We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



12

Gaze prediction improvement by adding a face
feature to a saliency model

MARAT Sophie, GUYADER Nathalie and PELLERIN Denis
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1. Introduction

To understand how human observers move their eyes when viewing videos and why some
locations are more often gazed at than others is of great importance for much research.
Many computational models compute a saliency map that attributes high values to the
locations that predict where humans should direct their gaze when viewing the stimulus
freely. To compute saliency maps, models are generally based on low-level properties of the
visual stimulus. These bottom-up models, like the human visual system, break down the
visual stimulus into elementary feature maps: a colour map, spatial frequency maps,
orientation maps and a motion map (motion feature is often processed separately from other
static features). Hence, the visual stimulus is split into a static saliency map, a dynamic
saliency map (Marat et al., 2009), and some models add a colour saliency map (Itti et al.,
1998; Le Meur et al. 2006). These maps are then added together to create the master saliency
map of the visual stimuli. In the research cited, models only used low-level properties of the
visual stimuli, although the role of high-level (e.g. semantic information) properties is
undisputed. We know, for example, that live subjects and objects play a significant role in
the visual perception of static stimulus.

In this research, we focus our interest on human faces. In a recent paper, Cerf, Harel,
Einhduser and Koch (Cerf et al., 2007) showed that in images containing frontal shots of
people, faces were fixated on by subjects within the first saccades and this was true
independently of the task subjects were asked to complete. For this reason, they integrated
into their static saliency model a special “face-detection” channel (using the Viola and Jones
algorithm (Viola & Jones, 2004)). They found that this additional channel improved the
performance of their static saliency model.

In this research, we show that faces are very salient even in natural dynamic stimuli. We
found that when asking subjects to look at videos faces were fixated on within the first
saccades as was the case for static images. We also show that to add a face saliency map to a
classical saliency model, using only static and dynamic features, improves eye movement
predictions. In fact, even if faces are emphasized with a static saliency map, eyes or the
mouth, and with a dynamic saliency map, moving faces, adding a face saliency map
considerably improves model prediction. Moreover, model predictions are improved by
computing a face saliency map inversely proportional to the number of faces in the scene.
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196 Recent Advances in Signal Processing

We also proposed a fusion that takes into account the special feature of each saliency map:
static, dynamic and face features.

Section 2 describes the eye movement experiment. The static and dynamic pathways are
presented in section 3. Section 4 tests whether faces are salient in dynamic stimuli and
section 5 deals with the choice of a face detector. Section 6 describes the face pathway, and
finally, the fusion of the different saliency maps and the evaluation of the model are
presented in section 7.

2. Eye movement experiment

Our purpose is to analyse whether faces influence human gaze and to understand how this
influence occurs. The video database was built in order to obtain videos with various
contents, with and without faces, with textured backgrounds, with moving and static
objects, with a moving camera etc. We were only interested in the first eye movements of
subjects when viewing videos. In fact, we know that after a certain time (quite short) it is
much more difficult to predict eye movements without taking into account top-down
processes. In order to remove top-down effects as much as possible, we did not use classical
videos. Instead, we created small concatenated clips as was done in (Carmi & Itti, 2006). We
put small parts of videos together with unrelated semantic contents. In this way, we
minimized potential top-down confounds without sacrificing real world relevance.

2.1.1 Participants

Fifteen human observers (3 women and 12 men, aged from 23 to 40 years old) participated
in the experiment. They had normal or corrected to normal vision and were not aware of the
purpose of the experiment. They were asked to look at the videos freely.

2.1.2 Apparatus

Eye tracking was performed by an Eyelink II eye tracker (SR Research?!). During the
experiment, participants were sitting, with their chin supported, in front of a 21" colour
monitor (75 Hz refresh rate) at a viewing distance of 57 cm (40°x 30° usable field of view). A
9-point calibration was carried out every five trials and a corrected-drift was done before
each trial.

2.1.3 Stimuli

The stimuli were inspired by an experiment proposed in (Carmi & Itti, 2006). Fifty-three
videos (25 frames per seconds, 720 x 576 pixels per frame) were selected from heterogeneous
sources including movies, TV shows, TV news, animated movies, commercials, sport and
music clips. The fifty-three videos were cut every 1-3 seconds (1.86 + 0.61) into 305 clip-
snippets. The length of these clip-snippets was chosen randomly with the only constraint
being to obtain snippets without any shot cut. These clip-snippets were strung together to
make up twenty clips of 30 seconds (30.20 + 0.81). Each clip contained at most one clip-
snippet from each of the fifty-three continuous sources. The choice of the clip-snippets and
their duration were random to prevent subjects from anticipating shot cuts. We used grey

Lhttp:/ /www.eyelinkinfo.com/
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level stimuli (14155 frames) without audio signal because the model did not consider colour
and audio information. Stimuli were seen in random order.

