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1. Introduction

This chapter represents a proposed Electronic Nose (ENose) system has been designed in
the laboratories of the university of Calabria (Italy), this system has the ability to detect a gas
type and then to estimate its concentration. This chapter explain the design idea, the
principles of the detection and quantification mathematical model, and the method of
calculating the parts per million (ppm) of the gases. The fast evaporation rate and toxic
nature of many Volatile Organic Compounds (VOCs) could be dangerous at high
concentration levels in air and working ambient for the health of humans, therefore the
detection of these compounds (i.e. VOCs) has become a serious and important task in many
fields. In fact, the VOCs are also considered as the main reason for allergic pathologies, lung
and skin diseases. Other applications of systems for gas detection are in environmental
monitoring, food quality assessment (Zhang et al., 2008), disease diagnosis (Casalinuovo &
Pierro, 2006; Gardner et al., 2000), and airport security (Lee et al., 2002).

There are many research contributions on the design of an electronic nose system based on
using tin oxide gas-sensors array in combination with Artificial Neural Networks (ANN) for
the identification of the Volatile Organic Compounds (VOC’s) relevant to environmental
monitoring, Srivastava (Srivastava, 2003) used a new data transformation technique based
on mean and variance of individual gas-sensor combinations to improve the classification
accuracy of a neural network classifier. His simulation results demonstrated that the system
was capable to successfully identify target vapors even under noisy conditions.
Simultaneous estimates of many kinds of odor classes and concentrations have been made
by Daqi et al (Daqi & Wei, 2007); they put the problem in the form of a multi-input/multi-
output (MIMO) function approximation problem.

In literature several different approximation models have been adopted. In particular a
multivariate logarithmic regression (MVLR) has been discussed in (Cohen et al., 2003), a
quadratic multivariate logarithmic regression (QMVLR) in (Penza et al., 2002), while a
multilayer perceptron (MLP) has been experimented in (Lee et al., 2002). Finally, support
vector machines (SVM) has been used in (Distante et al., 2003; Pardo & Sberveglieri, 2005,
Wang et al., 2005).

To identify the type of analyte we use the support vector machine (SVM) approach, which
was introduced by Vapnik (Vapnik, 1998) as a classification tool and strongly relies on
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statistical learning theory. Classification is based on the idea of finding the best separating
hyperplane (in terms of classification error and separation margin) of two point-sets in the
sample space (which in our case is the Euclidean seven-dimensions vector space, since each
sample corresponds to the measures reported by the seven sensors which constitute the core
of our system). Our classification approach includes the possibility of adopting kernel
transformations within the SVM context, thus allowing calculation of the inner products
directly in the feature space without explicitly applying the mapping (Cristianini & Shawe-
Taylor, 2004).

As previously mentioned, we used a multi-sensor scheme and useful information is
collected by combining the readings of all the used sensors. On this work, combining the
information coming from several sensors of diverse types under different heater voltages
values are sent to a learning system which has the ability to identify the gas and to estimate
its concentration.

This chapter is organized as follows. In Section 2 we describe our Electronic Nose (ENose),
while Section 3 gives an overview of the SVM approach. Section 4 is devoted to the
description of our experiments involving five different types of analytes (Acetone, Benzene,
Ethanol, Isopropanol, and Methanol). While section 5 contains the results of gas
identification and quantification. Finally the conclusions are drawn in Section 6.

