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1. Introduction

The human body is an amazingly complex system. Acquiring data about its static and
dynamic properties yields massive amounts of information. The use of images is the most
effective way to manage, present and interpret the vast quantities of that information in the
clinical medicine and in the supporting biomedical research. Computational neuroanatomy
is a new growing field of powerful applications in neuroscience. It promises an automated
methodology to characterize neuroanatomical configuration of structural magnetic
resonance imaging (MRI) brain scans. One of the crucial techniques in this methodology is
image registration. It performs the task of spatial normalization of images according to a
common reference anatomy termed as a brain atlas. It allows interpreting results of an
image analysis in a standard anatomical coordinate system. Further, an atlas of brain makes
it possible to find out how different is a subject brain compared with the common reference
anatomy which represents certain population. Many approaches to registration of brain
images assume same or functionally dependent intensities in the images across subjects.
Thus, they allow the registration process to be driven by differences in intensities. They
however do not count on intensity variations caused by various imaging conditions or tissue
atrophy and degradation induced by neurological diseases. On the other hand, the image
registration methods which are robust to such intensity variations enable only low-
dimensional parametric transformations, which make it impossible to detect localized image
differences without additional efforts. This chapter mainly contributes to the field of
registration with the use of nonlinear locally adaptive transformations. Particularly,
problems connected to matching brain image data obtained from various subjects and with
various imaging conditions are solved here. Difficulties lie in the complex brain structure
which varies widely from one individual to another. Other difficulties lie in the complex and
unknown relations between intensities in images to be registered. A solution of a specific
clinical task from the field of computational neuroanatomy is further presented.

Magnetic resonance imaging (MRI) is a highly successful diagnostic imaging modality,
largely due to its rich set of contrast mechanisms. The signal intensity is a multivariable
function, depending on many parameters. Partial listing includes proton spin density PD,
spin lattice relaxation time T1, spin spin relaxation time T2, proton flow and diffusion. Due
to its exceptionally high soft tissue contrast, MRI lends itself well to morphometric studies in
the brain where clear distinction between structures is required (Ali et al., 2005).
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1.1 Image registration in computational neuroanatomy

Recently the importance of new methods for image analysis has been growing due to the
rapid development of medical imaging modalities. In the field of computational
neuroanatomy, automated whole-brain methods for morphometry are utilized intensively
for structural MRI brain volumetry besides the gold standard methods based on regions of
interest (ROI) in the last decade. The automated whole-brain methods are voxel-based (VBM
- voxel-based morphometry) or deformation-based (DBM - deformation-based
morphometry). While the ROI-based methods need manual segmentation, which is time-
consuming and subjective, the whole-brain methods use semi-automated or automated
processing of images including their segmentation. Detection of pathological changes with
the use of this type of methods is not limited by arbitrarily predefined borders. This fact is
advantageous in disorders with progression of morphological changes during its duration.
Spatial normalization is a necessary step, which reduces an impact of individual variability
in brain shape on the resulting assessment of its local characteristics. Spatial normalization
of images in the stereotaxic space (Ashburner & Friston, 2000; Mechelli et al., 2005) with the
use of deformable image registration is a common kernel of both VBM and DBM. In the
VBM case, the registration suppresses only global shape differences, whereas DBM needs an
image registration method, which covers complex anatomical variability including subtle
local changes (Gaser C. et al. 2001; 2004). The endpoint of any morphometry method in
computational neuroanatomy is usually a statistical parametric map which locates regions
of significant anatomical differences between two groups of subjects. The map is a result of a
standard parametric significance tests performed independently at each point of scalar fields
or vector fields which describe the differences among the subject's anatomies.

An ongoing development of the morphomery methods lies in new designs for deformable
registration methods (Ashburner, 2007; Schwarz et al. 2007) and in extending and refining
the statistical apparatus which is used for computing statistical parametric maps destined
for anatomical abnormality detection (Friston et al., 2007; Xu et al. 2008).

2. Registration of medical images

Image registration is a process of estimating a spatial transformation which maps each point
of an image onto its corresponding point of another image (Rohr, 2001). Image registration is
a fundamental problem in medical image analysis. A universal method does not exist due to
the diversity of registration tasks. There are various approaches to the classification of image
registration methods in surveys (Maintz & Viergever, 1998; Rohr, 2001; Zitova & Flusser,
2003; Gholipour et al, 2007).