2.1.4 Human eye position density maps

The eye tracker records eye positions at 500 Hz. We recorded twenty eye positions (10
positions for each eye) per frame and per subject. The median of these positions (X-axis
median and Y-axis median) was taken for each frame and for each subject. Then, for each
frame, we had fifteen positions (one per subject). Because the final aim was to compare these
positions to a saliency map, a two-dimensional Gaussian was added to each position. The
standard deviation at mid-height of the Gaussian was equal to 0.5° of visual angle, which is
close to the size of the maximum resolution of the fovea. Therefore, for each frame k, we got
a human eye position density map Mn(x,y,k).

2.1.5 Metric used for model evaluation

We used the Normalized Scanpath Saliency (NSS) (Peters & Itti, 2008). This criterion was
especially designed to compare eye fixations and the salient locations emphasized by a
model saliency map. We computed the NSS metric as follows (1):

Mh(x’y’k)xMm(xay:k)_Mm(xayak) (1)

NSS(k) =

M, (300
where Mi(x,y,k) is the human eye position density map normalized to unit mean and
Mm(x,y,k) a model saliency map for a frame k. The NSS is null if there is no link between eye
position and salient regions. The NSS is negative if eye position tends to be in non-salient
regions. The NSS is positive if eye position tends to be in salient regions. To summarize, a
saliency map is a good predictor of human eye fixations if the corresponding NSS value is
positive and high. In the next sections, we computed the NSS average over several frames.

3. The static and the dynamic pathways of the saliency model

We based ourselves on the biology of the human visual system to propose a saliency model
that decomposes the visual signal into a static and a dynamic saliency maps. The static and
the dynamic pathways, described in detail in (Marat et al., 2008; Marat et al., 2009), were
built in two common stages: a retina-like filter and a cortical-like bank of filters.

3.1 The retina and the visual cortex models

The retina model proposed split visual stimuli into different frequency bands: the high
spatial frequencies simulate a “Parvocellular-like” output and the low spatial frequencies
simulate a “Magnocellular-like” output. These outputs correspond to the two main outputs
of the retina with a parvocellular output that conveys detailed information and a
magnocellular output that responds rapidly and conveys global information about the
visual scene.

V1 cortical complex cells are modelled using a bank of Gabor filters, into six different
orientations and four frequency bands in the Fourier domain. The energy output of each
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filter corresponds to an intermediate map, m;, which is the equivalent of an elementary
feature of Treisman's Theory (Treisman & Gelade, 1980).

3.2 The static pathway

The static pathway is dedicated to the extraction of the static features of the visual stimulus.
This pathway corresponds to the ventral pathway of the human visual system and processes
detailed visual information. It starts with the parvocellular output of the retina and is then,
processed by the bank of Gabor filters. Two types of interactions between filter outputs were
implemented: short interactions reinforce objects belonging to a specific orientation and
long interactions allow contour facilitation.

After the interactions and after being normalized between [0,1], each map m;; was multiplied
by (max(m,./.)—m_,./.)z where max(mj) is the maximum value and m_” is the average of the

elementary feature map m;; (Itti et al., 1998). Then, for each map, values smaller than 20% of
the maximum value max(m;) were set to 0. Finally, the intermediate maps were added
together to obtain a static saliency map Ms(x,y,k) for each frame k (Fig. 1).

