We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

31

Modeling and Analysis of Real Time Control
Systems: A Cruise Control System Case Study

Anthony Spiteri Staines
University of Malta
Malta

1. Introduction

Real time control and embedded systems provide important services such as manufacturing
control, temperature control, cruise control in cars and planes, monitoring and regulation of
various parameters.

The importance of these systems is often overlooked and only when failure occurs is that
one notices them. The user has limited control over the operations, which are normally
managed by a real time controller. Ideally the user should be presented with predictable
behaviour. These systems differ greatly in complexity when compared with other traditional
software applications. Micro processors are produced and used in embedded applications.
Given the ever increasing integration of dedicated components new issues are created.
Embedded real time systems need to be produced at a lower cost but simultaneously
quality, reliability and safeness have to be increased. The design time should be reduced.

In some embedded real time environments the computing element is a component within
the system. The i) operational environment, ii) performance and iii) interfacing capabilities,
have a great influence on the system. Safety and failsafe mechanisms need considerable
attention at the analysis and design stages. Performance criteria imply understanding how
fast a system reacts to events. Response speeds are time critical, varying in range from a few
milliseconds to seconds. Performance estimation is more difficult if there are asynchronous
tasks which have the possibility of different order execution. For control systems complex
control law computations might be required, where the sampling period needs accurate
estimation (Liu, 2000).

The design of i) hardware parts, ii) software and the iii) actual system are separate tasks
requiring proper staged coordination. The importance of the analysis and design stages is
sometimes neglected. The implementation of the physical components should be left to the
end. Several advances in modern programming languages and real time programming serve
to simplify coding. Hardware and software technologies available at the time along with the
temporal requirements and safeness are important aspects (Gomaa, 1996; Williams, 2006).

In literature we are presented with many methods that serve for modeling and a better
comprehension of these types systems. Unfortunately there is no single method or approach
that caters for all the issues involved. Each technique, notation or method has its own
special capability being specific for certain problems. To this end a loosely structured

www.intechopen.com

562 Recent Advances in Technologies

approach is suggested. Different techniques and methods should be considered and used
according to their relevance. In this work a case study of a typical cruise control system is
presented, illustrating these concepts. The model is shown using different notations,
offering different views. A place transition Petri net models the dynamic behaviour of the
system. The Petri net is validated using invariant theory. It is converted to a task graph.
Finally it is explained how to optimize and estimate the system’s performance.

2. Analysis and Design Implications

Real time systems have special needs that necessitate the employment of special analysis
and design methods. These methods differ from traditional software engineering
approaches. In traditional software i) good software, ii) correct specifications, iii)
modularization are important aspects. Real time concepts add on these requirements other
concerns such as: i) correct timing, ii) safeness, iii) well identified state space and iv)
viewpoints for different stakeholders.

Various software methods, methodologies and notations, along with all the formal
notations, have been created to deal with these issues like i) ambivalence and ambiguity, ii)
complexity issues. To make things worse, these systems have both i) functional and ii) non-
functional requirements where the system is composed of i) functional specifications, ii)
performance specifications, iii) interfaces and iv) constraints. Requirements engineering or
requirements elicitation serve to deal with the main problems associated with the i) analysis
and design stages of software and hardware development. Requirements engineering is
important for hard systems, mission critical and embedded technologies. Requirements
engineering tries to bridge the gap between the desired system and the real world.
Requirements elicitation is not limited to the use of a particular method, methodology or
notation.. Using modern case tools, the viewpoints of different stakeholders can thus be met.
It is possible to develop very good system notations representing what is required. Use of
schematic diagrams, animation prototyping, block diagrams (Maruyama, 2001) all make
sense. Various formalisms like logics, temporal logics, abstract state machines, automata,
Petri nets, calculus, calculus of communicating systems (CCS), communicating sequential
processes (CSP), algebras and process algebras, formal languages like Z, Vienna
development method (VDM), B, Haskell, language of temporal ordering specifications
(LOTOS) and task graphs etc. have been created and used to express different views and
aspects of real time design process. Formal methods definitely help towards producing
better models because in the design process more thinking and reasoning is applied.
However they normally focus on specific aspects. CSPs and CCS focus on communication
issues, Z and VDM are used to represent the system using schemas. One problem is that
most formal methods do not offer proper visualization. Some formal methods have limited
CASE tool support. Formal representation can be difficult to understand, time consuming to
produce and to amend.

