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Integer Neural Networks On Embedded Systems
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1. Introduction

Neural networks are one of the many types of intelligent systems that are in use
today. These systems allow for machines to make decisions based on relationships that are
either not fully understood or are very complex. Neural networks are trained by providing
a series of inputs and the corresponding outputs for the task being performed. Once the
network has been trained, it will produce an output the same as, or very close to, the actual
value, without the relationship between the inputs and outputs being explicitly
programmed into the network. For this reason intelligent system have a very wide range
of applications, ranging from voice and face recognition to simpler things like motor
control and inferential sensors. In this chapter we will explore the use of neural networks
on the lowest end of devices capable of implementing neural networks. Specifically we will
look at integer neural networks.

Integer Neural Networks (INNs) are of particular interest when dealing with very low cost
microcontrollers. Integer neural networks are implementations of Artificial Neural
Networks (ANN) that only wuse integer values, as opposed to conventional
implementations that use floating or fixed-point values. The type of values used can have a
large impact on both the accuracy and execution speed of a network, especially when
dealing with low cost microcontrollers that lack the hardware to perform floating or fixed-
point arithmetic.

In this chapter we will explore the reasons behind the need for integer neural networks, the
types of hardware that can expect an increase in performance when using integer-
only networks, and the relative increase in performance on those types of hardware.
Additionally, we will look at the advantages of using DSP operations that are now
available on these low cost microcontrollers. Finally we will look at an example
implementation of an integer neural network to see how quantization affects the accuracy
of the output of the network (Dragaci, 1999).

2. Integer and Floating Point Hardware

The motivation behind using integer neural networks is to reduce the final cost of a system
that uses a neural network. This is possible because microcontrollers that contain the
hardware for performing floating or fixed point operations are significantly more
complex then integer versions, and thus more expensive. Early Personal Computers (PCs)
did not include floating-point hardware for this very reason. IBM computers using the Intel

www.intechopen.com



82 Recent Advances in Technologies

x86 family of processors did not include floating-point hardware until the release of the
486DX, and the Intel 486SX was released as a cheaper version of this processor without
floating point hardware. Any floating point operations had to be done in software which
greatly reduced performance, or via the Intel 8087 floating point co-processor. Apple
computers using the Motorola 68000 operated in a similar fashion with the 68881/68882 as
the coprocessor. While modern computer designs have long since moved past these
limitations, selecting a microcontroller for a low cost application makes this a pertinent
consideration. Microcontrollers that include floating-point hardware can cost many times
more than an equivalent integer-only version. Recently new integer-only microcontrollers
(such as the Microchip dsPIC30fxxxx and dsPIC33fxxxx series chips) have been released
that included some Digital Signal Processor (DSP) functions, which have been shown to
greatly increase the performance of neural networks. These new DSP-capable
microcontrollers are more expensive than regular microcontrollers. However, they are still
much cheaper than floating-point capable units. The DSP operations allow for a neural
network to be executed much faster than before, with only a moderate increase in cost of the
system. DSP operations, specifically the MAC (Multiply ACcumulate) instruction, are well
suited to increasing the performance of neural networks, Figure 1. Typically the MAC
instruction uses two pairs of registers and a special accumulator register. In each pair, one
register hold the address of the data and one register holds the data itself. On every
execution of the MAC instruction, data is moved from the addresses stored in the address
registers to the data registers. The address registers are then post incremented to the next
memory location. Finally, the two values in the data registers are multiplied and added to
the special accumulator register. The accumulator register is typically much larger than
normal registers to prevent the data become so large that the register overflows.

Accumulator

Multiply

Register A Register B

A A

4

Pointer A Pointer B

Array A Array B

A

Fig. 1. Simplified block diagram of MAC instruction.
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The MAC instruction is typically used to accelerate convolution. Convolution (1) is used
in many applications, but is especially noteworthy for its use in FIR and IIR digital filters.

(f x )= D, fim)- g(n -m) (1)

a<a+b-c )

The MAC instruction can accelerate this operation by combining all of the accumulation,
multiplication, increment, and move operations in one instruction cycle (2). This means
that only one instruction cycle is needed for every element in an array, rather than the
many instructions that would otherwise be required. This is important for neural network
because convolution and the calculation of the net value of a neural network are
mathematically identical (3). The output of a neuron is a function of the accumulated
products of all the weights and inputs in that neuron (4).

Net = Inputs - Weights 3)
Output = f(Net) 4)

This implies that neural networks can benefit from the MAC instruction in the same
way that digital filters do. As we will see later in this chapter, using the MAC instruction
can greatly increase the speed at which a neural network can be executed.