2.1 Optimal registration

Optimal registration can be defined as an optimization problem with the goal of finding the
spatial mapping that will bring the floating image N into alignment with the reference
image M. Fig. 1 shows its basic steps.
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Fig. 1. Basic components of an optimal registration framework (Ibanez et al., 2003).

The spatial transformation ¢, maps points from the reference image space to points in the
floating image space. It is parameterized by a vector of parameters a. It is in fact an inverse
mapping which is preferable as it avoids problems of holes with the forward mapping. The
transformation is directly connected to interpolation which serves for evaluation of floating
image intensities at non-grid positions. The similarity measure S(M, Neg,) or its negative
forms a criterion of optimality - a cost function which is minimized in the optimization over
the search space defined by parameters of the spatial transformation.

The affine transformation is one of the most popular transformations used in image
registration. It can be described by a single 4 x 4 matrix computed as a product of matrices
representing translation, rotation, shearing and scaling.

The choice of an appropriate similarity measure is determined by the character of intensities
in the floating and the reference image. Popular choices are based on intensity, correlation
and mutual information. Supposing the image intensities to be discrete random variables,
their mutual information (MI) is defined as (Ibanez et al., 2003):

I(M,N)=H(M)+H(N)-H(M,N)= ©)

Pawy (m,1)

= 2 pwlmmlog, Ty

where I(M,N) is the mutual information of random variables M and N, H(M) and H(N) are
entropies of M and N respectively and H(M,N) is the joint entropy of M and N. It is
rewritten to a form containing marginal probability density functions (PDF) pm(m), pn(n)
and joint PDF pan(m,n). MI gives a measure of the strength of the dependence between the
random variables. The major advantage of using MI is that the actual form of the
dependency does not have to be specified. Therefore, MI is well suited as a criterion of
multimodal registration. The marginal and joint PDFs are estimated from image data by
Parzen windowing (Viola, 1995; Studholme et al., 1999; Modersitzki, 2004) or by
normalizing the joint histogram (Maes, 1998; Maintz et al., 1998).

An optimization technique is needed to find the spatial transformation defined by a vector
of transformation parameters a=[ay, ..., ap]. The number of parameters D ranges from six, for
rigid body transformation, to twelve, for general affine transformation. In the case of
deformable registration techniques, there are hundreds or even thousands of parameters.
Optimization methods with no gradient computation requirement are typical for
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correlation-based and mutual information based criterions. Powell's directions set method
(Maintz et al., 1998; Pluim et al., 2001), downhill simplex method (Collins et al., 1994) and
simulated annealing (Capek et al., 2001; Kubecka & Jan, 2004) are most often examples.

To alleviate the problems associated with direct intensity interpolation methods, partial
volume interpolation was proposed in (Maes, 1998) for mutual information based
registration. It was further extended to a scheme called generalized partial volume (GPV)
joint histogram estimation (Chen & Varshney, 2003).

2.2 Deformable registration

In many medical imaging applications, the global linear alignment does not provide a
sufficient solution. A nonlinear transformation is necessary to correct the local differences in
the images. Here, the process of finding such a transformation is termed as deformable
registration. The reference image M and a floating image N are expected to be aligned by the
global rigid body or affine transformation. The central idea behind deformable registration
is to find local forces which will deform the floating image to make it more similar to the
reference image, see Fig. 2. The transformation ¢(x) is usually split into the trivial identity
part and a so called displacement field u(x) (Modersitzki, 2004):

p(x)=x+u(x). )

Computation of the displacement field involves local forces together with regularization
provided by a spatial deformation model. Regularized mapping function ensures realistic
registration results without tearing or folding of the image.

2.2.1 Parametric deformable registration

Parametric transformation (sometimes termed as low-dimensional) can be expanded in
terms of some parameters a; and basis functions ;. The registration task is to determine the
parameters of the transformation. Methods based on radial basis function (RBF)
interpolation are used widely. Wendland’s functions (Fornefett et al., 2001) and thin-plate
splines (Kostelec et al., 1998; Pauchard et al., 2004) are examples of RBFs used in image
registration. Other functions used for parametric deformations are B-splines (Rueckert et al.,
1999; Rohlfing et al., 2003; Schnabel et al., 2003), components of discrete cosine transform
(Ashburner & Friston, 2000) or wavelet basis functions (Downie & Silverman, 2001).