2. Electronic Nose System

An array of gas sensors with a learning system constitutes what is called Electronic Nose
(ENose), the response of this sensor array constitutes an odor pattern (Pearce et al., 2003). A
single sensor in the array should not be highly specific in its response but should respond to
a broad range of compounds, so that different patterns are expected to be related to different
odors.
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Fig. 1. Block diagram of our Electronic Nose system.
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Sensor Array System for Gases Identification and Quantification 51

Our system (Figure 1) consists of five different types of gas sensors supplied with different
heater voltages to improve the selectivity and the sensitivity of the sensors which are from
the TGS class of FIGARO USA INC. The sensing element is a tin dioxide (SnO.)
semiconductor layer. In particular three of them are of TGS-822 type, each one being
supplied with a different heater voltage (5.0 V, 4.8 V, and 4.6 V, respectively, see Figure 2),
one of the TGS-813 type, and the last one is of the TGS-2600 type. Because the gas sensor
response is heavily affected by environmental changes, two auxiliary sensors are used for
the temperature (LM-35 sensor from National Semiconductor Corporation), and for the
humidity (HIH-3610 sensor from Honeywell).
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Fig. 2. Block Diagram of gas sensors chamber

The gas sensors and the auxiliary sensors are put in a box of 3000 ¢cm3 internal volume.
Inside the box we put a fan to let the solvent drops evaporate easily. All sensors are
connected to a multifunction board (NI DAQPad-6015), which is used in our system as an
interface between the box and the PC. The National Instruments DAQPad-6015
multifunction data acquisition (DAQ) device provides plug-and-play connectivity via USB
for acquiring, generating, and logging data; it gives 16-bit accuracy at up to 200 kS/s, and
allows 16 analog inputs, 8 digital I/O, 2 analog outputs, and 2 counter/timers. NI DAQPad-
6015 includes NI-DAQmx measurement services software, which can be quickly configured
and allows us to take measurements with our DAQ device. In addition NI-DAQmx provides
an interface to our LabWindows/CVI running on our Pentium 4 type PC.

The integrated LabWindows/CVI environment features code generation tools and
prototyping utilities for fast and easy C code development. It offers a unique, interactive
ANSI C approach that delivers access to the full power of C Language. Because
LabWindows/CVI is a programming environment for developing measurement
applications, it includes a large set of run-time libraries for instrument control, data
acquisition, analysis, and user interface. It also contains many features that make developing
measurement applications much easier than in traditional C language environments.
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For support vector machine (SVM) training and testing in multi-class classification we use
LIBSVM-2.82 package (Chang & Lin, 2001). LIBSVM-2.82 uses the one-against-one approach
(Knerr et al., 1990) in which, given k distinct classes, k(k -1)/2 binary classifiers are
constructed, each one considering data from two different classes. LIBSVM provides a
parameter selection tool for using different kernels and allows cross validation. For median-
sized problems, cross validation might be the most reliable way for parameter selection.
First, the training data is partitioned into several folds. Sequentially a fold is considered as
the validation set and the rest are for training. The average of accuracy on predicting the
validation sets is the cross validation accuracy (Gallant et al., 1993). In particular the leave-
one-out cross validation scheme consists of defining folds which are singleton, i.e. each of
them is constituted by just one sample.

3. Support Vector Machine (SVM)

Support vector machines (SVM) are a set of related supervised learning methods used for
classification and regression. They belong to a family of generalized linear classifiers. This
family of classifiers has both abilities: to minimize the empirical classification error and to
maximize the geometric margin. Hence it is also known as maximum margin classifier approach
(Abe, 2005).

An important feature of the SVM approach is that the related optimization problems are
convex because of Mercer's conditions on the kernels (Cristianini & Shawe-Taylor, 2004).
Consequently, they haven't local minima. The reduced number of non-zero parameters
gives the ability to distinguish between these system and other pattern recognition
algorithms, such as neural networks (Cristianini & Shawe-Taylor, 2000).

3.1 The Optimal Separating Hyperplane

A separating hyperplane is a linear function that has the ability of separating the training
data without error as shown in Figure 3.

Suppose that the training data consists of n samples (x1y1), (X242),...(XnYn),
x e R’y e {-1,+1} that can be separated by a hyperplane decision function

D(x)=<w .x>+b=0 1)

with appropriate coefficients w and b (Cherkassky & Mulier, 1998; Hastie et al., 2001;
Vapnik, 1998). Notice that the problem is ill-posed because the solution may be not unique
and then some constraint has to be imposed to the solution to make the problem well-posed
(Distante et al., 2003).