3. Integer Neural Networks

3.1 Feedforward

The simplest form of neural network is a feed forward network. In this network, the inputs
are fed into one end of the network and the output is produced at the other. All the
neurons in one layer connect to the neurons in the next layer. An integer neural network of
this type will be explored later in this chapter. However, there are many other types, such
as stochastic networks, recurrent networks, radial networks, etc. Each type of network has
its own advantages and disadvantages; the feedforward network was chosen as the
example network for its simplicity. Figure 2 sows a simple 2-2-1 neural network that is
used later for testing.
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Fig. 2. Diagram of a 2-2-1 neural network.
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The output of a neuron is a function of the accumulated product of the neurons inputs
and its weights. The function is called the activation function and it is most often a sigmoid
to simplify the calculation of the derivative when performing backpropagation. There are
several types of activation functions, but generally they perform the same purpose. Most
importantly it is from the activation function that a neural network achieves non-linearity in
the output of a neuron. Also the activation function places limits on the magnitude of the
values inside the network. Limiting the size of the values in the network is an important
consideration for integer neural networks as the range of values is much more limited then
floating-point values.

Typically an activation function output ranges from 0 to 1 or -1 to +1. While this is not an
issue for a floating point network, it is an integer neural network. Taking the second case,
an integer neural network would quantize the output of the activation function into -1, 0,
+1. The does not provide nearly enough selectivity to provide accurate classification. One
method to avoid this is to stretch the activation function so that more function outputs exist
as whole values. Figure 3 shows the activation function (tanh) stretched according to (5).

2D T T T T T T

—
(]
T

— — — Stretched tanh
— Cluantized Stretched tanh
-15 =10 -5 0 L 10 15

b
net

Fig. 3. Stretched activtion function (tanh).

Y =16° tanh (éj (5)

This quantized activation function can be stored in a Look Up Table (LUT) so that the tanh
function does not need to implemented. Using a LUT is much faster than calculating tanh
even if the microcontroller supports floating-point operations. In a LUT the output value of
the activation function is retrieved from memory based on the value of Net. This means that
the tanh value does not have to be calculated which can be a time and resource consuming
task.
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3.2 Backpropagation

Training an integer neural network remains a serious challenge. The most common
method of training a neural network is backpropagation. In a normal neural network the
magnitude of the weight updates is attenuated by the decimal values in the network.
Additionally a small constant, 1), is multiplied directly to the weight update to further
reduce the rate at which the weights are updated as seen in (6). This is important because
the network must gradually move to a solution, by having very small weight updates
the network does not skip over possible solutions. However in an integer neural network,
the magnitude of the values in the network are always equal to or greater than one. This
means that the weight updates have the potential to become very large after successive
multiplications (7). When the weight updates are very large the output of the network
will change drastically after each update, preventing the network from moving toward a
solution.

The second major challenge is in the derivative of the stretched tanh function.

— — — Derivative
— Clantized Derivative
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Fig. 4. Derivative of stretched tanh.

Figure 4 shows that only a small portion of the input space for the derivative of the
activation function is non-zero. This implies that the weight update is zero and the network
does not move towards a solution.

Aw =nd 6
5 = (t - o) f (Net)y 7

~ ~—
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Equation (6) shows how the weight update is determined for the output neuron, and how
the value 1) is used to control the rate of weight convergence. The input weight for a neuron
is calculated by multiplying the input, y, the derivative of the activation function f'(Net), and
the difference between the target value and the output (7) . For values of Net where f'(Net)
is zero, O is also zero, leading to Aw the weight update, to also be zero (7).

Without the use of the derivative of the stretched tanh function, normal backpropagation
cannot be performed. There are many approaches to this problem, such as fixed weight
updates (Tang et al., 1997), as shown in equations (8) and (9).

0 = Net o Input (8)

+1 if 0>0

Aw =
-1 if 0<0 ©)

This simplified backpropagation allows the weights to be updated by small steps, avoiding
the need for 1 to reduce the magnitude of the weight update. It also removes the need to
calculate the derivative of the activation function. However the down side to this
approach is that the network is trained very slowly and it can be difficult for the weights to
diverge because they are being changed at the same rate every iteration. Other
methods such as (Tang et al., 1997) and (Xu et al., 1992) provide some other methods of
weight updates for integer neural networks using different solutions. Training integer
neural networks remains much more difficult then training floating-point networks.

4. Execution Time Comparison

The first consideration when choosing an integer neural network is execution time. If the
target system has timing constraints that are easy to meet, then it may be possible to use a
floating-point network on low cost hardware despite the performance drawbacks.
However it is often the case that faster execution is required to meet the demands of the
application. Additionally a faster network can allow the microcontroller to operate at a
reduced clock speed and thereby consume less power. To compare the performance of
integer neural networks and floating point neural networks a very simple 2-2-1 neural
network, shown in Figure 2, was trained to solve the XOR problem and then
implemented in hardware. For testing, a dsPIC30F2011 (Behan et al., 2008) was chosen as
being representative of the type of low cost DSP capable microcontrollers that are best able
to benefit from integer neural networks, as well as demonstrate the effects of DSP
acceleration. For timing purposes the number of clock cycles used was chosen as the base
measurement as it is independent of the type and clock speed of the microcontroller.
Equations (10), (11), and (12) show the output of the neurons at the output, hidden, and
inputs layers respectively.

