
JDBC2 driver build 110.

The relational representations of UPrefix and Plnterval, including tables, indexes, and buffer
settings, are the same to those in [4]. As for PLSDF, we create a table with four attributes:
PLSDF (self - label : text, label : text, parent - label : text, uri : text). It is not surprising that
we use PostgreSQL data type text instead of the longest integer data type bigint to represent
the first three attributes considering that a vertex with 15 ancestors has an ancestors-label

value 32589158477190044730 (2 x 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x

47 x 53) which easily exceeds the upper bound of bigint (8 bytes, between

+9223372036854775808). Fortunately, the conversion from text to number is available on host
language Java. Thus the number-theoretic algorithms used for PLSDF could be performed
outside PostgreSQL, and become main memory operations. Similarly, we use PLSDF -
D(self - label : text, label : text, parent - label : text, descendants - label : text, uri : text) to
represent PLSDF-D where attribute descendants-label is added. For PLSDF and PLSDEF-D,
we only build B-tree indexes on self-labels because of the limitation of B-tree on large size
text column, though indexes are necessary on ancestors-label and parents-label. Buffer
settings are the same to those of UPrefix and PInterval.

All the experiments are conducted on a PC with single Intel(R) Pentium(R) 4 CPU 2.66GHz,
1GB DDR-SDRAM, 80GB IDE hard disk, and Microsoft Windows 2003 Server as operating
system.

5.2 Data Sets and Performance Metrics

To simulate diverse cases of DAG, we implement a RDF metadata generator that can
generate RDF file with arbitrary complexity and scale of RDF class hierarchies. Generator's
input includes 4 parameters that describe a DAG. They are the count of vertices, the max
depth of DAG's spanning tree, the max fan-out of vertices, and the portion of fan-in
(ancestors/precedings). The count of the edges changes with the adjustment to the above
values. Though PLSDF and PLSDF-D depend only on the characters of DAG, parameters
related to spanning tree are still employed here because Interval and UPrefix are all based
on spanning tree. The output is a valid RDF file (conforming with W3C RDF/XML Syntax
Specification) that satisfies the parameters. We concatenate the values of above four
parameters and the count of edges with hyphens to identify a DAG.
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RDF Metadata Size |Classes/|SubClassOf/|Depth(Fan-out| Fan-in |Fan-in

DAG (MB)| Vertices Fdges Max | Max | Portion | Max
1300-8-4-0.2-50504 2.55 | 1300 50504 3 4 0.2 219
[300-8-4-0.1-100132 A1.62 1300 100132 8 1 (0.1 AH8
1300-8-4-0.6-149451 6.34 | 1300 149451 8 4 0.6 373
1300-8-4-0.8-19977- 8.06 | 1300 199774 8 4 0.8 897
1300-8-4-1.0-250222 9.32 | 1300 250222 8 4 1.0 562
4h(0-2-32-0.7-45525 2.78 | 430 45525 2 32 0.7 313

HO000-16-2-0.000053-44946| 16.3 | 90000 44946 16 2 0.000053) 3

Table 1. Data Sets

Listed in Table 1, two groups of DAGs are generated for evaluating the performance of
PLSDF, PLSDE-D, UPrefix, and Plnterval. They are used for investigating the impacts of
DAG size and shape respectively on the labeling schemes. Data in the first group indicates
that the file size and the count of the edges are positively related, if we fix the other
parameters. While the second group shows two DAGs with different shape of spanning
trees.

5.3 Space Requirement and Construction Time

The first group of DAGs in Table 1 is used here. For space requirement, we has Figure 6(a)
where PLSDF and PLSDE-D have much smaller average space requirement (size of both
tables and indexes), and mild trend of increase. The underlying cause is twofold. First,
PLSDF or PLSDF-D is so simple that it is composed of only one table, of whom the count of
the tuples is just equal to the count of vertices in the DAG, and it has only one B-tree index
built. In contrast, Interval and UPrefix both consist of three tables to record additional
information besides spanning tree. Meanwhile, they need more indexes built on each table.
Another cause is that all of the data type in the table of PLSDF or PLSDE-D is text which will
be "compressed by the system automatically, so the physical requirement on disk may be
less"[1]. On the other hand, Figure 6(b) illustrates that PLSDF and PLSFD-D have the same
gentle tendency but less construction time to UPrefix, whereas the construction time of
Interval is the worst. This can be explained with the different procedures of label
constructions. PLSDF and PLSDF-D create labels on the fly while processing the RDF file.
However, UPrefix or Interval has to wait to create additional labels for non-spanning tree
edges until the whole spanning tree is constructed. It is obvious that the count of non-
spanning tree edges impacts the space requirement and label construction time for UPrefix
and Interval. Another observation is that PLSDF needs few space and construction time
relative to PLSDF-D. This is reasonable considering that PLSDF-D equals to PLSDF plus
descendants-label.