A separating hyperplane satisfies the constraints that define the separation of the data
samples:

<w.x; >+b>2+1 ify =+1 )
i=12, @

<w.x,>+b<-1 ify,=-1, sl
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AT AT Jin

Optimnal hyperplane
Fig. 3. The optimal hyperplane for two data sets
Or in more compact form (notation)
yvil<w.x,>+b]l21 i=12,..,n 3)

For a given separable training data set, all possible separating hyperplanes can be
represented in the form of equation 3. The formulation of the separating hyperplanes allows
us to solve the classification problem directly. It does not require estimation of density as an
intermediate step (Abe, 2005). When D(x) is equal to 0, this hyperplane is called separating
hyperplane as shown in Figure 4.

Let di be the signed distance of the point xi from the separating hyperplane

where the symbol | |w| | denotes the norm of w. From this equation follows that

d, ||w|| =<Ww.x,>+b @)
and using the constraints (3), we have

yd, |[w]=1 (6)
So for all x; the following inequality holds:
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e

Notice that yid; is always positive quantity. Moreover, 1/ || W | is the lower bound on the

distance between the points x; and the separating hyperplane (w, b).

Dix)=10

Dix)=-1

Fig. 4. Separating hyper plane for two data sets as well as the two support vectors

The purpose of the "1" in the right hand side of inequality (equation 3) for establishing a one-
to-one correspondence between separating hyperplanes and their parametric representation.
This is done through the notion of canonical representation of a separating hyperplane
(Pontil & Verri, 1998).

The optimal hyperplane is given by maximizing the margin, y, subject to the constraints (3).
The margin is given by (Cristianini & Shawe-Taylor, 2000),

7 (w, b)—mm d, + min d,

yi=+1

”‘1}” (mm (< w.x; >+b)+ mln (< w.x; > +b))

_ 2
[w]

Thus the optimal hyperplane is the one that minimizes
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2

@ (w) = [w]

©)
Because ®(w) is independent of b, changing b moves it in the normal direction to itself, and

hence the margin remains unchanged but the hyperplane is no longer optimal in that it will
be nearer to one class than the other.

3.2 Support Vector Classification

Support vector machines (SVMs) are a set of related supervised learning methods used for
classification and regression of multi dimensional data sets (Gutierrez-Osuna, 2003; Pearce,
2003). They belong to the family of generalized linear classifiers. This family of classifiers
has both the abilities of minimizing the empirical classification error and maximizing the
geometric margin. In fact a SVM is also known as maximum margin classifier (Distante et
al., 2003).

SVM looks for a separating hyperplane between the two data sets. The equation of such
hyperplane is defined by

f(x)=w'x+b=0 (10)

where w is the weight vector which defines a direction perpendicular to the hyperplane, x is
the input data point, and b is the bias value (scalar), for a proper normalization. The margin
is equal to | |w | |-1. Therefore maximizing the margin is equivalent to minimizing | |w| |.
The advantage of this maximum margin criterion is both robustness against noise and
uniqueness of the solution.

In many practical cases the data are not linearly separable, therefore the hyperplane tries to
both maximize the margin and minimize the sum of classification errors at the same time.

The error & of a point (x,,y,) (¥, €{-1,+1} represents the class membership) with respect to

a target margin y and for a hyperplane defined by fis:

& =6(x,,p,), f(x,),7)=max(0,y — y, f(x,)) (11)

where & is called the margin slack variable which measures how much a point fails to have

margin . If y; and f(x;) have different signs the point x; is misclassified because
§i>r>0 (12)

The error & is greater than zero if the point x; is correctly classified but with margin smaller

than y .
y>¢ >0 (13)

Finally, the more x; falls in the wrong region, i.e. satisfies equation 12, the bigger is the error.
The cost function to be minimized is:
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Slw P +cX (14)

where C is a positive constant, which determines the trade off between accuracy in
classification and margin width (Burges, 1998). Therefore, this constant can be regarded as a
regularization parameter. When C has a small value, the optimal separating hyperplane tends
to maximize the distance with respect to the closest point, while for large values of C; the
optimal separating hyperplane tends to minimize the number of non-correctly classified
points.