Structured real time methods and notations are based on visual diagrams. Some examples
are: Controlled Requirements Expression (CORE) (Mullery, 1979), Hierarchical Object
Oriented Design (HOOD), Jackson System Design (JSD), Modular Approach To Software
Construction Operation and Test (MASCOT), Design Approach for Real Time (DARTS),
Concurrent Approach for Real Time (CODARTS), Real Time Object Oriented Modeling
(ROOM), the Unified Modeling Language (UML)and UML-Real Time (UML-RT) (Bennett et

www.intechopen.com

Modeling and Analysis of Real Time Control Systems: A Cruise Control System Case Study 563

al., 2005; Cooling, 1995; Gomaa, 1996, 2001, Roques, 2005). All these serve to capture
different system properties in an informal or semi-formal approach. The UML contains a
repository of some notations that are common to most of these methods. Research has been
devoted to formalize these diagrams (Bennett et al., 2005; Saldhana et al., 2001).

For designing real time embedded systems a loosely coupled approach is suggested and
presented in Figure 1. Informal, semi formal and formal techniques are used at different
stages. To start off, informal techniques are used and as more understanding of the system is
gained it is possible to use formal techniques.

I) Sources of information are use cases, case tools etc. II) for initial requirements expression
information can be collected using different methods or notations e.g. JSP, UML activity
diagrams, block diagrams, control flow diagrams etc. III) the requirements obtained in ii) are
developed further. IV) Models obtained in ii) and iii) are represented formally using
automata, Petri nets, Control flow graphs, etc. The models are analyzed and checked for i)
consistency, ii) correctness, iii) completeness , iv) states and v) timing issues.

Figure 1 indicates the complete requirements engineering process which is suited for
developing embedded applications. At the initial requirements expression stage II it is more
convenient to use informal notations. Simple diagrams and notations can be selected for use
at stage I and II. Stages II and III can be combined. Any diagram from UML, JSD, MASCOT,
ROOM, DARTS etc. are all valid. Ideally all the models used should be convenient and easy
to read by both the engineer and the system stakeholders. At the detailed requirements
expression stage III structured techniques and notations are useful. At the model analysis
stage IV special checking rules are needed as different issues and problems might arise.
Formal models guarantee error free development, it is better to use them at stage IV.

1. INITIAL Il DETAILED IV MODEL ANALYSIS
'ihfg)URFﬁfﬁg; REQUIREMENTS | REQUIREMENTS AND
EXPRESSION EXPRESSION VERIFICATION
Informal | More Formal
notations notations

Fig. 1. Semi Structured Approach for Real Time Control Systems Design

For Stage IV Petri nets and task graphs are used. Petri nets are a convenient formalism for
behavior modeling, experimentation, visualization and reasoning about real time system
properties. They have over three decades of coverage. Petri nets support concurrency,
synchronization and resource sharing, formally and diagrammatically. They share
important similarities with UML activity diagrams and other notations. E.g. UML 2 activity
diagrams are based on Petri net semantics according to the UML. Fundamental modeling
concept Petri net diagrams are used to model software functioning at a high level. Higher
order nets like colored Petri nets have been widely used to represent and analyze
communication protocols and networking problems. Unlike other formalisms Petri nets
have a sort of dual identity in the sense that they can be represented using formal languages
and also graphical representation. Many UML diagrams like sequence, activity and state

www.intechopen.com

564 Recent Advances in Technologies

charts all have been successfully translated into Petri nets. Both the structural and dynamic
properties of Petri nets can be represented and analyzed. There are several classes of Petri
nets ranging from Elementary nets to Object oriented nets and Colored Petri nets. Various
CASE tools support Petri net modeling e.g. CPN Tools, HPsim, ExSpect, etc. Petri net
structures can be supported or translated into other formalisms. Simple place transition
Petri nets are easily converted into task graphs for other forms of analysis and optimization
(Brusey & Mc Farlane, 2005; Cortes et al., 1999; Desel & Kindler, 2001; Hanzakel, 1997;
Jensen & Rozenberg, 1991; Saldhana et al., 1998, Van Hee, 1991; Van Hee et al., 1994;
Yamalidou et al., 1996).