5.4 Response Time of Typical Operations
We present our experimental results of the typical operations on DAG in this section from
several aspects.

Overall Performance DAG "9000-8-4-0.004-45182" is chosen to have an experience on overall
performance. The operations are listed in Figure 7.
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The total elapsed time are shown in Figure 8. Interval, UPrefix, PLSDF labeling schemes are
tested for all of the five operations. Moreover, PLSDF-D is applied to Q2 and Q4 to examine
the effectiveness of descendants-label, while Q1, Q3, and Q5 are not necessary for PLSDF-D
because it is just the same to PLSDF in these operations. For the given selectivity, PLSDF
processes all the operations faster than the others. PLSDF-D exhibits accepted performance
in Q2 and Q4 as well. The reason is the concise table structure of PLSDF/PLSDF-D and
computative elementary arithmetic operations which avoid massive database access. For
instance, the evaluation of a vertex's ancestors includes only two steps. Firstly retrieve the
self-label and ancestors-label of the vertex from the table. Next do factorization using the
labels according to Theorem 2. Results are self-labels identifying the ancestors of the vertex.
The only database access happens in the first step. In contrast, Interval and UPrefix need
more database operations, such as join operations and nested queries (See [4]). Though it
seems that PLSDF-D does not have advantage over PLSDF in this case, experiments in the
next part will bring us elaborative effects of PLSDF-D in different selectivity.

Another observation is that UPrefix outperforms Interval in all of the typical operations,
which conflicts with the results from [4]. The cause is that Interval generates more

additional information to record non-spanning tree edges than UPrefix, which is
counterevidence of the excellent speed of PLSDF/PLSDF-D.

Impact of varying DAG Shape and Selectivity Here we investigate the performance under
different DAG shapes, i.e., DAG with short-and-fat spanning tree, and DAG

Operation Type Selectivity
Q1 Ancestors 2.53%
Q2 Descendants 20.08%
Q3 | Siblings 2.98%
Q4 Leaves 38.67 %
Q5 nea 0.011%

Fig. 7. Test Typical Operations for Overall Performance
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Fig. 8. Overall Performance

with tall-and-thin spanning tree. They are shown in Figure 9 to 10. Diagrams in each figure
correspond to operations from Q1 to Q5 respectively. The metric of X-axis is the results selectivity
of the operation except that the fifth diagram for nca uses X-axis to indicate the vertices' average
length from the root of spanning-tree. The metric of Y-axis is the response time.
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PLSDF displays almost constant time performance for all kinds of DAG shapes and operations.
Because it does the chief computations with main memory algorithms instead of time-consuming
database operations. The change of response time is indistinguishable in some extensions. The
side effect is that PLSDF stays at a disadvantage at a very low selectivity especially for Q2 and
Q4, e.g. in Figure 9(b) below selectivity 40%. Fortunately, PLSDF-D counterbalances this
difficulty by trading off time to space with descendants-label. PLSDF-D almost has the same
effect to UPrefix. Thus, it is a better plan to choose PLSDF-D at a low selectivity and switch to
PLSDF when the selectivity exceeds some threshold. However, no good solution is found for
PLSDF in Q3 where it costs more response time at a low selectivity. Interval and UPrefix could
make use of the indexes on the parent label. Whereas PLSDF has to traverse among the vertices
and compute greatest common divisor one at a time.

Scale-up Performance We carried out scalability tests of the four labeling schemes with the
first group of DAGs in Table 1. Operations are made to have the equal selectivity (equal
length on path for nca) for each scale of DAG size. Five diagrams in Figure 11 corresponds
to operations from Q1 to Q5 respectively.
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Fig. 10. DAG Shape and Selectivity of 90000-16-2-0.000053-44946

www.intechopen.com



Prime Number Labeling Scheme for Transitive Closure Computation 103

Interval and UPrefix are affected by both the size and the internal structure of the DAG
(Note that the DAG is generated randomly). Unlike the other two labeling schemes, PLSDF
and PLSDE-D perform good scalability in all cases.

5.5 Effect of Updates

To examine the dynamic labeling ability inherited from original prime number labeling
scheme, we repeated the "Un-ordered Updates" experiments exhibited in [11], while "Order-
Sensitive Updates" experiments are meaningless to our research subject. It is evident that
updates on leaf vertices of DAG will have the same experimental results to that of XML tree
with our analysis at the end of Section 3.1. Here we only give the results of updates on non-
leaf vertices.

