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1. Introduction

This chapter focuses on analyzing various established approaches in bio-medical signal
analysis, with emphasis on the dynamic evolution of time series and their structural inter-
relationships. The application area involves electroencephalographic (EEG) signals, but the
analytic approaches can be extended to most physiological signals. Two major approaches
will be discussed including i) linear synchronization methods and ii) nonlinear
synchronization methods based on chaos theory. Comparisons and extensions will be
thoroughly investigated as to highlight their advantages and limitations over traditional
power-based techniques. In particular, this chapter will investigate traditionally formulated
coherence methods (i.e., correlation, coherence, short time Fourier transform coherence) and
modern linear analysis techniques (i.e., Wavelet coherence and the Partial Directed
Coherence), as well as established nonlinear methods, such as phase and generalized
synchronization algorithms. Applications will be referenced in the domains of cognitive
awareness assessment and diagnosis of pathological cases, such as Schizophrenia,
Alcoholism and Epilepsy. Furthermore, a link to graph theory and visualization of
synchronization status will be briefly addressed in an attempt to better describe the
functional characteristics of brain networks.

2. Linear synchronization techniques applied in EEG analysis

The revolutionary discoveries of Jean Baptiste Fourier (1768-1830), have had a major impact
on the development of mathematics and are of great importance in an extremely wide range
of scientific and engineering disciplines. Although, the original work of Fourier was focused
on problems of mathematical Physics, which happen in the continuous time domain, there is
also a rich variety of applications of the tools of Fourier analysis for discrete-time signals
and systems. In particular, discrete-time concepts and methods are fundamental to the
discipline of numerical analysis. Formulas for the processing of discrete sets of data points
to produce numerical approximations for interpolation, integration, and differentiation were
investigated in the early 1600’s. This section starts with the mathematical foundation of the
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494 Recent Advances in Biomedical Engineering

traditionally formulated Magnitude Squared Coherence (MSCOH) that is based on the Fast
Fourier Transform (FFT) theoretical foundation and extents to the most modern Wavelet
and Partial Directed Coherence (PDC) ones.

2.1 Cross-correlation & Coherence

The study of functional relationships between two brain regions has been one of the main
aims of the EEG. As early as 1951, the cross-correlation function was used to study the
similarity between two EEG signals (Brazier and Casby, 1952). Its application in the area of
brain analysis is based on the assumption that the higher the correlation, the stronger the
functional relationships between the related brain regions (Shaw, 1981; Shaw, 1984). It has
been extensively used in studying the interrelationships between different cortical regions in
relation to sensory stimulation, voluntary movements, effect of drugs and a wide range of
clinical and cognitive problems and tasks.

However, since the development of FFT, correlation has been replaced by an alternative
mathematical method, the coherence spectrum. The latter, in addition to the correlation
information, has the advantage of showing the co-variation between two signals as a
function of frequency, thus allowing the study of spatial correlations between different
bands (Gevins, 1987; Guevara et al.,, 1995). Coherence studies have been successfully
conducted in many fields, including those dealing with cognitive functions and psychiatric
disorders (French and Beaumont, 1984). To mention a few key articles that reviewed the
applications of coherence to neural data the reader is referenced to (Dumermuth and
Molinari, 1991; French and Beaumont, 1984; Shaw, 1984; Thatcher et al., 1986; Zaveri et al.,
1999). Especially in epileptic seizures (Sakkalis et al., 2008a) when an abnormal
synchronization of neurons takes place, coherence appears to be an ideal tool for measuring
it (Sakkalis et al., 2009).

Both methods, correlation and coherence, may be considered as equivalent in that they
evaluate the degree of similarity between two signals. However, there are important
differences between them. Coherence is calculated by dividing the numerical square of the
cross-spectrum by the product of the autospectra (eq. 3). Since, it is a complex measure; it is
sensitive to both a change in power and a change in phase relationships. Consequently, if
either power or phase changes in one of the signals, the coherence value is affected. Another
important difference is that the value of coherence for a single epoch is always one,
regardless of the true phase relationship and the differences in power between the two
signals (Bendat and Piersol, 1993).