3. Cruise Control System Case Study

3.1 Basic Description- Sources of Information Stage

A modern cruise control system can be classified as digital control. This type of system is
characterized as an embedded real time system having a number of sensors and actuators
where the actual real time system functions as a digital controller. In simple terms there is a
‘read in’ of values from the input sensors that depicts the recurrent system state. This is
compared to the desired state or reference state and a computation is performed to obtain
the ‘adjustment value’. This is known as a control law computation which is also one of the
most time consuming tasks, carried out after reading-in the sensor values. Behavior is
predictable. A typical cruise control system is composed of several components or classes
interacting amongst one another in real time. Some components have high computational
requirements. Communication between the ‘actors” could require the support of adequate
protocols and communication channels. Some parts of this system clearly exhibit closed loop
highly cyclical behavior typical of real time conrollers. In the cruise control, user data and
sensor data is read in. The input data is compared with the desired speed. This comparison
is used to compute the output adjustment value for the actuator. The actuator automatically
performs the adjustment. This real time system also functions as a controller. Two types of
tasks can be identified i) periodic tasks and ii) user initiated tasks. In a system like cruise
control, these two types of tasks form part of the main activities. The the basic algorithm for
the cruise control system is given below (Gomaa, 1996, 2001; Liu, 2000).

Set Timer to interrupt periodically in a period (T)
at each interrupt do
1) Sensor Scan process (
GPS,Ul,Brake,Accel,Engine)
2) Get current speed
3) Compute control values
4) Update parameters
5) Send adjustment value to throttle
enddo

Steps 3 and 4 have the most significant time requirements. This is because the final
computation is based on these values. The reading in sensor inputs tasks 1 and 2 are
composed of subtasks. They can be carried out in any order. It is possible to execute these
tasks concurrently. Tasks 3 and 4 have precedence constraints requiring certain ordering.

www.intechopen.com

Modeling and Analysis of Real Time Control Systems: A Cruise Control System Case Study

The current speed measured from the wheel rotation is compared with the desired speed
and the data from the other sensors. The computed adjustment value is sent to the throttle
actuator. Normally this would be i) reduce speed or ii) increment speed or iii) maintain
current speed. Tasks 4 and 5 can be executed concurrently. The system behavior can be
classified as deterministic, exhibiting a repeated pattern behavior. Sensor data is read to
obtain accurate estimates of state variables to be monitored and controlled. Input values are
used to compute an adjustment value. Parts of the system can be scheduled differently.

3.2 Initial requirements expression and Representation Stages

i) SENSOR SCAN

PROCESS
MONITOR
GPS N
GPS S~
SYSTEM ~
u| /
BRAKE MONITOR | -~
SENSOR BRAKE
7
Ve
//
ACCEL ,
MONITOR
SENSOR | > " ,CCEL
ENGINE
SENSOR MONITOR
ENGINE
\
WHEEL
REVOLUTION ~ _ MEASURE
SENSOR SPEED

il) GET SPEED
PROCESS

CLOCK

|

CRUISE
CONTROL

CRUISE
CONTROLLER

RECORD
SPEED

ili) COMPUTE SPEED
ADJUSTMENT

565

THROTTLE
ACTUATOR

iv) ADJUST
THROTTLE

Fig. 2. Cruise Control Flow Data Flow Diagram adapted from (Kramer & Magee, 1997)

The initial and detailed requirements expression stages II and III are combined. The
diagrams used are from the previously suggested methods.

www.intechopen.com

566 Recent Advances in Technologies

The diagram in Figure 2 (Kramer & Magee, 1997) illustrates the main cruise control system
events. This diagram is commonly used in real time structured analysis and design methods
like JSD and DARTS (Gomaa, 1996). Extensions to data flow diagrams are used to add
details for event flows and control transformations like discrete, continuous, triggered,
enable/disable etc. The diagram has been partitioned into four main sections to clearly
illustrate all four main tasks. All activities are controlled and synchronized by the cruise
controller.

Figure 2 depicts the top-level network diagram for the cruise control using MASCOT
notation. This diagram can be used to obtain a full system template with bindings and
interfaces e.g.

Server Disp out:Digital_out(ow=USER..op);

Server Spsensor-in: Analog-in1(s1w=CCl.s1p); etc.

The subsystem components e.g. speed control, user interface, etc. can also be identified.
Component coupling is rigorously enforced. The diagram can be decomposed further. UML
interaction diagrams can describe the communication processes for the cruise control.