In the case of image deformation with the use of RBFs, the displacement field u(x) is
controlled by a finite number of movable control points. The interpolation problem is solved
separately for each coordinate of the displacement field:

w,(x):R* >R, ulp,)=f,, i=l.n, k=1.4d. 3)

where d is the image dimension, p; constitute a given set of n control points and f; are their
translations. Using RBFs, the interpolant is constructed:

@
)

0, (0=2 b )+ Yap(x-p,
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where the first term is a linear combination of polynomials and the second term is a linear
combination of RBFs. Here, ¢ are m polynomial components, i denotes a RBF and || x-p;|| is
the Euclidean distance from x to p; and a;, b; are coefficients. A RBF is a function depending
only on the distance from the origin: y(||x-pi||)= w(r). By inserting (4) into (3) and using
constraints that guarantee polynomial precision (Amidror, 2002), a following system of
linear equations for the coefficients a=[aj, ..., a,]T and b=[bj, ..., b,,]T is obtained:

10

where K is a n x n sub-matrix given by Ki=y(|pi-p;||), P is a n x m sub-matrix given by
Pi=¢(pi) and £fi=[fr1, ..., fiu]T is a vector of the kth coordinate of the control points' translations
f;. The polynomial sub-matrix P depends on the type of RBF. For thin plate splines, it has its
ith row of the form [1, x,i, Ypi, zpi], which are x, y and z-components of p; (Donato & Belongie,
2002). Hence, there is a global influence of a control point on the resulting displacement field
u(x). Compactly supported RBFs are another recent choice. Due to their positive
definiteness, the regularity of the matrix K is ensured. Therefore, no polynomial part is
needed and (5) reduces to:

Ka=f,. (©)

One of Wendland's functions (Wendland, 1995) is proposed for deformable image
registration in (Fornefett et al., 2001):

Wer(r)=(1-7):(4r+1). @)

Its mathematical properties hold for various spatial supports s, such that: wcp(r;s)= pcp(r/s).
Compared to other RBFs, the use of compactly supported RBFs is highly efficient, as the
matrix K is rather sparse and no transcendental functions are involved in the calculation.
The support length s cannot be set arbitrary, as there is a fundamental condition of topology
preservation. This requirement is satisfied if the determinant of the Jacobian of the
deformation is non-negative.

2.2.2 Non-parametric deformable registration

Non-parametric deformable registration methods (sometimes termed as high dimensional)
directly compute a displacement in every point most often by imitating real world
transformations of deformable materials. One of the first proposed methods based on
continuum mechanics was elastic matching (Ferrant et al., 2001; Alterovitz et al., 2004;
Modersitzki, 2004). Only small deformations are assumed, thus linear elastic model can be
used. In (Christensen et al., 1996), a viscous fluid model is used to control the deformation.
The floating image is modelled as a thick fluid that flows out to match the reference image
under the control of the local forces. Convolution filter methods for solving associated PDE
were proposed in (Gramkow & Bro-Nielsen, 1997). A considerable piece of work is
presented in (Rogelj et al., 2003; Rogelj & Kovacic, 2004), where Gaussian filters are used for
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modelling the spatial deformation. The Gaussian filters are used to approximate the elastic
as well as the fluid model. It is also successfully used for a so-called incremental model,
which is used for image registration in (Peckar et al., 1998). A spatial deformation model
made up from the elastic and the incremental model is proposed, in order to combine their
advantages and thus improve the registration. The model consists of two convolution filters
(Rogelj & Kovacic, 2004):

u, =kf, (®)
ui:(uHJruf*Gl)*GE, ©)

see the scheme in Fig. 2. The first part follows the Hooke’s law to compute unregularized
displacements uy of image points. It says that the points move proportionally to the applied
forces with a constant k. The filter G; regularizes displacement improvements us and the
second filter G regularizes the overall displacement field u.

f | akf Spatial - Spatial u
| /= | filter G, N/ filter Gg

v

Fig. 2. The combined elastic-incremental model (Rogelj & Kovacic, 2004).