Therefore, the sample cross spectrum S, between two time series is defined by calculating
the product of the Fourier transformed series as follows:

S (=X Y (f) 1)
The latter measures the linear cross correlation between the two signals for any given
frequencies. In general, the correlation function requires normalization to produce an
accurate estimate and is given by:

> x(k +7)y(k) 2)

N-7

C (1) =
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where N is the total number of samples and 7 the time lag between the signals. Taking the
square of the cross spectrum normalized by the auto spectra of each signal defines the
magnitude squared coherence or simply the coherence I, as follows:

2 (s (1))
()=
(s (s, )

where <> indicates average over a number of equal in length signal segments or epochs,

2

€)

xy

the so-called averaged modified periodogram typically using Welch’s method.
Over successive epochs the coherence measure is dependent on power and phase of the two
signals along the epochs. If there is no variation over time in the original relationship
between the two signals, the coherence value remains unity. This means that coherence does
not give direct information on the true relationship between the two signals, but only on the
stability of this relationship with respect to power asymmetry and phase relationship.
Correlation, on the other hand, may be calculated over a single epoch or over several epochs
and it is sensitive to both, phase and polarity, independently of amplitudes. The calculation
of coherence involves squaring the signal, thus producing values which go from 0 (linearly
independent signals for a given frequency) to 1 (maximum linear correlation in given
frequency), and a loss in polarity information. By contrast, correlation is sensitive to polarity
and its values go from - 1 (complete linear inverse correlation) to +1 (complete linear direct
correlation), with C,,(r) = 0 suggesting lack of linear interdependence for a given time lag .
However, under normal physiological conditions, no strong and abrupt power asymmetries
would be expected to occur. Thus, the influence of power on coherence should be negligible
and results similar to those produced by correlation also would be expected for the
coherence measures.
Additionally one is able to define the phase function of the coherence as:
=38 (f)
® (f)=arctan———— 4)
RS (1)

where 3 and R denote the imaginary and real part. Phase measure is meaningful only in
the case of significant coherence, when one is interested in estimating the time delay
between the two signals (Brazier, 1972) according to:

®ﬂ‘
() ="— ®)
2 f

k

where ®,, is the phase difference in degrees at a frequency f;.

Important concerns and limitations

It should be noted that EEG represents a set of continuous voltage/time values and may
therefore be considered as a multivariate time series that belongs to the category of
stochastic processes which may be described by probability distributions. The concept of
temporal stochastic process may be extended, in the case of the EEG, to the spatial domain
(Nunez, 1995). The stochastic nature (temporal and spatial) of the EEG allows the use of
correlation and coherence analyses which presuppose independence between successive
points in time. However, a trade-off has to be made regarding the length of the data
segment for analysis, which on one hand must be short enough to satisfy the condition of
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stationarity (required from Fourier Transform) and on the other hand must be long enough
to provide good frequency resolution. EEG on the contrary is highly non-stationary.
Another concern is that Fourier transform loses the information concerning the time
evolution of the signal, which in certain cases maybe useful.

Finally, another important point to take into account is that coherence is very sensitive to
fluctuations of linearity in phase, relatively less so to nonlinear fluctuations of amplitude,
and completely insensitive to linear fluctuations in amplitude. This becomes obvious if one
rewrites equation 3 in terms of polar coordinates:

B RIS
e M) K Ik )

Both amplitude and phase information are evaluated with regard to their contribution to
linear dependence. The relative importance of amplitude and phase covariance in this index
is not altogether clear (Lachaux et al., 1999; Varela et al., 2001). Therefore, some authors have
argued that amplitude should not contribute to the final measure at all. Hence, the
relationship between the phases without any influence of the amplitudes is better calculated
by alternative methods, i.e. Phase Locking Value (PLV) as described in section 3.1. Just to
elucidate on this; PLV is essentially the square root of equation 6 with all the moduli set to 1.

