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1. Introduction to interaction of RES and network

Renewable energy systems (RES) become more and more important as the serious sources,
first of all from the point of view of improvement of power generating efficiency and
effectiveness of operation. RES systems (in this sense) consist of renewable energy source,
(e.g. photovoltaics, fuel cells, wind power,..), pre-conditioning unit, DC link, inverter,
transformer (if necessary) and inductive coupling with electronic switch or direct connection
to power supply network.

The loads and supply system can be operated in three modes of operation: autonomous
supply from the network or autonomous supply from RES system, and parallel operation of
power supply network and RES(s). The chapter thereinafter deals with parallel operation of
the both sources at steady-state and transient dynamic states.

Pen Legend:
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TR | AcC PSN - power supply network
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BR - breakers
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L - separating inductors

% % RES -renewable energy sources
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Fig. 1. Block diagram of power supply network and renewable energy system(s) connection
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198 Renewable Energy

Interconnection between renewable energy systems RES and power electric network
depends on type and power of RES:
- RES with nearly harmonic output voltage, synchronized by grid: direct connection,
- RES with non-harmonic output voltage, synchronized by grid: inductive inter-
connection,
- remote RES non-synchronized with grid: HVDC energy transfer.
Single-phase inverters are commonly used to obtain utility grade ac power in small
distributed generation systems such as photovoltaics, wind power generators, fuel cells chip
systems. When such single-phase systems are aggregated to form microgrids integrable
with a three-phase inverter system or a common dc bus, it is desirable to maintain the
aggregated power to be constant [Bala & Venkataramanan, 2007]. Various transfigurations
of single-phase converter topologies brings [Xue et al, 2004]; [Koutroulis et al, 2001];
[Rajeshekara, 2005]. Large complex wind plants are not explicitly described in this chapter.
Their behaviour and back influence on power supply network can be found in [CIGRE,
2007; Spacil, 2006].
The main characteristics of electric power quantities under sinusoidal, non-sinusoidal,
balanced, or unbalanced conditions are described in the Standards [IEEE, 1999; IEEE, 2000].
Modelling and simulation of electric power quality parameters differs somewhat from the
ordinary power system modelling as far as short -circuit, load flow and transient stability
studies are concerned. The reason is that the behaviour of the system equipment must be
predicted for frequencies well above the fundamental one [Dumitrescu, 2009; Ghartemani et
al, 2004].
All above mentioned problems have to be taken in account during investigation of RES and
power network, and proper methods should be used to fulfill the overall goals.

2. Theoretical background for single- and three-phase transients

In general, transient phenomena of RES and power supply network can be investigated by
different ways as follows:
- as complex non-linear system, using high volume SW packages (PSCAD/EMTDC,

EMTP, EDSA, OrCAD..)

- as linearised system making possible of superposition:

- intime domain (piece-wise linearization and state-variable method, z-transform

and switching function method),

- in frequency domain (decomposition into single harmonic linear subsystems)
Simulation software packages are a powerful electromagnetic time domain transient
simulation environment and study tools. Package usually includes static or dynamic
characteristic of the electronic switches, and it works with invariant circuit topologic
scheme and with parametric changes of the system during simulation.

Above mentioned linearisation, superposition method and z-transformation can be
conveniently used for investigated electric circuit’s analysis.

Piece-wise linearisation in time domain. This method works during simulation with
periodically variable circuit topologic structure of the system, and it uses electronic
switches as separators between successive time intervals of operation of the system. Within
a single time intervals of operation the topologic structure of the system is to be foreseen as
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Interaction of Renewable Energy Source and Power Supply Network 199

constant one. Therefore one can use state variable method to describe RES system [Mohan
et al, 2003; Dobrucky at al, 2007]:
d
dt
where:  x(t) is the vector of state variables, A, B matrices of system elements,
u(t) input vector of exciting functions
r ¢
y(0=C-x()+ S[p-u(0) @
i=
where:  y(t) is the vector of output variables, C, D system matrices,
r highest order of derivatives of the input vector (providing the derivatives exist).
In the next time interval the state variables end-values of the previous time-interval will be
considerate as the initial values.
Note: Method of fictitious exciting function could be used in case of non-stationary elements
of A matrix of the system.