2.2.3 Local forces estimation and similarity measures

Local forces are obtained either by optimization or they are computed directly, depending
on a particular registration method. In the former case, the registration is usually based on a
global similarity measure which detects improvement of local image correspondence
(Rueckert et al., 1999; Rohlfing et al., 2003), or block matching techniques are performed
(Kostelec et al.,, 1998; Maintz et al., 1998). Most suitable translations are found in an
optimization procedure with the use of monomodal as well as multimodal similarity
measures. In the latter case, the forces are estimated in every point as the derivative of a
similarity measure. The resulting dense field of the forces is used to compute a high
dimensional deformation, often based on some physical interpretation. The registration
methods which perform the high-dimensional warping are typically limited to monomodal
data, e.g. (Gramkow & Bro-Nielsen, 1997; Christensen et al., 1996; Thirion, 1998). However,
the effort to develop registration algorithms focused on high-dimensional matching of
multimodal data recently emerged. In (Rogelj et al., 2003), point similarity measures are
proposed for high dimensional deformable registration of multimodal data. The point
similarity measures are derived from global similarity measures based on the joint PDF
estimated from the joint histogram.

The point similarity measure Syi(x) derived from the global mutual information is defined
as (Rogelj & Kovaci¢, 2003):
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x)=1o Pun (m(x)/n(x)) (10)
Sul=logs o )

The negative joint entropy H(M,N), which is the most informative part of MI can be used as
a global multimodal similarity measure and a point similarity measure Sy can be derived. In
(Maintz et al.,, 1998), conditional probability densities are used for a region similarity
measure, which is here rewritten as another point similarity measure:

5, ()= pln(x)(x), a
In (Rogelj et al., 2003), other measures are proposed:
Pan (m(x), m(x)) 12
S,\x)= ,
0 T, ]
Sur (X) =108, P (m(x),n(x)) +log, Py (m<X)’n(X)) =Sy + 5y "

pu(m(x))py (n(x))

There are measures expressed in the terms of probability (Spc, Su) and uncertainty (S, S,
Sun). It was shown in the previous work (Schwarz et al., 2007) that better performance of the
proposed registration methods is achieved involving the probability similarity measures
and another point similarity measure depending on the probability was proposed there:

oo P te) a
o, e, o)

Any point similarity measure can be used to compute a region similarity measure by simply
averaging the point similarities over the region. The averaging over a region can also be
viewed as convolution filtering with some spatial filter (Rogelj & Kovaci¢, 2003).
Convolution spatial filtering was previously described as a method for modeling spatial
deformations. The regularization provided directly by region similarity measures is
substantial for large regions. The concept of local forces based on the derivative of a point
similarity measure is further extended in (Rogelj & Kovaci¢, 2003), where symmetric local
forces are proposed to improve registration consistency.

3. Multimodal deformable registration in stereotaxic space

Two algorithms for atlas-based deformable registration of MRI brain images are proposed.
The use of various multimodal similarity measures is explored. Their computation requires
knowledge of the joint PDF of the images being registered. Its estimation is a common part
in both algorithms. The algorithms differ in the other parts including extraction of local
forces and spatial deformation models. The subjects' image data are supposed to be
transformed into stereotaxic space by a previous linear registration step.
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3.1 Low-dimensional deformable registration by enhanced block matching

The first registration algorithm produces low-dimensional deformations which are suitable
for coarse spatial normalization which is an essential step in VBM. On the contrary to the
widely used spatial normalization implemented in (Ashburner & Friston, 2000), the
proposed algorithm is applicable for matching multimodal image data. It is in fact an
enhanced block matching technique. The scheme of the algorithm is in Fig. 3. A multilevel
subdivision is applied on a floating image N. Obtained rectangular image blocks are
matched with a reference image M. The resulting displacement field u is made up from local
translations of the image blocks by RBF interpolation. The translations representing warping
forces f are found by maximizing symmetric regional similarity measures.