3.3 The dynamic pathway

The dynamic pathway, which is equivalent to the dorsal pathway of the human visual
system, is fast and carries global information. Because we assumed that human gaze is
attracted by motion contrast (the motion of a region against the background), we applied a
background motion compensation (2D motion estimation, Odobez & Bouthemy, 1995)
before the retina process. This allowed us to estimate the relative motion of regions against
the background. The compensated frames were filtered by the retina model described above
to form the “Magnocellular-like” output. Because this output only contains low spatial
frequencies, its information would be processed by the Gabor filters with the three lowest
frequency bands. For each frame, the classical optical flow constraint was applied to the
Gabor filter outputs in the same frequency band. The solution of this flow constraint defined
a motion vector per pixel of a frame. Then we computed for each pixel the motion vector
module, corresponding to the speed, and its angle, corresponding to the motion direction.
Hence, the motion saliency of a region is proportional to its speed against the background.
Then, a temporal median filter was applied to remove possible noise (if a pixel had a motion
in one frame but not in the previous ones). The filter was applied to five successive frames
(the current frame and the four previous ones) and it was reinitialised after each shot cut. A
dynamic saliency map Mq(x,y,k) was obtained for each frame k (Fig. 1).
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Fig. 1. Static and dynamic saliency maps: (a) Input video frame, (b) Static saliency map Ms
and (c) Dynamic saliency map Mg..

4. Face an important feature

Faces are one of the most important visual cues for communication. A lot of research has
examined the complex issue of face perception (Kanwisher & Yovel, 2006; Thorpe, 2002;
Palermo & Rhodes, 2007; Tsao & Livingstone, 2008; Goto & Tobimatsu, 2005), for a complete
review see (Dekowska et al., 2008). In this research, we just wanted to test whether faces
were gazed at during free viewing of dynamic scenes. Hence, to test if a face is an important
feature in the prediction of human eye movements, we hand-labelled the frames of the
videos used in the experiment described in section 2 with the position and the size of faces.
We manually created a face saliency map by adding a two dimensional Gaussian to the top
of each marked face: we called this saliency map the “true” face saliency map (Fig. 3). We
call “face” any kind of face (frontal or profile) as long as the face is big enough for the eyes
(at least one) and the mouth to be distinguished. Because it takes times to hand label all the
frames and because we wanted to test the influence of faces we only used a small part of the
whole database and we chose frames with at least one face (472 frames). Then, we computed
the mean NSS over these 472 frames between the human eye position density maps and the
different saliency model: the static saliency map, the dynamic saliency map and the “true”
face saliency map (Fig. 2). As noted above a saliency map is a good predictor of human eye
fixations if the corresponding NSS value is positive and high.
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Mean NSS
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Ms Md True Mf
Fig. 2. Mean NSS values for the different saliency map: the static M, the dynamic My and
the “true” face saliency map M.

As we can see on figure 2 the mean NSS value for the true face saliency map is higher than
for the mean NSS for the static and the dynamic saliency maps (F(2,1413)=1009.81; p#0). The
large difference is due to the fact that we only study frames with at least one face.

(b) (c)
(d) (&) (f)
Fig. 3. Examples of the “true” face saliency maps obtained with the hand-labelled faces: (a)

and (d) Input video frames, (b) and (e) Corresponding “true” face saliency maps My, (c) and
(f) Superposition of the input frame and the “true” face saliency map.

We experimentally found that faces attract human gazes and hence computing saliency
models that highlight faces improves the predictions of a more traditional saliency model
considerably. We still want to answer different questions. Is a face on its own inside a scene
more or less salient than a face with other faces? Is a large face more salient than a small
one? To answer these questions we chose some clips according to the number of faces and
according to the size of faces.
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4.1 Impact of the number of faces

To see the influence of the number of faces, we split the database according to the number of
faces inside the frames: three clip-snippets (121 frames) with only one face and three others
(134 frames) with more than one face. We computed the NSS value for each frame using the
“true” face saliency map and the subject’s eye position density maps. Figure 4 presents the
mean NSS value for the frames with only one face and for the frames with more than one
face. A high NSS value means a good correspondence between human eye position density
maps and “true” face saliency maps.

6

£

Mean NSS
N

0 L )
Strictlyone More than one

Fig. 4. Mean NSS values for the “true” face saliency maps compared with human eye
positions as a function of the number of faces in frames: for frames with strictly one face
(121) and for frames with more than one faces (134).

The NSS value is higher when there is only one face than when there are more than one face
(F(1,253) =52.25; p#0). There is a better correspondence between the saliency map and eye
positions. This could be predicted by the fact that if there is only one face, all the subjects
would gaze at this single face whereas if there are several faces on the same frame some
subjects would gaze at a particular face and other subjects would gaze at another face.
Hence, a frame with only one face is more salient than a frame with more than one face, in
the sense that it is easier to predict subjects’ eye positions. To take this result into account,
we chose to compute the face saliency map using an inversely proportional coefficient to the
number of faces. That means that if there is only one face on a frame the corresponding
saliency map would have higher values than the saliency map of a frame with more than
one face.