2

(6)

2.2 Short time Fourier transform Coherence

The coherence measure, as described in section 2.1, assumes stationarity of the signals and is
completely insensitive to the changes in coupling over time. Thus, a short time Fourier
transform (STFT) approach is better suited and generally used to generate auto- and cross
spectrograms, which are in turn utilized to produce the so called “coherogram”. The
coherogram is coherence calculated around a number of time instants. It results in a three
dimensional matrix of time and frequency versus coherence.

However, while the assumption of wide sense stationarity is removed, stationarity is still
required within each time interval for which coherence is calculated. In practice one should
carefully decide on the optimal section length (over which each coherence estimate is
measured), window length and overlapping (within each coherence estimate), which affects
the resolution of the coupling measure. Hence, the STFT approach requires a priori
information about the coupling range in time and frequency, in order to allocate the time-
frequency resolution. The latter is constrained by the uncertainty principle: the wider the
windows, the better the frequency resolution, at the expense of timing information, and vice
versa. Lachaux et al. (2002) presents in detail this approach as applied to single-trial brain
signals.

2.3 Wavelet Coherence

Coherence analysis, as noted before, ignores in a sense the temporal structure of the signal,
thus cannot convey any information on dynamically varying or short-time dependence
between the signals. To overcome this limitation and the implicit assumption that the signal
is a process that remains stationary in time, wavelet coherence (WC) has been proposed. In
contrast to the short time Fourier transform, which is just an extension of the regular Fourier
transform, the wavelet transform is inherently a time frequency signal analysis. Continuous
wavelet transform is preferred over the discrete counterpart in this case, as well. Since the
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coherence estimator is most strongly influenced by linearity in phase, the wavelet should be
complex.

Here again, the conceptually simple wavelet basis used, is the Morlet wavelet. This
modulated Gaussian kernel has a simple and very smooth spectrum that allows for easy
interpretation of the results achieved. Initially the cross wavelet transform (XWT) of two
time series x, and y, is defined as:

W (s)=W ()W, (s) (7)
where W,X(s) and WV, Y(s) are the WT of signals X and Y, respectively and * denotes complex

conjugation. Furthermore, the cross wavelet power may be defined as |Wn” (s)| . The

complex argument arg(W”XY (s)) may be explained as the local relative phase between the
two time series in time frequency space.
If one closely follows equation 3, then the wavelet coherence R’ of two signals comes

naturally and may be defined as:

2

[ssw” ()|
R(s) =

S(s' ()| ) - S(s' ' (s)|2)

where S is a smoothing operator in time S; (The time smoothing uses a filter given by the
absolute value of the wavelet function at each scale, normalized to have a total weight of

unity. For the Morlet wavelet this is just a Gaussian (ef'-/ .

S(W) =S8 (S (W (s)) which for the Morlet wavelet is given by a Gaussian and a boxcar filter

(8)

) and scale S; such as

of width equal to 0.6, (the scale-decorrelation length) respectively (Grinsted et al., 2004;
Torrence and Compo, 1998):

s0.9)=(m @) ©)
Sw,n)y=(W (s)xe, [ [ 0.65)) (10)

where ¢; and ¢; are normalization constants and 1 is the rectangle function. The squared
WC time-frequency transformed scalogram is depicted in figure 1.
Note that the Schwarz inequality (given using the notation of norm, as explained under

norms on inner product spaces, as |<x, y>| < ||x|| || y||) forces the wavelet coherence to take on

a value between 0 and 1. Moreover, the wavelet coherence is also a function of both time
and (scale) frequency, measuring the coupling across both variables. The fact that the
wavelet transform uses a shorter window for higher frequencies, and a longer one for lower
frequencies makes this approach more suited to quantifying time varying coherence. This is
accomplished via a frequency-adaptive tiling of the time frequency plane. In contrast, the
constant size windows, and summation segments of the STFT coherence, force it to have the
same resolution over all frequencies.
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Fig. 1. The squared WC time-frequency transformed scalogram. The 5% significant regions
over the time-scale transform are indicated by the contours (green dashed outline). The
outer elliptical region at the edges of the second graph indicates the cone of influence in
which errors (edge effects) may be apparent due to the transformation of a finite-length
series EEG signal (Torrence and Compo, 1998). The relative phase relationship is shown as
arrows (with in-phase pointing right, anti-phase pointing left).