3.1.1 Symmetric regional matching

Conventional block matching techniques measure the similarity of the floating image
regions with respect to the reference image. Here, inspired by the symmetric forces
introduced for high dimensional matching (Rogelj & Kovaci¢, 2003), the regional similarity
measure is computed by:

Sy = Sljxtsmrd [M(xw + uW("w )),N(XW )]+ Sw [M(xw )/N(xw Uy (xw ))]/ (15)

where the first term corresponds to the similarity measure computed over all Ky voxels
xw=[x1, X2, ..., Xxw] of a region W of the floating image according to the reference image. The
second term corresponds to the reverse direction. The terms M(xw) and N(xw) denotes all
voxels of the region IV in the reference image and in the floating image respectively. The
displacements uw(xw)=[u(x1), u(x2), ..., u(xxkw)] are computed in foregoing iterations and they
moves the voxels N(xw) of the floating image from their undeformed positions xy to new
positions xw+uw(xw), where they get matched with the voxels M(xw+uw(xw)) of the reference
image. In the case of the reverse similarity measure, the displacements un/(xw) are applied
on the reference image M, as it would be deformed by the inversion of the so far computed
deformation. The voxels M(xy) of the reference image are thus moved to get matched with
the voxels N(xw-uw(xw)) of undeformed floating image, see the illustration in Fig. 4.

It is impossible to uniquely describe correspondences of regions in two images by
multimodal similarity measures, due to their statistical character. When the local
translations are searched in complex medical images, suboptimal solutions are obtained
frequently with the use of the forward similarity measure only. Using the symmetric
similarity measure, additional correspondence information is provided and the chance of
getting trapped in local optima is thus reduced.

Due to the subvoxel accuracy of performed deformations, the point similarities have to be
computed in points that are not positioned on the image grid. Point similarity functions
(10)-(14) are defined for a finite number of intensity values due to histogram binning
performed in the joint histogram computation. Conventional interpolation of voxel
intensities is therefore inapplicable, because the point similarity functions are not defined
for new values which would arise. Thus, the GPV method, which was originally designed
for computation of joint intensity histogram, is used here. The computation of point pair
similarity requires knowledge of the intensities m and »n in the points of the images M and N
respectively. The intensity n on a grid point of the deformed grid of the floating image is
straight-forward, whereas the intensity m on a point off the regular grid of the reference

www.intechopen.com



Methods for Nonlinear Intersubject Registration in Neuroscience 57

image is unknown. Their similarity is computed as a linear combination of similarities of
intensity pairs corresponding to the points in the neighbour-hood of the examined point.
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Fig. 3. The scheme of the block matching algorithm proposed for coarse spatial
normalization.
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Fig. 4. Illustration of regional symmetric matching. The similarity is measured in the
forward (the blue line) as well as in the reverse (the green line) direction of registration. In
the forward direction, the displacement field computed so far is applied on the floating
image voxels. In the reverse direction, the inverse displacement field is applied on the
reference image voxels.

The extent of the neighbourhood depends on the chosen kernel function. Here, the first-
order, the second-order and the third-order B-spline functions with 8, 27 and 64 grid points
in neighbourhood for 3-D tasks or 4, 9 and 16 points in neighbourhood for 2-D tasks are
used. The particular choice of the kernel function affects the smoothness of the behaviour of
the regional similarity measure, see Fig. 5. The number of local optima is the lowest in the
case of the third-order B-spline. As the evaluation of the B-splines increases the
computational load, their values are computed only once and stored in a lookup table with
increments equal to 0.001.

10

-10 -5

0
fmm]

Fig. 5. Comparison of the regional similarity measure computed with the use of GPV and
the first-order B-spline (solid line), the second-order B-spline (dashed line) and the third-
order B-spline (dotted line). A region of the size a) 10x10 mm, b) 20x20 mm was translated
by fi=t10mm in the x direction.