An example of the eye position on a frame with three faces is presented in figure 5. Subjects’
gazes are more spread out over the frame with three faces than over the frames with only
one face.
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(b) (c)

Fig. 5. Examples of eye positions on a frame with three faces: (a) Input video frame, (b)
Superimposition of the input frame and the “true” face saliency map and (c) Eye positions of
the fifteen subjects.

As we can see in figure 5 (c) subjects gazed at the different faces. To test how much subjects
gazed at different positions in a frames we computed a criterion to measure the dispersion
of eye positions between subjects using the equation (2):

|
D :deii

i.j<i

@)

where N is the number of subjects and d;; is the distance between the eye positions of
subjects i and j. Table 1 presents the mean dispersion value for frames with strictly one face
and for frames with more than one face.

Number of faces Strictly one More than one

Mean dispersion 12523 72799

Table 1. Mean dispersion values of eye positions between subjects on frames as a function of
the number of faces: strictly one and more than one.

As expected, the dispersion is significantly higher for frames with more than one face, than
for frames with only one face (F(1,253)=269.7; p#0). This is consistent with a higher NSS for
frames with only one face than more than one.

4.2 Impact of face size

The previous observations are made for faces with almost the same size (See Fig. 5). But
what happen if there is one big face and two small ones? It is difficult to understand exactly
how size influences eye movements as many configurations can occur: for example, if there
are two faces, one may be large and the other may be small, or the two faces may be large or
small, one may be in the foreground etc. Hence it is difficult to understand exactly what
happens for eye movements. Let us consider clips with only one face. These clips are then
split according to the size of the face: three clip snippets with only one small face (141
frames), three with a medium face (107 frames) and three with a large face (90 frames). The
diameter of the small face is around 30 pixels, the diameter of the medium face is around 50
pixels and the diameter of the large face is around 80 pixels. The mean NSS value was
computed for the frames with a small, a medium and a large face (Fig. 6).

www.intechopen.com



Gaze prediction improvement by adding a face feature to a saliency model 203

Mean NS5
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Fig. 6. Mean NSS value for “true” face saliency maps compared with human eye positions
for frames of nine clip snippets as a function of face size.

Large faces give significantly lower results than small or medium faces (F(1,336)=18.25;
p=0.00002). The difference between small and medium faces is not significant (F(1,246)=0.04;
p=0.84). This could be expected in fact: when a face is small, all subjects will gaze at the
same position, that is, the small face, and if the face is large, then some subjects will gaze at
the eyes, other will gaze at the mouth etc. To verify this, we computed the mean dispersion
of subject eye positions for the frames with small, medium or large faces in Table 2.

Face size Small Medium Large

Mean dispersion 2927.6 14184 904.24

Table 2. Mean dispersion values of eye positions between subjects on frames as a function of
face size.

The dispersion of eye positions is significantly higher for small faces (F(2,335)=28.44; p#0).
The dispersion of eye positions for frames with medium faces is not significantly different
from the frames with large faces (F(1,195)=2.89; p=0.09). These results are apparently in
contradiction with the mean NSS values found. Hence, two main questions arise: (1) why do
frames with one small face lead to a higher dispersion than frames with a larger face? And
(2) why do frames that lead to more spread out eye positions give a higher NSS?

Most of the time, when a small face is on a frame it is because the character is filmed in a
wide view; the frame shows the whole character and the scene behind him which may be
complex. If the character moves his hand, or if there is something interesting in the
foreground, some subjects will tend to gaze at the moving or the interesting thing after
viewing the face of the character. On the other hand, if a large face is on a frame, this
corresponds to a close-up view of the character being filmed. Hence, there is little
information outside the character ‘s face and hence, subjects will tend to keep their focus on
the only interesting area: the face, and access in more detail the different parts of the face.

A small face could lead to a high dispersion value if some subjects gaze at other areas after
having gazed at the face, and a large face could lead to a low dispersion value as subject
gazes tend to be spread over the face area. This is illustrated in figure 7, where eye positions
were shown for a large face and for a small one. In this example a subject gazed at the
device at the bottom of the frame, increasing the dispersion of eye positions. This is why we
observed a high dispersion value of eye positions even for frames with a high NSS value
(example of frames with a small face). A small face with few eye positions outside of the
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face, will lead to a high dispersion, but can thus have a higher NSS than a large face with
more eye positions on the face, so lower dispersion. Hence, the NSS tends to reward
fixations that are less due to chance more strongly: as the salient region for a small face is
small, the eye positions that are in this region will be more strongly rewarded than the ones
on a larger face.