(x(£))=A - x(t)+ B - u(t) ©)

Using Park-Clarke orthogonal transform and subsequent two orthogonal Fourier series.
Any m-phase system (symmetrical or non-symmetrical) can be transformed into equivalent
2-phase orthogonal system using Park-Clarke transform. Transform into stationary a, p-
coordinate system is exclusively used in power electronics. That transform is defined by
transformation equation

x*(t)=§[xl(t)+a-x2(t)+a2 x5 (1) o)

where a= 1-exp[ JZ?nj and real- and imaginary parts of function (3) for symmetrical

system are
%o (0= 32310 =3 -], n
()=l -x0)] o

Since x*(t) is complex time function (= x,(t) +jxg(f)) the time-waveforms of x,(f) and xg(t) can
be expressed by complex Fourier series [Takeuchi, 1973; Bartsch, 1994]

o0 . o0 L .
x(t)z Yx ek =x, + Z(xk ey, e’]k”’t) (6)
k=— k=1

Properties of orthogonal Fourier series and convergence is described by [Marcokova, 1995;
2009]; and some application of them are given in [Takeuchi, 1973]; [Zaskalicky&Zaskalicka,
2008].

Using z-transform and switching function method. The renewables, as sources of pulse
output voltage series, can be described by system of difference equations.

For three-phase system the currents in a-§ coordinates are given as

ig(n+1)="fr/ i (1) + g1/ Uq(n) 7)
ig(n+1)=fr)e-iz(n)+gr/e Uyn) 8)
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where u(n) are the voltages in « and S coordinates, respectively

2 . (nm 7w
ua(n)—g-sm(T+gj-U )
and
uﬁ(n)zi-cos(n.”jtl)u (10)
3 3 6

Waveform of exciting impulse function (= switching function) is shown in Figure 2 for 6-
and 12-pulses voltages

213 4 213 4

u(n)T U(”)T
1134 1/3 4
0 | | | | | o 4

T T 1
| |
-1/34

-1/3

-2/3- 243

Fig. 2. Switching function of three-phase converter voltage with full width pulses (left)- and
PWM modulation 12 pulses (right)

The image of a-component of 6-pulse voltage in z-plain is [Dobrucky et al, 2007]
U 2+2%+z U z-(2z+1)

U(z)= = (11)
@ 3 Z2°+1 3 22 -z+1
Then, the image of a-component of output current in z-plain is
u z-(z+1)
(z)=—"81/6 12
3 O (2= fye)- (2 —2+1) 12

Using inverse z-transform the discrete current series in time-domain will be obtained
[Moravcik, 1992].

System decomposition into single harmonic linearised subsystems. Method of investi-
gation assumes decomposition of real electric circuit into v-harmonic separated equivalent
schemes for each harmonic component [Dumitrescu, 2009]; [Benova, 2007]. Then transient
analysis can be done for each scheme separately using 'impedance harmonic matrices', and
each equivalent scheme is now linearised and therefore easily calculated. After finishing of
calculation of each harmonic scheme, the effects of each investigated schemes are summed
into resulting quantities of real non-linear electric circuit. That means that cumulative effect
of sum of v-harmonic circuits is superimposed on basic harmonic waveform with voltage
source.

The equivalent scheme for calculation of state quantities of the network with one appliance
is drawn in Figure 3.
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Li Ri Zn(f)

Qb I O« O [J

Fig. 3. Equivalent scheme for calculation and state quantities of the network with one R-L
appliance for all harmonic components, where Zn(f) = f(vfi) and Zai(f) = f(vf) =Ri+jv2nfLi, fi is
frequency of fundamental harmonic component, i, are current sources representing
nonlinearity of appliance, R =) R, is the sum of source resistances

This overall scheme is now decomposed into v-separate schemes for each harmonic
component. These schemes for fundamental- and v- harmonic components of complex
magnitudes will be as in Figure 4a and 4b:

Li Ri ZT11 Li Ri Z11y
— {1 — ]
e > —_
L Lai I, Lai
o i et
Ra1 Ra1

Fig. 4. a,b Equivalent scheme for fundamental (a) and v - harmonic (b) components of one
appliance, where U is complex magnitude of network voltage source with voltage of
fundamental current source representing nonlinearity of appliance, [; and I, are complex
magnitudes of network current for fundamental and v- harmonic component, I,y is complex
magnitude of current source representing nonlinearity of appliance