/SPEED-CONTROL I
USER
Kpd 1 Ensensor-in
ul ———{\ Serial-in 1= SEI?NGS":)IIE?
Disp-out Output
DISPLAY ———{\ Digital-out s?s?«gKoi
N s
0 ACCEL
SENSOR
ap sp signal1
s1p@®<t—;
eSpeed Control < Signal2 |
s2p¥¥ signal3
up s4pap53p < Act-out
Adjust
e Analog-out1 |__|_| THROTTLE
ACTUATOR
aw
Wheelrevsensor-in
GPS_System WHEEL
Analog-in4 |-—--| REVOLUTION
saw / SENSOR

Fig. 3. Cruise System MASCOT Network Diagram

The cruise control System UML activity diagram is presented in Figure 4. This shows all the
tasks and their order. The activity diagram can be converted into a Petri net.

www.intechopen.com

Modeling and Analysis of Real Time Control Systems: A Cruise Control System Case Study

567

!

Finish

Fig. 4. Cruise Control System UML Activity Diagram

www.intechopen.com

Receive
GPS
Signal
Receive Send
Brake Brake
Signal Signal
Receive Ul Send Ul
Signal Signal
Receive Send
Monitor Monitor
Signal Signal
Receive Send
Accel. Accel.
Signal Signal
Receive Send
Engine {=----------moeee- engine
Values values
I
Compute
Control Values
Update Seryd Recglve
Parameters Adj. Adj.
Value Value
Ready
[repeat]
[Terminate]

Send GPS
Signal

568 Recent Advances in Technologies

4. Model Analysis and Verification Stage - Petri Net and Task Graph Modeling

4.1 Constructing the Petri Net

As stated for analysis of the models Petri net structures and task graphs are used.
Constructing the Petri net is a relatively simple process. The algorithm in 3.1 or the UML
activity diagram shown in Figure 4 can be used. The following steps explain the conversion
process: i) add a dummy source transition (node) at the top ii) add a dummy sink transition
at the bottom (end) iii) the tasks in the algorithm are placed in sequence between the source
and the sink node. Transitions for parallel tasks are placed next to each other, iv) places are
added to join the transitions. For parallel processing a fork point and a join point is used to
join the input and output of the concurrent tasks.

Practically speaking the Petri net represents the possible task execution sequence and it is
similar to a task graph (Abdeddaim et al., 2003; Hanzakel, 1997). The Petri net is both a
visual and formal executable specification that is easy to understand.

Source
MONITOR MONITOR MONITOR MONITOR MONITOR MEASURE
GPS BRAKE ACCEL ENGINE SPEED

739 <P <$ <$ @2%5 A

COMPUTE
CONTROL
VALUES

5‘@ 9

T8 UPDATE SEND Tg

PARAM. ADJ.
VALUE

P16

Sink
Fig. 5. Cruise Control Initial Petri Net

www.intechopen.com

Modeling and Analysis of Real Time Control Systems: A Cruise Control System Case Study 569

4.2 Task Parallelism

Parallelism (Hanzakel, 1997; Liu, 2000) implies detecting computations that can be carried
out in parallel. If more than one processor is available, tasks can be executed in parallel.
Petri nets and task graphs expand this possibility. E.g. Figure 5 shows that tasks T1..T6 and
T8,T9 can be executed in parallel.

4.3 Cruise Control Directed Graph

The cyclic directed graph similar to a task graph for the cruise control system is simply
obtained by ignoring all the places in the Petri net and replacing the transitions with nodes.
This is possible because each place holds exactly one token i.e. it is a 1-safe Petri net. This
graph can be reduced into a directed acyclical graph (DAG) by removing el7.

SOURCE

SINK
Fig. 6. Cruise Control Directed Graph

4.4 Redrawing the Graph for Two Available Processors

The tasks or transitions in Figure 5 would have to be executed sequentially if a single
processor is assumed to be available. If more than one processor is available the whole
scenario will change. The vertices in Figure 6 indicate which tasks can be carried out in
parallel. It is evident that if all T1..T6 had to be executed completely in parallel, six
processors are required. Normally we can assume just two processors are available. The
directed graph needs to be redesigned to reflect this. The problem is to find an optimum
solution to redistribute/schedule concurrent tasks. The following algorithm can be used for
this purpose.