(f)

Fig. 7. Examples of eye positions on frames with a face of different sizes: (a) and (d) Input
video frames, (b) and (e) Superimposition of the input frame and the face saliency map and
(c) and (f) Eye positions of the fifteen subjects corresponding to the input frame

Considering the case of only one face, face size influences eye positions. If more than one
face is present, too many configurations can occur, and so, it is much more difficult to
generalize the size effect. That is why for this study, the size information was not integrated
to build the face saliency map from the face detector output.

5. Face detection algorithms

Various methods have been proposed to detect faces in images (Yang et al., 2002). We tested
three algorithms available on the web: the one proposed by Viola2 and Jones (Viola & Jones,
2004), the one proposed by Rowley? (Rowley et al., 1998) and the one proposed by Nilsson*
(Nilsson et al., 2007) which is called the Split-up SNoW face detector. In our study, the
stimuli are different from classical databases used to evaluate algorithm performance for
face detection. We chose stimuli which were very different from one to another, and most
faces are presented with various and textured backgrounds. The different algorithms were

2 Viola & Jones - http:/ /sourceforge.net/ projects/openlibrary/

3 Rowley - http:/ /vasc.ri.cmu.edu/NNFaceDetector/

4 Nilsson - http:/ /www.mathworks.com/matlabcentral/ fileexchange /loadFile.do?
objectld=13701&objectType=FILE
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compared on one of the twenty clips presented to subjects (Table 3). This clip was hand-
labelled: 429 faces were marked.

. Number of correct Number of false
Algorithms . ",
detections positives
Viola & Jones, 2004 146 (34%) 77
Rowley et al., 1998 87 (20.3%) 25
Nilsson et al., 2007 0
Split-up SNoW?5 97 (22.6%) o

Table 3. Three face detection algorithms: number of correct detections (also called true
positives) and false positives for one clip (745 frames with 429 faces present).

Because the videos chosen are different from traditional stimuli used to evaluate face
detection algorithm, the three algorithms detected less than half the faces. During the
snippets, characters are moving, can turn to profile view, can sometimes be occluded or can
have tilted faces. Faces can also be blurred as the characters move fast. All these cases
complicate the task of the face detection algorithms. The Viola and Jones algorithm has the
highest correct detection rate but also the highest false positive rate. Most of the time, false
positives are on textured regions. Because we wanted to create a face saliency map that
emphasizes only areas with a face, and we wanted to prevent the highlighting of false
positives, we chose to use the split-up SNoW face detector which has the lowest false
positive rate.

5.1 The split-up SNoW face detector

SNoW (Sparse Network of Winnows) is a learning architecture framework designed to learn
a large number of features. It can be used for a more general purpose as a multi-class
classifier. SNoW has been used successfully in several applications in the natural language
and visual processing domains.

If a face is detected, the algorithm returns the position and the size of a squared bounding
box containing the face detected. The algorithm detects faces with frontal views, even
partially occluded faces (i.e. faces with glasses) and slightly tilted faces, but it cannot
retrieve faces which are too occluded or profile views. We tested the efficiency of the SNoW
face detector algorithm on the whole database (14155 frames). As it takes time and it is
fastidious to hand-label all the faces for all the frames, we counted the number of frames
that contained at least one face and we found 6623 frames. The split-up SNoW face detector
gave 1566 frames with at least a correct detection and only 147 false positives. As already
said, the number of correct detections is quite low but, what is more important for our
purpose is that the number of false positive is very low. Hence, using this face detection
algorithm ensures that we will only emphasize areas with a very high probability of

containing a face. Examples of results for the split-up SNoW face detector are given in figure
8.

5 Results are given setting the parameter sens to 9 in the Matlab program.
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Fig. 8. Examples of correct detections (true positives) (marked with a white box) and missed
detections (false negatives) for the split-up SNoW face detector.

6. Saliency model: The face pathway

The face detection algorithm output needs to be converted into a saliency map. The
algorithm returns the position and the size of a squared bounding box containing the face
detected. How can this information be translated into a face saliency map? The face detector
gives a binary result: A pixel is equal to 1 if it is part of a face (the corresponding bounding
box) and 0 otherwise. In the few papers that dealt with face saliency maps, the bounding
boxes used to mark the face detected are replaced by a two-dimensional Gaussian. This
induced the centre of a face to be more salient than its border. For example, in (Cerf et al.,
2007) the “face conspicuity map” is normalized to a fixed range, in (Ma et al., 2005) the face
saliency map values are weighted by the position of the face, enhancing faces in the centre of
the frame.