0
filmm]

Local translations which maximize a matching criterion are searched in optimization
procedures. Here, the symmetric regional similarity measure is used as the matching
criterion which has to be maximized:
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Sy ()= S (M, +wyy (%, )+ £ ) N,y )+ (16)
+S;T/UGYSC(M(XW)/N(XW - uw(xw)_ fW ))/

where fiy =[fy, f5, ..., fxw], f1=fo=.. fxw=[f, fy, f:]T is a translation of all voxels in a region W
along x, y and z axis. The use of the symmetric regional similarity measure and the GPV
interpolation with the use of the second-order B spline or the third order B-spline leads to
well-behaved criterion function in the case of large regions. In the case of small regions, the
uncertainty about the best translation is still high and many local maxima occur near the
optimal solution. A combination of extensive search and hillclimbing algorithms is used
here to find the global maximum. First, a space of all possible translations is determined by
absolute maximum translation |f,.| in all directions. Then, the space of all possible
translations is searched with a relatively big step s.. The g best points are then used as
starting points for the following hillclimbing with a finer step s,. The maximum of g local
maxima obtained by the hillclimbing is then declared as the global maximum, see Fig. 6. All
the parameters of the optimization procedure depend on the size of the region which is
translated. In this way, fewer criterion evaluations are done for larger regions when the
chance of getting trapped into local maxima is reduced and more evaluations of the criterion
is performed for smaller regions.

By M Fal £ Fal Fak
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=
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=
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a8 o4 i) 4 5
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Fig. 6. A trajectory of 2-D optimization performed by an extensive search (triangles)
combined with hillclimbing (bold lines). The optimization procedure was set for this
illustration as follows: | fuax|=[8, 8], s.==4 mm, 5,=0.1 mm, g=8. The local maxima are marked
by crosses and the global one is marked by the circle.
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Image deformation based on interpolation with the use of RBFs is used here. The control
points p; are placed into the centers of the regions and their translations f; are obtained by
symmetric regional matching. Substituting the translations into (6), three systems of linear
equations are obtained and three vectors of w coefficients, where w is the number of the
regions, ay=(aik .., Awkx)? computed. The displacement of any point x is then defined
separately for each dimension by the interpolant:

), k=1.3 it

Uy (x) = Z az‘,k'//cp(“x —P;
i-1

The values of spatial support s for various regions sizes are set empirically.

Optimal matches can be hardly found in a single pass composed of the local translations
estimation and the RBF-based interpolation, since features in one location influence
decisions at other locations of the images. Iterative updating scheme is therefore proposed
here. A multilevel strategy is incorporated into the proposed algorithm. The deformation is
iteratively refined in the coarse to fine manner. The size of the regions cannot be arbitrarily
small, because the local translations are determined independently for each region and
voxel interdependecies are introduced only by the regional similarity measure. The regions
containing poor contour or surface information can be eliminated from the matching process
and the algorithm can be accelerated in this way. The subdivision is performed only if at
least one voxel in the current region has its normalized gradient image intensity bigger then
a certain threshold.

3.2 High-dimensional deformable registration with the use of point similarity
measures and wavelet smoothing

The second registration algorithm produces high dimensional deformations involving gross
shape differences as well as local subtle differences between a subject and a template
anatomy. As multimodal similarity measures are used, the algorithm is suitable for DBM on
image data with different contrasts. There are two main parts repeated in an iterative
process as it was in the block matching algorithm: extraction of local forces f by
measurements of similarity and a spatial deformation model producing the displacement
field u. The main difference is that these parts are completely independent here, whereas the
regional similarity measure used in the block matching technique constrains the
deformation and thus it acts as a part of the spatial deformation model. Another difference
is in the way of extraction of the local forces. No local optimization is done here and the
forces are directly computed from the point similarity measures.

The registration algorithm is based on previous work and it differs from the one presented
in (Schwarz et al., 2007) namely in the spatial deformation model. The scheme of the
algorithm is in Fig. 7. The displacement field u which maximizes global mutual information
between a reference image and a floating image is searched in an iterative process which
involves computation of local forces f in each individual voxel x and their regularization by
the spatial deformation model. The regularization has two steps here. First, the
displacements proportional to forces are smoothed by wavelet thresholding. These
displacements are integrated into final deformation, which is done iteratively by
summation. The second part of the model represents behaviour of elastic materials where
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displacements wane if the forces are retracted. This is ensured by the overall Gaussian
smoother.