Complex magnitudes of v-harmonic component can be obtained by harmonic analysis of its
current using 'impedance (admittance) harmonic matrices' by nodal voltages for rated
power of the appliance. For example, in case of v - harmonic component of one appliance
(equivalent scheme on Figure 3b) will be

1 1 1 — -
(ZTlu +R; +jv2nfL; "R, Ry +jvanfia, ]'(UV): (Ivv) (13)

where U, is nodal voltage (equal to appliance voltage in this case). Complex magnitude of
network current for v- harmonic component can be obtained using
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I, - t
’ Z11o + R, +jv2rfL,

(14)

It is possible (after above decomposition) to calculate state quantities of each v-harmonic.

This overall scheme is now decomposed into v-separate schemes for each harmonic
component. Corresponding harmonic quantities from each scheme are synthesized
(summarized) into final resulting waveform of investigated state quantity:

Itotal(f) = 11(f) + ....... +in (f) =2'in (t) (15)
After synthesis of all harmonic components the total transient current is obtained.

3. Renewables and non-linear and linear passive and active loads

3.1 Harmonic output voltage RES with non-linear load during transients (island
operation)
Single-phase bridge rectifier supplied by stiff voltage (from network or RES with small inner
impedance) has positive half-vawes on its DC side as depicted in Figure 5.

L

—
l)}l N /N Ds N\ Ds
L
RES f\) us(t) c uth
R
. A D2 /\ D«
—>t
Fig. 5. Scheme of single-phase RES with rectifying load and its DC side voltage
DC voltage can be decomposed into Fourier series as [Bartsch, 1994]
u= ad,) L —Lcos(Za)t)—icos(élwt)— (16)
7z |2 1.3 3.5

2U
with DC component of —. Supposing R-L load the corresponding current for single
7

harmonic component can be calculated:.

. u
= — a)t — ,
L == [COS(V ?, )] (17)

14

where

= R* + (voL) (18)

oL

Z

14

1%
@, = arctan (19)

Using synthesis of all harmonic components the total transient current is obtained
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i, = E" [cos(va)t —p,)-cosp, - et/’] (20)
ZV
wheret=L / R.
Note (nota bene): similarly for three-phase 6- pulse middle point rectifier
U= 33U, {l —1 cos(3mt) — X cos(6awt) - } (21)
z 2 24 5.7

343
with DC component of 2—’” , and also for other types of rectifiers.
T

Simulation results are given in Figure 6 and Figure 7 for transient and steady-state
considering 999 harmonics.

400 T T T T 20
Voltage [V] Current [A]
200 110
0 0
0 0.01 0.02 0.03 0.04 0.05 0.06
Time [s]

Fig. 6. Dynamic state of connecting nonlinear rectifying load to RES: voltage on DC side
(blue) and DC current (green)

Voltage [V] Current [A]

2

0 . . . . . . . . 1
0.1 0.102 0.104 0.106 0.108 011 0112 0114 0116 0118 012
Time [s]

Fig. 7. Steady-state time-vaweforms of DC voltage (blue) and current (green)
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3.2 Non-Harmonic output voltage RES with R-L load and active voltage source
(parallel operation)

Today’s converters provide very good quality output quantities regarding to their average
and RMS values. Anyway, the output voltage is non-harmonic, switched by high frequency,
Figure 8.
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Fig. 8. Scheme of single-phase converter in half-bridge connection (top), and its output
voltage
Simulation results for generating and regenerating regimes show Figure 9.
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Fig. 9. Time-waveforms of output voltage (blue) and current (red) for generating and
regenerating regimes (considering 999 harmonics)
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3.3 Three-phase non-harmonic output voltage RES with R-L load — behaviour
prediction

Three-phase 6-pulse inverter switching function is given in Figure 10.
2134

u(n)T
1134
| 1 1 1 |
T

-1/34

-2/3-

Fig. 10. Switching function for three-phase 6-pulse RES inverter

Corresponding simulation results for complex and time domain are depicted in Figure 11.
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Fig. 11. Trajectories of output voltage in complex (left) and time domain (right)

3.4 Single-phase non-harmonic output voltage RES with R-L load — behaviour
prediction
Single-phase 2-pulse inverter switching function is given in Figure 12.