Identify all critical tasks

Identify all parallel tasks

Add tasks in order to a processor

If (critical task) then
If (time (P,) = time (Py)) add task to P, or Py

www.intechopen.com

570 Recent Advances in Technologies

If (time (P,) > time (Py)) add task to P,
If (time (P,) < time (Py)) add task to Py,
Set time for P, , P, = max time

If (parallel task) then
If time (P,) + newtask < time (Pp) + newtask
Add task to P,
If time (Pp) + newtask < time (P,) + newtask
Add task to Py
If (time (P,) + newtask = time (Pp) + newtask add
task to P, or Py,
SOURCE
T11 -
SOURCE
P1 P2
T1 MONITOR T2 |MONITOR
GPS Ul
T [MemmoR] 7 [MonreR
P13 Q)
P5 P6]
T6 MEASURE T5 | MONITOR
SPEED ENGINE
7 [eures
VALUES
el13
SINK
T10

SINK
Fig. 7. Cruise Control a) Petri Net and b) Directed Graph for Two Processors

www.intechopen.com

Modeling and Analysis of Real Time Control Systems: A Cruise Control System Case Study 571

If the given times for tasks are: T1, T6, T9 = 20ms, T2,T5 = 10ms, T3,T4 =15ms , T7= 40ms
and T8= 25ms the result is as shown in Figure 7 a) and b). In Figure 7 b) the critical path or
longest cycle is shown in bold. This is the sequence of events on processor A, T1-T4-T6-T7-
T8. The sequence of events on processor B is T2-T3-T5-T9.

5. Verification of the Petri Nets

5.1 Incidence Matrix Properties
An incidence, flow or change matrix Cj is a special matrix representing the ordered input
flows and output flows of the Petri net. For this matrix 1<i<m,1< j<nand C = input flows

- output flows. The incidence matrix is important for expressing basic structural properties
of the net. A transition might have exactly one input and output flow, if for every row there

n
are non zero values which sum up to zero. Le. for a row i, D.a; =0,
k=1

5.2 Invariants

There are several classes of invariants (Clarisio et al., 2005; Sankaranarayana et al., 2004; Van
Hee, 1994, Yamalidou et al., 1996, Zhou & Venkatesh, 1999). Simple linear invariants that
interpret the structural and firing properties of the net are used. A vector veZ"is by
definition a P-invariant iff +.C=0 for a given Petri net. For the Petri net

Vvi-M =v'-M +v'.C5, where M = initial marking, M ' = next marking, C = incidence matrix
and § =firing vector. v'-M —v'- M’ for all reachable markings denoting that the weighted
sum of tokens remains constant or unchanged. A vector y e Z"”is by definition a T-invariant
iff Cy =0 for a given Petri net denoting a repetitive firing cycle.

Analyzing the Petri nets in Figure 5 and Figure 7a) the following results are obtained. This
data was obtained using the Dnanet Petri net tool (Attieh et al., 1995).

110000000000 {wain.pl) 1100 (main.pl)
001000010000 {main.pz) o011 (main.p2)
000100001000 (wain.p3) 1100 (wain.ps)
Oo000i10000100 {main.pd) o011 (main. pd)
000001000010 {mwain.pS5) 1100 (main.ps)
Oooo0000100001 (wain.ps) oo 11 (wain.ps)
110000000000 {wain.p7) 1100 (main.p7)
001000010000 (wain. ps) oo 11 (wain.ps)
000100001000 {wain. p9) 1010 (fwain.pd)
Oo000i10000100 (main.pll) o101 (main.pll)
000001000010 (main.pll) o101 (main.pll)
oooo0o0oo0Dio00001 main.plz) 1111 main.plz)
101111100000 (main.pl3) 1010 (main.pld)
Di1o0000011111 (wain.pld)

101111100000 (wain.pls)

oil1o0o000011111 (main.plé)

111111111111 wain.pl7)

Fig. 8. Place Invariants for the Petri Nets in Figure 5 and Figure 7 a)

www.intechopen.com

572 Recent Advances in Technologies

EFR R RRRRR PR
3
)
H
ot
o
o

main.tll)

Fig. 9. Place Invariants for the Petri Nets in Figure 5 and Figure 7 a)

5.3 Other Behavioral and Structural Properties

The marking graph, consisting of all the possible markings is used for constructing the
reachability tree and testing for deadlock.

Invariants are used for further analysis. i) Bounded and conservative behavior is denoted
by3v > 0,v'C =0,ii) Repetitive behavior by Jy > 0,Cy >0and iii) Consistent behavior
by 3y > 0,Cy = 0 . Other issues like home states, cyclic behavior, deadlock and boundedness

can be properly interpreted from the invariant results. Petri net test suites and CASE tools
like Dnanet, etc. are useful for further checking. The results of the reachability graphs and
invariants are presented in tables 1 and 2.