In summary, the XWT identifies regions with high common power and can possibly convey
information about the phase relationship. For example, if two series are physically related
we would expect a consistent or slowly varying phase lag. On the other hand, WTC can be
thought of as the local correlation between two CWTs. In this way, locally phase locked
behavior is uncovered. The more desirable features of the WTC come at the price of being
slightly less localized in time frequency space.

2.3.1 Significant Wavelet Coherence
The confidence levels for the cross wavelet spectrum can be derived from the square root of
the product of two chi-square distributions (Jenkins and Watts, 1968; Torrence and Compo,

1998). If the two series have theoretical Fourier spectra B" and B, then the cross wavelet

distribution is:

W (W (s) - Z,(p) 55 a1
oo, v

where 0x and oy are the respective standard deviations and v equals to 1 (Z1(95%)=2.182) or

2 (Z2(95%)=3.999) for real and complex wavelets, respectively.

In order to apply these ideas on real EEG signals one may define population specific

background spectra for each channel pair (X, Y) and scale index s. Here again the

background spectra or control-task spectra are defined as the mean time-averaged wavelet

power spectrum for each channel and scale (WX (s) and W' (s) ), which in the case of
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population based analyses could be the average power spectrum over all subjects
performing the control task (Sakkalis et al., 2006b). Hence, by calculating both background

spectrums (" (s) and W'(s)) for a pair of channels and setting Z,(p)=Z»(p)=3.999, since

Morlet is a complex mother wavelet, one is able to define the background spectrum using
equation 11.

However, in order to gain confidence in the interdependencies of the coherence findings one
should estimate the statistical level of significance against a background spectrum using
Monte Carlo methods (Grinsted et al., 2004). To adapt this idea to EEG signals one can
generate a large (order of 1000) ensemble of mean time-averaged wavelet power spectrum

for each channel and scale (" (s) and W' (s)) using the bootstrap resampling procedure
(You actually randomize the time signatures of each coherence measure). Then, for each pair
of channels and each scale the wavelet coherence is calculated. Finally, the probability
distribution of the calculated coherence values is used to define the 95% confidence level.
After that one is able to indicate significant regions over the time-scale transform by
contours (depicted in green dashed lines in Fig. 1).

Having derived this significant information, we are now able to form a single measure per
scale which reflects the Significant Coherence. We are able to obtain the coherence values
over those time- and band-localized regions where significant coherence is indicated by
taking the coherence averages over certain bands and significant time points (contours in
Fig. 1). An interesting study that successfully utilizes the latter approach in extracting the
variability of neural interconnections in schizophrenia patients as compared to healthy ones
is underlined in (Sakkalis et al., 2006a).

2.3.2 Partial Directed Coherence (PDC)

Extending interdependence methods to causal interaction relationship one should initially
refer to the concept of Granger-causality (Granger, 1969), which is based on the
commonsense idea that causes precede their effects in time and is formulated in terms of
predictability. In a linear framework, Granger-causality is commonly evaluated by fitting
Vector Autoregressive Models. Suppose that a set of N simultaneously observed time series
x(6) =[x (1),..., x, 0] is adequately represented by a Vector Autoregressive Model of order

p (MVAR(p)):

x(f) = Z AX(1 = k) +W(1) (12)

k=1
aH(k) a]N(k)
where A, = : : is the coefficient matrix at time lag k and
aN](k) aNN(k)