Rppatreis TR b
HEHEHE

Bmspcres Timepec)

Fig. 12. Effect of Updates

Ten DAGs whose vertices increase from 1000 to 10000 are generated. We insert a new vertex
into each DAG between bottom left leaf and the leaf's parent in the spanning tree. Figure 12
shows our experimental results for Interval, UPrefix, PLSDF, and PLSDF-D, which coincide
with that of XML tree. PLSDF has exactly the same effect of update as Uprefix. While
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additional label of PLSDF-D questionless causes more vertices, the ancestors vertices, to be
re-labeled.

6. Prime Number Labeling Scheme for Arbitrary Directed Graph

DAG is a special kind of directed graph. For arbitrary directed graph, containing cycles is
very common. The labeling scheme discussed above need some modifications to deal with
arbitrary directed graphs. There are two steps to construct a more general labeling scheme.
First, preprocess all the strong connected components in the graph. Then, construct prime
number labeling scheme on the preprocessed graph.

Definition 3. Let G = (V, E) be an arbitrary directed graph. A Prime Number Labeling
Scheme for Arbitrary Directed Graph(PLSD-General for short) associates each vertex v; €
V with an exclusive prime number p;, and assigns to vi a label Lgenerai(v) = (pi,cai,cpi),
where

Cay = lcm( H Pj, lcmvjEpaTents(vz-)caj) ®)
v Ecomp(us)
H vy Eparents(v;) Pjs ’IZTLDBQT‘SE(U@)>O
cp; = { ©)
1, in—degree(v;)=0

According to Theorem 2 and Corollary 1, with the help of PLSD-General, all operations
mentioned in Section 2 can be implemented. The following algorithm describes a three
stages generation process for PLSD-General label. First (line 1 to line 4), topologically sort
the vertices in the directed graph where the orders of vertices within a strong connected
component are ignored. We also assign the self-labels at this stage. Second (line 5 to line 12),
compute the value of comp(vi). Finally (line 13 to line 17), compute the values of ancestors-
label and parents-label.

7. Conclusion and Future Work

Prime number labeling scheme for DAG takes full advantage of the mapping between
integers divisibility and vertices reachability. Operations on DAG, such as querying
ancestors, descendants, siblings, leaves and nca could be easily converted to elementary
arithmetic operations. The space requirement and time consuming are further reduced with
the optimization techniques. Analysis also indicates that re-labeling only happens when a
non-leaf vertex is inserted or removed, and affects its descendants (and ancestors if
descendants-label used). By taking a strong connected component in the graph as one
vertex, arbitrary directed graphs (with cycles) can be treated with the proposed labeling
scheme.

Our implementation of prime number labeling scheme for DAG has least space
requirement, construction time, and typical operations response time compared to interval-
based and prefix-based labeling scheme in almost all of the experiments in our test bed.
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input : A directed graph ¢ — (V| F)
output: The graph ¢ with PLSD labels on each vertex
1 TopoOrder || «— TOPOLOGICAL-SORT ((7);
2 fori—0to (|V]—-1)do
3 | Vertices [TopoOrder [i||.self-label «— NEXT-PRIME():
4 end
5 Components || + STRONGLY-CONNECTED-COMPONENTS((7):
6 for i — 0 to SIZE-OF (Components ) — | do
7 ComponentsLabel [i| — 1 :
S for ; — 0 to SIZE-OF (Components [i/) — 1 do
9 Components |[¢||j].component-id «— 7 ;
10 ComponentslLabel || «— Components |[i||7].self-label x
ComponentslLabel |i] ;
11 end
12 end
13 for ¢ — 0 to (|V| — 1) do
14 v «— Vertices [TopoOrder |i||:
15 v.ancestors-label — LCM(ComponentsLabel jv.component-id /.
LCM, . parents(v) v;.ancestors-label);
16 v.parents-label — [T, _parents(y) vi-self-label ;
17 end

Algorithm 1: BuildPLSD

The main reason is that no additional information is required to be stored for non-spanning
tree edges and that the utilizations of elementary arithmetic operations avoid time-
consuming database operations. The extensive experiments also show good scalability and
effect of update of prime number labeling scheme for DAG. The shape of DAG and the
selectivity of operation results has little effect on the response time of our labeling scheme.
Doubtless, a polynomial time quantum algorithm for factoring integers is expectative.
Factoring in parallel may be another more practical technology nowadays for prime number
labeling scheme for DAG.
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