Outi = f(D_ Wi e Out) (10)
Out, = f(O_ W, ¢ Out) (11)
Outi = xi (12)
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At the output layer (10) the output is the sum of the weights (Wj) and the outputs from the
previous layer (Out;), this is also called the Net value. The Net is then transformed by the
activation function, and the result is the output. The output of the hidden layer (11) is the
same, except the previous layer is now the input layer. The input (12) layer is simply the
inputs to the network.

Three variants of the code were written, one with floating point variables and constants, and
one with integer variables and constants. The integer version has two subversions; one with
DSP acceleration and one without. To maintain an accurate comparison, the output of the
floating point net calculation was set to zero so that it may use a LUT. This was done to
ensure that the performance increase shown is the result of using integers and not
because of the LUT. One neuron shows the time needed to calculate the output of one
neuron. Further details on the testing and performance comparison are available in
(Behan et al., 2008). The time to execute different parts of the neural network in clock
cycles is shown in Table 1. Fastest times are in bold.

INN with DSP INN without Floating Point
DSP
Net Calculation 21cc 87cc 776¢cc
One Neuron 49cc 115cc 923cc
Wh°1;estample T17cc 1509cc 1199%6cc

Table 1. Comparison of execution times.

As seen in Table 1, the integer neural network is the fastest method in all of the cases. The
DSP operations allow the Net value to be calculated four times faster than would be
possible without DSP operations. For the calculation of the whole sample set, the speed
increase provided by the DSP operations has been reduced because the Net calculation
accounts for only a small portion of the overall calculations.

The integer calculations without DSP operations also perform quite well. While slower than
the DSP version, it is still significantly faster than the floating point version. For this small
network with few interconnects the integer version operates at half the speed for the whole
sample set. For larger networks where the Net calculation accounts for more of the overall
calculation time, the performance gap between DSP and non-DSP will increase.

The last tested version was the floating-point version. As expected the lack of floating point
hardware greatly degrades the performance of this network. The integer versions are faster
by a factor of 7.9 without DSP acceleration and by a factor of 16.7 with DSP operations. As
with the difference between the DSP and non-DSP versions, as the size of the network
increases so too will the performance gap increase between integer and floating point
networks. The gap in performance is directly proportional to the amount of processing time
needed for the Net calculation relative to the rest of the system. It is important to remember
that the activation function was not actually calculated to remove any testing bias
against the floating point version. A full implementation that calculates the activation
function will require many more clock cycles. The floating point would perform much better
on hardware that supports floating point operations, but on low cost chips the performance
is significantly less than that of integer only neural networks.
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5. Accuracy and Quantization

The second major consideration when choosing to use an integer neural network is the
accuracy of the network. All of the values in an integer neural network must be whole
numbers, for this reason all of the values in the integer neural network must fit into a
limited range of predefined values. The range of values affects the accuracy, as well as the
amount of memory used by the network. A larger range of values will be more accurate,
but also require more memory to store values and LUTs.

To explore effects the of quantization we will use the following example system. The goal of
this system is to determine the temperature inside of a building (Tavyg), using external
measurements (Liao & Dexter, 2003). The external measurements used are the outside
temperature Ty, the amount of solar radiation (Qsol), and the energy consumed by the boiler
(Qin) (Jassar et al., 2009). All of the training data was collected from a specialist experimental
facility (BRE & INCITE. 2001) and are normalized to values between -1 and +1. A 3x20x3x1
network, shown in Figure 5, is then trained using backpropagation.

Hidden Hidden

Layer 1 Layer 2 Cutpus

Inputs

Fig. 5. A 3x20x3x1 neural network.
This creates a base network from which the integer network are derived and compared.

To create an integer neural network from this all of the input and weights of the network are
multiplied by a scaling factor S¢and then quantized into whole values. By scaling and
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quantizing each part of the network an integer neural network model is created. All values
are adjusted to this new scale before being used in any operations. For the activation
function the scaling is reversed, bringing the value back into the normal range. The
activation function, in this case tanh, is then applied. The values are then rescaled and
quantized for use in the rest of the network. The reason for doing this is to maintain a
consistent network structure, only the value of St is changed for each level of quantization.
This allows for many different levels of quantization to be tested with the same network
while at the same time ensuring that model is accurate. In an actual implementation, the
activation function would be replaced with a LUT for the chosen scaling factor.
Mathematically the scaling and quantizing are substituted into the normal function of a
neuron, where O is the output, I is the input vector to that neuron, W is the weight vector,
and B is the bias. Equation (13) shows the output for a neuron in a normal neural network.
The scaling factor Stis applied to each of the values used by the network before they are ysed.
The resulting value is then quantized to a whole value as seen in (14).