As the final aim of our model is to provide a master saliency map by computing the fusion
of the three saliency maps, face M, static Ms and dynamic My, the face saliency map was
normalized to give values in the same range as static and dynamic saliency map values. As
stated above, the face saliency map is intrinsically different from the static and the dynamic
saliency maps. On one hand, the face detection algorithm returns binary information:
presence or absence of face. On the other hand, static or dynamic saliency maps are
weighted “by nature”: more or less textured for the static saliency map and more or less
rapid for moving areas of the dynamic saliency map. The face saliency map was built by
replacing the bounding box of the algorithm output by a two-dimensional Gaussian. To be
in the same range as the static and the dynamic saliency maps, the maximum value of the
two-dimensional Gaussian was set to 5. Moreover, as stated above, a frame with only one
face is more salient than a frame with more than one face. To lessen the face saliency map
when more than one face is detected, the maximum of the Gaussian (after been multiplied
by five) was divided by N1/3 where N is the number of faces detected on the frame. To sum
up, the Gaussian that replaced the bounding box that marked a detected face was set to

5
N We used the cube root of N to attenuate the effect of a high N value.

www.intechopen.com



Gaze prediction improvement by adding a face feature to a saliency model 207

7. Evaluation

7.1. Fusions

Static, dynamic and face saliency maps do not have the same appearance. On one hand, the
static saliency map exhibits a large number of salient areas, corresponding to textured areas
that are spread over the whole image. On the other hand, the dynamic saliency map can
exhibit only small and compact areas corresponding to moving objects. Finally, the face
saliency map can be null when no face is detected.

A previous study detailed the analysis of the static and the dynamic pathways (Marat et al.,
2009). This study showed that a frame with a high maximum static saliency map value is
more salient than a frame with a lower maximum static saliency map value. Moreover, a
frame with high skewness of the dynamic saliency map is more salient than a frame with a
lower skewness value of the dynamic saliency map. A high skewness value corresponds to a
frame with only one compact moving area. To add the static saliency map multiplied by its
maximum to the dynamic saliency map multiplied by its skewness creating the master
saliency map provides better eye movement prediction than a simple sum. The face saliency
map was designed to reduce the maximum saliency value with the number of faces
detected. Hence, this maximum is characteristic for the face pathway. The fusion proposed
considers the particular features of each saliency map by weighting the raw saliency maps
by their relevant parameters (maximum or skewness) and provides better results. The
weighted saliency maps are defined as:

M, =max(M,)x M, ()
M, = skewness(M ;)x M, (4)
M, =max(M,)xM, ()

To study the importance of the face pathway, we computed two different master saliency
maps: one using only the static and the dynamic maps (6) and another using the three maps
(7).
— 6
M,=M,+M, (©)

M,=M.,+M,+M, 7)

Note that if the face saliency map is null for a frame the master saliency map would depend
only on the static and the dynamic saliency maps. Moreover, to strengthen regions that are
salient in two different maps (static and dynamic, static and face or dynamic and face), a
more elaborate fusion, called “reinforced” fusion (Mgrsdf), was proposed (8):

Mdef :MS'+Md'+Mf'+Ms'XMd'+Ms'fo'+Md'XMf' 8)

This fusion reinforces the weighted fusion My by adding multiplicative terms. We chose
multiplicative terms with only two maps because if we chose a multiplicative term with the
three maps when the face saliency map is null the multiplicative term would be null. If the
face saliency map is null the “reinforced” fusion takes advantage of the static and the
dynamic maps. In that case, the face saliency map does not improve the result but it does
not penalize the result either. Examples of these fusions integrating the face pathway are
proposed in figure 9. In figure 9 (a), the face on the right of the frame is moving, whereas the

www.intechopen.com



208 Recent Advances in Signal Processing

two faces on the left are not moving. In figure 9 (b) the three faces are almost equally salient,
but in figure 9 (c) the multiplicative reinforcement terms increase the saliency of the moving
face on the right of the frame.

(@) (b) ()
Fig. 9. Example of master saliency maps: (a) Input video frame, (b) Corresponding master
saliency map computed using a weighted fusion of the three pathways M4, (c)

Corresponding master saliency map using the “reinforced” fusion of the three pathways
MRsdt.