PETRI REACHABILITY CONNECTED T-INVARIANTS P-INVARIANTS

NET MARKING GRAPH COMPONENTS
Fig. 5 69 unique markings 1 strongly identical not identical
Fig. 7a) 21 unique markings 1 strongly identical not identical

Table 1. Reachability and Invariant Comparison for Petri Nets in Figure 5 and 7a)

PETRI DEADLOCK BOUNDED CYCLIC HOME
NET POSSIBLE BEHAVIOUR STATES
Fig. 5 NO YES YES YES

Fig. 7a) NO YES YES YES

Table 2. Other Structural and Behavioural Properties for Petri Nets in Figure 5 and 7a)

5.4 Interpretation of the Petri Net Properties

The Petri net models for the cruise control system have been successfully validated. They
are both conflict free, deadlock free and do not have unwanted states. The most strongly
connected component is T7. This task is the most critical and important task. The transition
invariant analysis shows that even though the algorithm and firing cycle is modified, the
basic properties and execution remain unchanged. I.e. both models are formally correct and
valid. The structures have a relatively small reachability tree. The two processor Petri net

www.intechopen.com

Modeling and Analysis of Real Time Control Systems: A Cruise Control System Case Study 573

shown in Figure 7a) has only 21 unique markings compared with the one of Figure 5 having
69. This is indicative that if more processors are introduced, the overall system state space is
increased and becomes more difficult to handle. More synchronization overhead is
necessary to coordinate and control process communication. On the other hand, by reducing
the parallel tasks in the system the complexity is reduced so there is less switching
overhead. The number of parallel places or the concurrent tasks in the directed task graph,
indicate the total number of processors required for parallel task execution.

6. Task Scheduling and Optimization

6.1 Two Processor Task Scheduling

One difficulty in parallel systems is load balancing. The graphical result for the Petri net in
Figure 7a) and task graph in Figure 7b) is shown in Figure 10. This is obtained from the
algorithm in section 4.4. Processor I is fully utilized and processor II has a utilization of
approximately 46 % only when directly compared with processor II. Processor 1II is utilized
for 55ms only in a 120 ms cycle when Processor I is utilized 100% of the time. Adding
another processor can reduce the time of processor I, but the task iii) compute control
values, has precedence constraints hence all the preceding tasks must have completed.

Monitod MOTItor Monito IDLE S:d'}d
Processor Il Ul | Brake [Engine TIME Val)
10ms 15ms 10ms 60 ms alue
\ 20ms
N\
{ 4
\ |
\ |
] Synch 1\\ Synch 2:
N |
\ |
\‘ |
Monitor | Monitor | Measure Compute Control Update
Procssor | GPS Accel. Speed Values Param.
20ms 15ms 20ms 40ms 25ms
0 20 40 60 80 100 120 140
ms

Fig. 10. Task Scheduling for Two Processors

www.intechopen.com

574 Recent Advances in Technologies

. . pl (1)
utilratio = —

p2

Equation (1) defines the processor utilization ratio which is a very simple measure. If
Processor I is used for 120ms and Processor II for only 55ms then we get a value of 2.18
which implies that processor I is used 2.18 times more than processor I Le. the load is not
evenly distributed. The inverse of the utilization ratio yields a value of 0.458 confirming that
Processor II is utilized 45.8% of the time that Processor I is utilized. It is not really possible to
improve this because there are precedence constraints and communication delays which is
normal for multiprocessing.

6.2 Improvement Factor of Two Processors vs a Single Processor
Two or more processors offer an improvement over having just a single processor. The
improvement needs to be measurable.

T (2)

I — Seq T parallel

Tseq
Equation (2) defines the improvement factor of parallel processing over sequential
processing. I = improvement factor, Tseq = total time taken to complete tasks with a single
processor. Tparallel = total time taken to complete tasks when there is more than one
processor. If Tseq= 175ms for the model in fig 5. and Tparallel= 120ms for fig 7a) then we get
[=0.314, i.e. adding one extra processor reduces the time of sequential processing by 31.4%.
The improvement that is obtained having two processors is again constrained by precedence
constrains and communication or synchronization requirements which cannot normally be
changed. It must be pointed out that the improvement depends on the timing of the
individual tasks. With other timings it is possible to have completely different results and
even no improvement.