If the original patterns are not linearly separable, they can be mapped by means of
appropriate kernel functions to a higher dimensional space called feature space. A linear
separation in the feature space corresponds to a non-linear separation in the original input
space (Wang et al.,, 2005). Kernels are a special class of functions that permit the inner
products to be calculated directly in the feature space, without explicitly applying the
mapping. The family of kernel functions adopted in machine learning range from simple
linear and polynomial mappings to sigmoid and radial basis functions (Mouller et al., 2001).
In this paper linear kernel is used.

4. Experimental

In our experiments we used five different types of volatile species with different
concentrations. They are acetone, methanol, ethanol, benzene, and isopropanol. The data set
for these volatile species is made up of samples in R” space where each sample correspond
to the outputs of the gas and auxiliary sensors.

Analyte Volume of
Concentration | Pure Analyte

(ppm) (cm)
10 0.03

50 0.15
100 0.30
200 0.60
400 1.20
800 2.40
1000 3.00
2000 6.00

Table 1. Analyte concentration vs. Analyte volume

Our box (see Figure 5) contains the PCB (Printed Circuit Board) where we fixed two
different types of sensors i.e. gas sensors and auxiliary sensors. It also contains a fan for
circulating the analyte inside during the test. The system encompasses one input for inlet air
coming from an air compressor which has been used to clean the box and the gas sensors
after each test. One output is used for the exhaust air. The inner dimensions of the box are 22
cm length, 14.5 cm width, and 10 cm height, while the effective volume is 3000 cm3.
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The amount of volatile compounds needed to create the desired concentration in the sensor
chamber (our box) was introduced in the liquid phase using high-precision liquid
chromatography syringe. Since temperature, pressure and volume were known, the liquid
needed to create the desired concentration of volatile species inside the box could be
calculated using the ideal gas theory, as we explain below. The analyte concentration versus
analyte volume injected is shown in Table 1.

T NATHOMNAL
TN T NI N T Y

Fig. 5. Our box including the sensors and the fan, connected to the Interface card.

A syringe of 10 ul is used for injecting the test volatile compounds. In the experiments we
used five different types of volatile compounds, acetone, methanol, ethanol, benzene, and
isopropanol. We take methanol as an example for calculating the ppm (parts-per-million) for
each compound. Methanol has molecular weight MV = 32.04 g/mol and density p = 0.7918
g/cm3. The volume of the box is 3000 cm?; therefore, for example, to get 100 ppm inside the
box, from Table 1, we used 0.3 cm3 of methanol, or, equivalently, 0.3 ml.

Methanol | Methanol
Concentration | quantity

(ppm) (1))

40 0.2

100 0.5

200 1.0

400 2.0

1000 5.0
1400 7.0
2000 10.0

Table 2. Methanol concentration vs. methanol quantity
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The density of methanol is

_Px MW
R xT

where

0 = the density of the gas of Methanol in g/I,

P = the Standard Atmospheric Pressure (in atm) is used as a reference
for gas densities and volumes (equal 1 atm),

MW = Molecular Weight in g/mol,

R = universal gas constant in atm/mol.K (equal 0.0821 atm/mol.K),

T = temperature in Kelvin (Tx = Tc + 273.15).

As aresult we getd =133 g/I.

Mass =v,, *0=v, *p (16)

where vy is the volume occupied by the gas of methanol which is equal to 0.3*103, 0 is the
density of the gas of methanol as calculated before, p is the constant density of methanol,
therefore;

the volume (viiq) is 0.503*10-6 which provides 100 ppm of methanol. This means that if we
want to get 100 ppm of methanol we must put 0.503 pl of methanol as liquid in the box by
using the syringe. Table 2 shows different concentrations of methanol (in ppm) versus its
quantities (in pl).