Multiresolution strategy
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Fig. 7. The scheme of the high-dimensional registration algorithm proposed for DBM. The
spatial deformation model consists of two basic components. First, the dense force field is
smoothed by wavelet thresholding and then the displacements are regularized by Gaussian
filtering to prevent breaking the topological condition of diffeomorphicity.
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Nearly symmetric orthogonal wavelet bases (Abdelnour & Selesnick, 2001) are used for the
decomposition and the reconstruction, which are performed in three levels here. All detail
coefficients in the first and in the second level of decomposition are set to zero in the
thresholding step of the algorithm. The initial setup of the standard deviation og of the
Gaussian filter is supposed to be found experimentally. The deformation has to preserve the
topology, i.e. one-to-one mappings termed as diffeomorphic should only be produced. This
requirement is satisfied if the determinant of the Jacobian of the deformation is held above
zero:

op,  Op,  Op,
ox oy 0Oz
op, 0, 0p
det >0, = 2 2 2z 18
J(p) Jo)=| = o o (18)
op,  0p,  0p,
ox oy Oz

where ¢1, 2 and ¢3 are components of the deformation over x, y and z axes respectively.
The values of the Jacobian determinant are estimated by symmetric finite differences. The
image is undesirably folded in the positions, where the Jacobian determinant is negative. In
such a case, the deformation is not invertible. The og-control block therefore ensures
increments in og if the minimum Jacobian determinant drops below a predefined threshold.
On the other hand, the deformation should capture subtle anatomical variations among
studied images. The og-control block therefore ensures decrements in o¢ if the minimum
Jacobian determinant starts growing during the registration process.

Local forces are computed for each voxel independently as the difference between forward
forces and reverse forces, using the same symmetric registration approach as in the
previously described block-matching technique. The forces are estimated by the gradient of
a point similarity measure. The derivatives are approximated by central differences, such
that the kth component of a force at a voxel x is defined here as:

0= () £ ()=
_ S(M(x+u(x)+¢,),N(x) - S(M(x +u(x)-g,),N(x))
2¢, (19)
S(M(x),N(x —u(x) + )~ S(M(x), N(x ~u(x) - ¢,))

- , k=1..D,
2¢,

where ¢ is a voxel size component. The point similarity measure is evaluated in non-grid
positions due to the displacement field applied on the image grids. Thus, GPV interpolation
from neighboring grid points is employed here. For more details on computation and
normalization of the local forces see (Schwarz et al., 2007).
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3.3 Evaluation of deformable registration methods

The quality of the presented registration algorithms is assessed here on recovering synthetic
deformations. The synthetic deformations based on thin-plate spline simulator (TPSsim) and
Rogelj’s spatial deformation simulator (RGsim) were applied to 2-D realistic T2-weighted
MRI images with 3% noise and 20% intensity nonuniformity from the Simulated Brain
Database (SBD) (Collins et al., 1998). The deformation simulators are described in detail in
(Schwarz et al.,, 2007). The deformed images were then registered to artifact-free T1-
weighted images from SBD and the error between the resulting and the initial deformation
was measured. The appropriate evaluation measures are the root mean-squared residual
displacement and the maximum absolute residual displacement. In the ideal case, the
composition of the resulting and initial deformation should give an identity transform with
no residual displacements.

Based on preliminary results and previous related works, the similarity measure Spy; was
used for both registration algorithms and the maximum level of subdivision in the block
matching technique was set to 5. This level corresponds to the subimage size of 7x7 pixels.
Although the next level of subdivision gave an increase in the global mutual information,
the alignment expressed by quantitative evaluation measures and also by visual inspection
was constant or worse.

The results expressed by root mean squared error displacements are presented
in Table 1 and Table 2. The high-dimensional deformable registration technique gives more
precise deformations with the respect to the lower residual error. The obtained results
showed its ability to recover the smooth deformations generated by TPSsim as well as the
complex deformations generated by RGsim.

eRMS [mm]
010210102101 |02]101]|02|01]|021|01] 02
1(1|12(1|13[1|12]2|3]2|3]3

| epMAX | | ggRMS

[mm] | [mm]