7. Conclusion

The main aim of this work has been to present a semi structured approach for the analysis
and design of real time embedded and control systems. The main steps involved are i)
sources of information, ii) initial requirements expression, iii) detailed requirements
expression and iv) model analysis and verification. In this context, the example of a basic
cruise control system has been taken. This example has been used to show some different
diagrammatic notations and formal modeling using place transition Petri nets and task
graphs. It is not possible to represent embedded and control systems without diagrams.
There being many methods, it becomes difficult as to which diagrams should be used. In
this work different notations from different methods have been used for the initial
requirements expression and detailed requirements expression stages, i.e. stage II and III
which can be combined. These show different views and capture more information. Ideally
it could be better when designing these systems if more than one method is considered. To
prove the correctness of system specifications, formal methods have to be used. When there

www.intechopen.com

Modeling and Analysis of Real Time Control Systems: A Cruise Control System Case Study 575

is a hard real time system, like a cruise control system, it is imperative to have a high degree
of confidence that the system specifications and notations are correct. Once this has been
done the design stage is better managed. On the other hand the use of formal notations can
be time consuming and require expert knowledge.

A cruise control system has been studied and analyzed using different notations. MASCOT,
UML activity diagrams etc. have been used initially. Other diagrams from JSD, DARTS,
ROOM etc. could have been used. Finally for dynamic modelling a simple Petri net is built.
Petri nets are converted into directed task graphs. Petri net theory is used for model
optimization and proving the correctness of models. Useful properties like invariants,
reachability tree, etc. can be easily obtained for deterministic systems. More detailed
analysis based on graph theory, other Petri net properties and simulation techniques can be
considered. Colored Petri nets and higher order nets provide other possibilities. The two
processor Petri net model can be translated into ladder logic diagrams (LLD) useful for
programmable logic controller (PLC) programming.

If there are other timings or considering other communication and synchronization
overheads not shown in this study, it is possible not to have any improvements and a
completely different strategy might be required. This is because the actual analysis given in
section 6 depends upon the order and timing of the tasks.

8. References

Abdeddaim, Y.; Kerbaa, A. & Maler, O. (2003). Task Graph Scheduling using Timed
Automata, International Parallel and Distributed Processing Symposium (IPDPS'03),
pp- 237.2, Nice, April 2003, IEEE Computer Society, France

Attieh, A.; Brady, M. & Knottenbelt, W. (1995). DNAnet A Concurrent Systems Modelling
Tool User Guide ,Data Network Architectures Laboratory, University of Cape Town,
South Africa

Bennett, S.; Skelton, J. & Lunn, K. (2005). Schaums Outline of UML 2nd ed., McGraw-Hill,
ISBN: 978-0-077-10741-3, Europe

Brusey, J. & Mc Farlane, D. (2005). Designing Communication Protocols for Holonic Control
Devices using Elementary Nets, Second International Conference on Industrial
Applications of Holonic and Multi-Agent Systems, pp. 22-24, ISSN: 0302-9743,
Copenhagen, August 2003, Springer-Verlag, Denmark

Clarisio, R.; Rodriguez-Carbonell, E. & Cortadella, J. (2005). Derivation of Non-structutal
Invariants of Petri Nets using Abstract Interpretation, 26th International Conference
On Applications and Theory of Petri Nets (ICATPN),pp. 188-207, ISBN 3-540-26301-2,
Miami, June 2005, Florida, USA

Cooling, J. E. (1995). Software Design for Real-Time Systems, Chapman & Hall , ISBN: 978-
0442311742, London

Cortes, L.A.; Eles, P. & Peng, Z. (1999). A Petri Net based Model for Heterogeneous
Embedded Systems, 17#* IEEE NORCHIP Conference, pp. 248-255, Oslo, November
1999, IEEE, Norway

Desel, J. & Kindler E. (2001). Petri Nets and Components Extending the DAWN Approach,
Workshop on Modelling of Objects, Components, and Agents (MOCA'01),pp. 21-36,
Aarhus University, August 2001, CPN Group, Denmark

www.intechopen.com

576 Recent Advances in Technologies

Gerhke, T.; Goltz, U. & Wehrheim , H. (1998). The Dynamic Models of UML: Towards a
Semantics and its Application in the Development Process, Technical Report
Informatik-Bericht 11/98, CiteSeerX.psu:10.1.1.43.3437, 1998, University of
Hildesheim, Germany

Gomaa, H. (1996). Software Design Methods for Concurrent and Real-Time Systems, Addison-
Wesley, ISBN: 978-0201525779, USA

Gomaa, H. (2001). Designing Concurrent, Distributed, and Real-Time Applications with UML,
Addison- Wesley Professional , ISBN: 978-0201657937, USA & Canada