5. Results

In our experiments we used 22 concentration samples for acetone, 22 for benzene, 20 for
ethanol, 23 for isopropanol, and 21 for methanol. For each concentration the experiment was
repeated twice, thus a total number of 216 classification calculations was performed. We put
the desired quantity of solvent (in ppm) previously calculated inside the BOX, switching
ON the fan which is inside the box to let the solvent drops evaporate easily. The program
starts reading the data that are coming from the seven sensors which form our system.

After few seconds, when the signals start to be stable, we switch OFF the fan and then we
save the data in a file that indicates also the class label of the current sample. After that we
must clear the BOX and the sensors by supplying a compressed air coming from an Air
Compressor. We repeat twice this procedure for each gas type and for each concentration.

In the first analysis, we used a SVM with linear kernel, and we applied a multi-class
classification by using the LIBSVM-2.82 package (Chang & Lin, 2001). The optimal
regularization parameter C was tuned experimentally by minimizing the leave-one-out
cross-validation error over the training set.

In fact the program was trained as many times as the number of samples, each time leaving
out one sample from training set, and considering such omitted sample as a testing sample
check the classification correctness. The classification correctness rate is the average ratio of
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the number of samples correctly classified and the total number of samples. The results are
shown in Table 3 for different values of C. By using linear kernel we got 100.00%
classification correctness rate for C = 1000 adopting a leave-one-out cross-validation scheme.
We remark that such results are better than those obtained by supplying all sensors by the
same heater voltage (in such case, in fact, the best classification correctness rate was 94.74%).

C Classification
values | Correctness
Rate %
10 91.24
50 96.31
100 96.77
500 98.62
800 99.08
1000 100.00
2000 99.54

Table 3. Multiple C values with linear kernel

Once the classification process has been completed, the next step is to estimate the
concentration of the classified analyte. To this aim, we use again the support vector machine
approach but in this time as a regression system.

Finally we considered (Table 4) the correlation coefficient (C.C) as a measure for the
estimation accuracy (Penza et al., 2002), the correlation coefficient is a number between 0.0
and 1.0. If there is no relationship between the predicted values and the actual values the
correlation coefficient is 0.0 or very low (the predicted values are no better than random
numbers). As the strength of the relationship between the predicted values and actual
values increases so does the correlation coefficient. A perfect fit gives a coefficient of 1.0.

Analyte C.C for SVM
Type regression method
Acetone 0.982431
Benzene 0.989445
Ethanol 0.974048
Isopropanol 0.985179
Methanol 0.973584

Table 4. Gases concentration estimation results

Thus the higher correlation coefficient (near to 1.0) the better is the regressor (Cohen et al.,
2003). Correlation coefficient is calculated as follows:

_ =l i=1

n

. Cxy Oy
(ZX,‘Z_ =l )(ZX,‘Z_ =l )

(17)
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where C.C is the correlation coefficient, X are the actual values, X are the predicted values,
and n is the number of data points.

Table 5 shows the real concentrations with respect to the results of the suport vectore
regression method of benzene.

Real Estimated
Concentrations | Concentrations
18 17.99
36 46.69
54 53.98
72 72.13
90 82.87
108 101.15
126 118.84
144 146.65
162 161.98
180 179.99
234 260.09
270 279.95
324 344.26
360 377.28
414 427.67
468 468.00
540 520.62
630 671.43
720 719.99
810 755.55
900 798.71
1080 953.05

Table 5. Real and Estimated Concentrations of Benzene.

6. Conclusion

The results demonstrate that our system has the ability to identify the type of analyte and
then estimate its concentration. The best correctness rate was 100.00%. Also the values
obtained in terms of concentration estimates appear quite satisfactory. Supplying three
similar sensors (TGS-822) with different heater voltages, improved the performance of the
system. Future work will be devoted to decrease the number of gas sensors and to use
another type of sensors, like QCM sensors.
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