T, . . . .
w(r) = [w] (1) 5wy, (] is the vector of model innovations having zero mean and covariance

matrix ZW. The autoregressive coefficients ajj(k), i,j=1,..., N represent the linear interaction

effect of x;(t-k) onto x;(t). In order to provide a frequency domain description of Granger-
causality, Baccala and Sameshima (Baccala and Sameshima, 2001) introduced the concept of
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Partial Directed Coherence (PDC), which has recently been generalized to the new PDC
(Baccala et al., 2007), as follows:

Let AR =) de"™ (13)

be the Fourier transform of the coefficient matrices, where A is the normalized frequency in
the interval [-0.5,0.5] and i = /-1 . Then the new PDC is defined (Baccala et al., 2007) as:
1
—[1 |

(o2

7| = i (14)

P

1 _
Y —A A (A

vt O
where A4(A1)=1-4(1) and O'iz refers to the variance of the innovation processesw (7).

|”,H-(/1)| ranges between 0 (indicating independence) and 1 (indicating maximum

coherence). The latter is a linear method able to assess not only the independence of the
brain regions, but also the direction of the statistically significant relationships. This method
along with nonlinear ones (will be presented next) was successfully applied in studying the
brain activity based on its independent components instead of the EEG signal itself. Both
linear and nonlinear synchronization measures are applied to EEG components, which are
free of volume conduction effects and background noise (Sakkalis et al., 2008b). More
specifically, partial directed coherence was investigated in a working memory paradigm,
during mental rehearsal of pictures.

3. Nonlinear synchronization techniques applied in EEG analysis

In the early 1980s, the notion of synchronization was extended to the case of interacting
chaotic oscillators (Afraimovich et al., 1986; Fujisaka and Yamada, 1983; Pecora and Carroll,
1990; Pikovsky, 1984). A completely different approach in analyzing the nonlinear dynamics
of an EEG signal started some decades after the discovery of deterministic chaos (Lorenz,
1963). According to Pikovsky et al. (2001) synchronization may be understood as an
“adjustment of rhythms of oscillating objects due to their weak interaction”. An interaction
can be realized for instance through a unidirectional or bidirectional coupling. The latter
case resembles mutual synchronization; both systems adjust their rhythms to each other,
whereas the former case refers to synchronization initiated by an external force, called a
driver, and the driven system is called a response. The rhythm of the response is adjusted to
the rhythms of the driver. As soon as the interaction strength gets strong (very large values
of coupling) one cannot speak of two interacting systems but rather of one combined
system.

3.1 Phase Synchronization

Cognitive acts require the integration and constant interaction of widely distributed
neuronal areas over the brain (Friston et al., 1997; Tononi and Edelman, 1998). Especially,
gamma band is believed to reveal such large-scale oscillations that enter into precise phase-
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locking over a limited period of time, often referred as phase-synchrony phenomena
(Lachaux et al, 1999). Another example is thought to be the genesis of epileptic
phenomenon, where synchrony has long been considered as an important factor
(Niedermeyer and Lopes da Silva, 1999). Hence, some methods capable to obtain a statistical
measure of the strength of phase synchronization in different areas of the brain have
generated a lot of interest (Le Van Quyen et al., 2005; Mormann et al., 2000; Quian Quiroga
et al., 2002).

One of the first experimental observations of synchronization was reported by Christiaan
Huygens (1673) when two pendulum clocks hanging from the same beam got synchronized
by attaining their maximal amplitudes at the same time but at opposite extremes thanks to
the weak coupling provided by the vibration of the beam in response to their movement.
However, these pendulum clocks were actually harmonic linear oscillators. But, it is well
known at present that even the phases of two coupled nonlinear (noisy or chaotic)
oscillators may also synchronize even if their amplitudes remain uncorrelated (Pikovsky et
al., 2001; Rosenblum et al., 1996). The word “synchronization” arises from the Greek word
“oovyxpovog”’, which consists of two parts: ovov- (syn-=common) and xpovog
(chronos=time). Hence, this word is capable of describing any phenomena that “happen at
the same time”.