Hanzakel, Z. (1997). Parallel Algorithms for Distributed Control - A Petri Net Based Approach,
PhD. Thesis, Czech Technical University (CTU), Prague 1997

Jensen, K. & Rozenberg, G. (1991). High-Level Petri Nets: Theory and Application, Springer-
Verlag, ISBN:3-540-54125-x, London, UK

Kramer, J. & Magee, J. (1997). Exposing the Skeleton in the Coordination Closet, Proceedings
of the Second International Conference on Coordination Languages and Models, pp. 18-31,
ISBN: 3-540-63383-9,Berlin, September 1997, Springer-Verlag, Hiedleberg

Liu, J.W.S. (2000). Real-Time Systems, Pretence Hall, ISBN: 978-0130996510, New Jersey

Maruyama, K. (2001). Automated Method-Extraction Refactoring by Using Block-Based
Slicing, Proceedings of the 2001 symposium on Software reusability: putting software
reuse in context, pp. 31-40, ISBN:1-58113-358-8, Toronto, May 2001, ACM, Ontario,
Canada

Mullery, G. P. (1979). CORE- A Method for Controlled Requirement Specification, Proc. of
the 4t Int. Conf. on Software Engineering, pp. 126-135, Munich , September 1979,
IEEE Computer Society, Germany

Roques, P. (2005). UML in Practice: The Art of Modeling Software Systems Demonstrated through
Worked Examples and Solutions, Wiley, ISBN: 978-0-470-84831-9,

Saldhana, J. A.; Shatz, SM. & Hu, Z. (2001). Formalization of Object Behavior and
Interactions From UML Models, International Journal of Software Engineering and
Knowledge Engineering (IJSEKE), Vol. 11,No 6., May 2001, pp. 31-40, ACM

Sankaranarayana,S.; Simpa, H. & Manna, Z. (2004). Petri Net Analysis using Invariant
Generation, In: Verification: Theory and Practice: Essays Dedicated to Zohar Manna on
the Occasion of His 64th Birthday (LNCS), Vol. 2772 , pp. 682-701, Springer-Verlag,
ISSN:978-3-540-21002-3, Heidelberg Germany

Van Hee, K.M.; Somers, L.J. & Voorhoeve, M. (1991). The EXSPECT Tool, Proceedings of the
4th International Symposium of VDM Europe on Formal Software Development-Volume I:
Conference Contributions - Volume I (LNCS) , pp. 683-684, ISBN:3-540-54834-3,
Springer-Verlag, London UK

Van Hee, KM. (1994). Information Systems Engineering A Formal Approach, Cambridge
University Press, ISBN:0-521-45514-6, Cambridge UK

Williams, R. (2006). Real-Time Systems Development, Elsevier, ISBN: 978-0-7506-6471-4, United
Kingdom

Yamalidou , K. ; Moody, J. , Lemmon, M. & Antsaklis, P. (1996). Feedback Control of Petri
Nets Based on Place Invariants, Automatica (Journal of IFAC), Vol. 32, no. 1, 1996,pp.
15-28, Pergamon Press, ISSN: 0005-1098, Tarrytown, NY, USA

Zhou, M. & Venkatesh, K. (1999). Modeling, Simulation and Control of Flexible Manufacturing
Systems- A Petri Net Approach, World Scientific Publishing Company, ISBN: 978-
9810230296, Singapore

www.intechopen.com

Recent Advances in Technologies
Recent Advances

in Technologids Edited by Maurizio A Strangio

)

ISBN 978-953-307-017-9

Hard cover, 636 pages

Publisher InTech

Published online 01, November, 2009
Published in print edition November, 2009

The techniques of computer modelling and simulation are increasingly important in many fields of science
since they allow quantitative examination and evaluation of the most complex hypothesis. Furthermore, by
taking advantage of the enormous amount of computational resources available on modern computers
scientists are able to suggest scenarios and results that are more significant than ever. This book brings
together recent work describing novel and advanced modelling and analysis techniques applied to many
different research areas.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Anthony Spiteri Staines (2009). Modeling and Analysis of Real Time Control Systems: A Cruise Control System
Case Study, Recent Advances in Technologies, Maurizio A Strangio (Ed.), ISBN: 978-953-307-017-9, InTech,
Available from: http://www.intechopen.com/books/recent-advances-in-technologies/modeling-and-analysis-of-
real-time-control-systems-a-cruise-control-system-case-study

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia E EEHIEL AR5 S _EiBE PR R A KRS HAE4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