TPSsim
5 247 | 059 | 057 | 056 | 051 | 052 | 0.51
8 395 | 074 | 071 | 0.69 | 0.68 | 0.67 | 0.67
10 493 | 091 | 089 | 0.86 | 0.85 | 0.82 | 0.82
12 592 | 117 | 138 | 134 | 116 | 1.36 | 1.35
RGsim
5 230 | 093 | 087 | 0.85 | 0.79 | 0.77 | 0.75
8 367 | 147 | 141 | 137 | 1.39 | 1.33 | 1.27
10 459 | 219 | 217 | 209 | 2.05 | 2.07 | 1.98
12 551 | 3.09 | 293 | 292 | 3.05 | 293 | 2.99
Table 1. Root mean squared error displacements achieved by the multilevel block matching
technique on various initial misregistration levels expressed by |eMAX|and eoRMS and with
various setups in GPV interpolation kernel functions. The order of B-splines used in joint
PDF estimate construction is signed as o; and the order of B-splines used in regional
matching is signed as 0>.
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|egMAX | | ggRMS eRMS [mm)]
[mm] [mm] | 0c=2.0mm | 06=2.5mm | 0c=3.0mm | 0c=35mm | 0c=4.0 mm
RGsim
2.30 247 1.10 0.73 0.69 0.93 0.93
3.67 3.95 1.87 1.07 1.09 1.70 1.72
4.59 4.93 2.70 1.46 1.52 2.56 2.62
5.51 5.92 3.69 2.02 2.19 3.65 3.73
TPSsim
247 2.30 0.84 0.60 0.53 0.61 0.58
3.95 3.67 1.26 0.74 0.68 1.00 0.96
4.93 4.59 1.77 0.84 0.78 1.48 1.43
5.92 5.51 242 1.16 0.98 2.20 2.18

Table 2. Root mean squared error displacements achieved by the highdimensional
deformable registration method on various initial misregistration levels expressed by
| eoMAX | and eoRMS and with various setups in oc . Highlighted values show the best results
achieved with the registration algorithm.

4. Deformation-based morphometry on real MRI datasets

In this section the results of high-resolution DBM in the first-episode and chronic
schizophrenia are presented, in order to demonstrate the ability of the high-dimensional
registration technique to capture the complex pattern of brain pathology in this condition.
High-resolution T1-weighted MRI brain scans of 192 male subjects were obtained with a
Siemens 1.5 T system in Faculty Hospital Brno. The group contained 49 male subjects with
first-episode schizophrenia (FES), 19 chronic schizophrenia subjects (CH) and 124 healthy
controls. The template from SBD which is based on 27 scans of one subject was used as the
reference anatomy and 192 template-to-subject registrations with the use of the presented
high-dimensional technique were performed. The resulting displacement vector fields were
converted into scalar fields by calculating Jacobian determinants in each voxel of the
stereotaxic space. The scalar fields were put into statistical analysis which included
assessing normality, parametric significance testing. The Jacobian determinant can be
viewed as a parameter which characterizes local volume changes, i.e. local shrinkage or
enlargement caused by a deformation. The analysis of the scalar fields produced spatial map
of t statistic which allowed to localize regions with significant differences in volumes of
anatomical structures between the groups. Complex patterns of brain anatomy changes in
schizophrenia subjects as compared to healthy controls were detected, see Fig. 8.
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Fig. 8. Selected slices of t statistic overlaid over the SBD template. The t values were
thresholded at the levels of significance a=5% corrected for multiple testing by the False
Detection Rate method. The yellow regions represent local volume reductions in
schizophrenia subjects compared to healthy controls and the red regions represent local
volume enlargements. Compared groups: a) FESUCH vs. NC, b) FES vs. NC, ¢) CH vs. NC.

5. Conclusion

In this chapter two deformable registration methods were described: 1) a block matching
technique based on parametric transformations with radial basis functions
and 2) a high-dimensional registration technique with nonparametric deformation models
based on spatial smoothing. The use of multimodal similarity measures was insisted. The
multimodal character of the methods make them robust to tissue intensity variations which
can be result of multimodality imaging as well as neuropsychological diseases or even
normal aging.

One of the described algorithms was demonstrated in the field of computational
neuroanatomy, particularly for fully automated spatial detection of anatomical
abnormalities in first-episode and chronic schizophrenia based on 3-D MRI brain scans.
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