1
u(n)T

3
A|-¢_-

-1 -~

Fig. 12. Switching function for single-phase 2-pulse RES inverter
Corresponding simulation results for complex and time domain are depicted in Figure 13.
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Fig. 13. Trajectories of output voltage in complex (left) and time domain (right)

4. Example of a practical implementation of the introduced methods of
solution for different types of operation of RES and power network

The main task of RES system is to deliver power of different composition into power supply
network:

- active power delivery (as a priority mission),

- and reactive or/and distortion powers delivery.
Later possibility means that RES provides function of static compensator or/and power
active filter. It depends on requests of power supply network what kind of power will be
delivered by RES.
The block schemes of connection of both sources and basic scheme of circuit configuration of
single-phase voltage inverter are shown in Figure 14.

L
i Toad A - -~
source — RES
O=1={4 |
PSNsource T Lyes 4 (nonlinear) PSN ’9 us(f) — |emes(t)
Compensating
RES Le

Fig. 14. Basic connection of RES and power network, and circuit configuration of single-
phase voltage inverter

Simulation experiments have been carried out by MatLab simulation SW 2008b environ-
ment using theory of power active filters [Singh et al, 1999; Dobrucky et al, 2006; Pavlanin et
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al, 2008] and approach in subsection 3.2 above. Figure 15 shows simulation experiments of
active compensation regime depending of time-instant of full load switching-on.

I PR g MY S

Fig. 15. Simulation of RES in active compensation regime: Load switched-on at negative
maximum of voltage (left) and in optimal instant of time (right)

During compensation regime of RES the complementary compensating current iws is
generated by such a way, that after its addition with non- sinusoidal and phase shifted load
current ijoad, the only active power (e.g. active and harmonic current isource) Will be delivered
by supplying network:

iload =ires + isource (22)
The calculation of this compensating current is the most important activity of the active
filter’s control circuit. The calculations can be carried out by different ways [Singh et al,
1999; Dobrucky et al, 2006; Pavlanin et al, 2008].
Simulation of RES in regime delivering of active power can be observed in subsection 3.2.
Active power can be delivered to- or taken from power supply network.

5. The results of laboratory experiments

There are oscilloscopic records from experimental verification of RES operation in Figs. 16,
17,18, 19 and Figure 20 for both compensation and active power delivering.

2,00% =3 120.0%

=-1.00F 505 Snglf2_STOP

-+

Fig. 16. Transient response of RES for the full load switched on: source current (top), load
current (middle) and RES current (bottom) [Dobrucky et al, 2006]
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Fig. 17. Switching-on of the RES delivering pure active current [bottom, red] into power

supply net:work_ _(top, yellow) 7 _ - 7 -

. ' &
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Fig. 18. Steady-state operation of RES in regime of active power delivering: voltage (top) and
current (bellow)

AAAARAAAANA AL A AL AL
1

AN AT A ot e
v I;'} T 1] iy — T 1 1 =] | )
e AN EaEAnS ‘--U;'TT?T,!". l_!]” r{fu"lr-ﬁ;ij‘n-
i L e { {11 | b1
TR VAR YA ERVARYER VAR VIR VAR VI VAN Y VA VA U VAR VA VA ¥ TRRVAR TR,

MuREre PmaaniCd Pamesicl) P PilepiCt)  Fhmesanicn Peacimleg 1)
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Fig. 19. Transient record of RES in regime of power acceptor from network: network voltage
(top, yellow), voltage of DC bus (top, green) of RES and current (bellow)
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Fig. 20. Steady-state operation of RES in regime of power acceptor from network: voltage
(top) and current (bellow)

6. Evaluation and conclusion

It has been shown that renewable energy source can work in two regimes of operation: as
power generating or power consumption unit. Simulation and experimental results have
proved excellent transient properties of the RES in both operations. As can be seen in
Figure 16 and 17, respectively, the waveforms indicate an instantaneous reaction of
compensation in generic regimes of RES. RES reacts already after the first calculation step
At, so it is possible to use it as dynamic voltage restorer for small changes of the supply
voltage.
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