7.2. Evaluation of different saliency maps

The first evaluation was done on the database of “true” face saliency maps which were
hand-labelled. Each saliency map was weighted as explained in section 6.1. The results are
presented in Table 4.

Saliency maps M, Mgy Mg Msq Maat Mgsas
Mean NSS 0.68 0.84 4.46 1.00 3.38 3.99
Standard deviation 0.72 1.03 2.19 0.80 1.63 2.05

Table 4. Evaluation of the different saliency map and the fusion, on the database where a
“true” face saliency map was hand-labelled.

As stated above, the face saliency map gives better results than the static or the dynamic
ones (F(2,1413)=1009.81; p#0). The fusion which did not take face saliency maps into account
gives a lower result than the fusions with face saliency maps (F(2,1413)=472.33; p#0), and
the reinforced fusion is even better than a more classical fusion (F(1,942)=25.63; p=4.98x107).
Subsequently, the NSS was computed for each frame of the whole database (14155 frames)
using the different model saliency maps and the eye movement data. The face saliency map
is obtained using the split-up SNoW face detector and the weighting and fusion previously
explained. In order to test the contribution of face pathway, the mean NSS value was
calculated using the saliency map given by each pathway independently and the different
possible fusions. The mean NSS value is plotted for six models of saliency maps (Ms, Mg, M,
Msd, Msdr, MRrsgf) in comparison with human data in figure 10. The NSS values are given for
the saliency maps (Ms, Mg and M) but note that the NSS results would be the same for the
weighted saliency maps (My, Mg and M), as multiplying the saliency map by a constant
did not change the NSS value.

www.intechopen.com



Gaze prediction improvement by adding a face feature to a saliency model 209

1,5

1 o
0

Msd Msdf MRsdf

Fig. 10. Mean NSS values on the whole database (14155 frames) for six models of saliency
maps (static, dynamic, face, weighted fusion of the static and dynamic pathways Msq,
weighted fusion of the static, the dynamic and the face pathway My and a “reinforced”
weighted fusion Mgsds).

Mean NSS

As presented in (Marat et al., 2009), the dynamic saliency maps are more predictive than the
static ones. The fusion of the static and the dynamic saliency maps improves the prediction
of the model: the static and the dynamic information needs to be considered to improve the
model prediction. The results of the face pathway should not be considered; in fact, it gives
the lowest results but only because a small number of frames contain at least one face
detected compared to the total number of frames (12% of the whole database).The weighted
fusion integrating the face pathway (Msqr) is significantly better than the weighted fusion of
the static and the saliency maps (Msq), (F(1,28308)=255.39; p#0). Integrating the face
pathway increases the model prediction; hence, as already observed, faces are crucial
information to predict eye positions. The “reinforced” fusion integrating multiplicative
terms (Mgsdr), increasing saliency in regions that are salient in two maps, gives the best
results, outperforming the previous fusion (Msqf), (F(1,28308)=25.91; p=3.6x109). The
contribution of the face pathway in attracting our gaze is undeniable. The face pathway
improves the results greatly, faces have to be integrated into a saliency model to make the
results of the model match the experimental results more closely.

8. Conclusion

When viewing scenes, faces are almost immediately gazed on. This was shown in static
images (Cerf et al., 2007). We report in this research the same phenomenon using dynamic
stimuli. This means that even if there are moving objects, faces rapidly attracted gazes. To
study the influence of faces on gaze, we ran an experiment to record the eye movements of
subjects when looking freely at videos. We used videos with various contents, with or
without faces with textured backgrounds and with or without moving objects. This
experiment enabled us to check that faces are fixated on within the first milliseconds and
independently of the scenes (presence or not of moving objects etc.). Moreover, we showed
that a face is more salient if it is the only face on the frame. In order to take this into account,
we added a “face pathway” to a bottom-up saliency model inspired by the biology. The
“face pathway” uses the Split-up Snow face detector algorithm. Hence, the model splits the
visual signal into static, dynamic, and face saliency maps. The static saliency map
emphasizes orientation and spatial frequency contrasts. The dynamic saliency map
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emphasizes motion contrasts and the face saliency map emphasizes faces proportionally to
the number of faces. Then, these three maps are originally fuzzed by taking into account the
specificity of each saliency map. The fusion showed that the “face pathway” significantly
increases the predictions of the model.
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