O = tanh(I+ W + B) (13)
O = tanh((q(I*S,) *q(W *S,) +q(B*S,%)/S,”) (14)

The scaling factor for the bias must be S¢2 to maintain proportionality to the rest of
the equation as shown by the simplification in equations (15) and (16).

O = tanh((I1*S, *W*S, + B*S *)/S %) (15)
O =tanh((I*W*S’ +B*S”)/S’) (16)

Once the net value has been calculated the scaling is removed by dividing by the total
amount of scaling, S@2. This is then used by the activation function. The output from the
activation function is used as the input for the next layer of the network, at this point the
scaling and quantization is reapplied because the O of this layer becomes the Input for the
next layer.

The results of the trained base network is shown in Figure 6. This is the base accuracy
from which the integer versions of this network can be compared. Below are the outputs of
the integer neural network with different values for St. This shows the effects of varying
levels of quantization.
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Fig. 6. Output of the base neural network.
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0

Figure 6 shows the actual Ta.g and the output of the base network. While this network

contains some inaccuracies it is the relative performance between this network and the
quantized integer neural networks that we are interested in.
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Fig. 7. Output of an integer neural network with S¢ =128.
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Fig. 8. Output of an integer neural network with St = 64.

Figure 7 and Figure 8 show the network outputs when S¢ is equal to 128 and 64
respectively. At this level of quantization, the integer neural networks and the base network
are almost identical. However memory usage is significant as the range of input values for
the LUT are from - S2 to +S2. This results in 32 768 addresses and 8 192 addresses for the
LUT for S¢ = 128 and S¢ = 64 respectively. On a low cost microcontroller, this may exceed
the amount of available RAM. However some microcontrollers will also allow LUTs to be
stored in the program memory. In these cases, this is not an issue.

2 ! ! ) ! ! !
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Fig. 9. Output of an integer neural network with S¢ = 8.
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Fig. 10. Output of an integer neural network with St = 4.

Figure 9 and Figure 10 show the network output for St of 8 and 4 respectively. Here the
effects of quantization become much more pronounced and the accuracy of the networks
becomes degraded.
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Fig. 11. Output of an integer neural network with Sf = 2.

Figure 11 shows the network output at S¢ equal to 2. Here the network is very inaccurate,
the effects of quantization have degraded the network to such an extent that it is unusable.
Table 1 shows a comparison of the accuracy of the networks at each level of quantization,
using three types of statistical measures.
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Network RMSE R2 SSE
Normal 0.60 0.7944 2724
S¢=128 0.60 0.7942 2423
S¢=64 0.60 0.7947 2729
Sf =8 0.63 0.7779 2955
S¢=4 0.66 0.7331 3281
S¢=2 0.95 0.6058 6770

Table 2. Accuracy comparison for various levels of quantization.

As can be seen from Figures Figure 6 to Figure 11 and Table 2, when the value of S¢ is high
the integer neural networks performance is nearly identical to that of the base network.
However as the rate of quantization increases, the accuracy of the network gradually
degrades. The graceful degradation seen in this example will not be true for all systems, the
network may degrade faster or slower but it may also hit a point where the level of
quantization is too much and the network accuracy degrades very quickly.

The key consideration for the level of quantization is the trade off between network
accuracy, memory consumption, and register size. The larger the value of Sy, the smaller the
amount quantization, the more accurate the network will be. However, at the same time this
will increase the amount of memory needed to store the weights, inputs and LUTs.
Additionally if the quantization results in weights or inputs larger then can be stored in one
register on the microcontroller, the network will suffer an additional performance penalty.
This can aid in the selection of the type of microcontroller to use. If the level of quantization
allows for the inputs and weights to be stored in an 8 bit register, then a very low cost
microcontroller can be used. However if the values are larger, then a 16 bit or possibly even
32 bit microcontroller would be better suited to implementing the network.

6. Conclusion

Almost all system designs involve tradeoffs between performance, speed, and cost. In this
chapter, we have explored integer neural networks as a method of reducing the cost of a
system, while attempting to retain as much of the accuracy and speed of a floating-point
neural network. It is important to note that integer neural networks are just one possible
method of meeting design constraints. Integer neural networks excel on low cost
microcontrollers. However integer neural networks can never achieve the level of accuracy
that floating-point networks can. For this reason the decision on which type of network to
use is subjective and must be viewed in light of the design goals for the system. When cost is
the primary design concern, integer neural networks offer a very compelling combination of
accuracy, speed, and cost that can significantly improve the price to performance ratio of the
final product.
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