The calculation of phase synchronization (PS) and specifically instantaneous phase
calculation can be based on both the Hilbert (HT) (Le Van Quyen et al., 2005; Quian Quiroga
et al., 2002) or wavelet transform (WT) (Le Van Quyen et al, 2005). Actually both
approaches are essentially equivalent (Quian Quiroga et al., 2002). The main difference is
that the HT needs band-pass pre-filtering (Angelini et al., 2004; Bhattacharya and Petsche,
2001; Koskinen et al., 2001), whereas WT do not, since filtering is intrinsic in the WT. The
most commonly used approach among the two utilizes the HT. Hence, HT is involved in
getting the analytical signal A(t):

A(t) = x(1) + i%(2) (15)
where X(¢) is the HT of the signal x(t), defined as:
1 9
s =—r| X 4 (16)
T Tt-r

with P denoting the Cauchy principal value. The instantaneous phase is the “unfolded”
angle of the analytic signal, which is given by:

x(1)
¢(t) = arctan —— (17)
x(1)
Synchronization of noisy signals is marked by an appearance of horizontal plateaus in the
phase difference across time. The phase synchronization is defined as the locking of the
phases of two oscillating systems x and y at any time #:

¢n.m (1) = |I’Z¢X (1) - m¢y (l)| < const (18)
where ¢ (1) and ¢ (1) are the unwrapped phases of the signals associated to each system.

In this case, as we aim to measure the synchronization between signals from within the
same physiological system (i.e., the brain), we assume the phase locking ratio of n:m=1:1 as
per Mormann et al. (2000).
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Moreover, to quantify the strength of phase synchronization, we need to choose among a
number of phase indices that have been used for intracranial and scalp EEG, such as
Shannon entropy (Quian Quiroga et al., 2002) and phase locking value (PLV) (Lachaux et al.,
1999; Le Van Quyen et al., 2005; Mormann et al., 2000; Quian Quiroga et al., 2002). The latter,
which is also termed as mean phase coherence or synchrony factor (Tallon-Baudry et al.,
2001), has been found to be more robust than the alternatives especially when applied to a
low number of data samples (Quian Quiroga et al., 2002). Thus, it is an optimal choice when
used for scalp EEG (Garcia Dominguez et al., 2005); thus was opted in our applications
(Sakkalis et al., 2009).

1

N-1
ilg, (jAD-¢, (jAN)]
— ) e

PLV = ()| = -
J=0

(19)

where <> denotes the average over time and N is the time series. This can be expanded

according to Euler’s formula as follows:

1 X 2 1 &= 2
PLY - (—Zsinw\.(jm)—¢J_<jAt)]) +(—Zcos[¢_xjm)—¢‘_(1At)]j (20)

Hence, PLV is a normalized value which in simpler words measures how the relative phase
is distributed over the unit circle. In case of perfect synchronization the relative phase will
occupy a small portion of the circle and PLV will be close to a value of 1, whereas when PLV
has a value close to 0, relative phases spread out over the entire unit circle and the mean

phase coherence is low.

Important notes and applications

Many studies have attempted to study synchronization based on the traditionally
formulated coherence. However, PLV is more suited mainly because of the following
reasons (coherence limitations):

e  Stationarity: Coherence may be applied only to stationary signals. In EEG the
assumption of stationarity is rarely met or validated. PLV on the other hand does
not require any stationarity.

e  Strictly phase specific measurements: Coherence also increases with amplitude
covariance and the relative importance of amplitude and phase covariance in the
coherence value is not clearly justified. However, since phase-locking on its own is
adequate to indicate brain lobe interactions, PLV is superior because it is only
based on the phase and does not consider the amplitude of the signals.

A number of key works in the field demonstrate the applicability of phase synchronization
method especially in combination with the gamma frequency band. Synchronization in the
gamma band of the EEG is thought to reflect the appearing of an integrative mechanism
bringing together widely distributed sets of neurons to effectively carry out different
cognitive tasks (Bendat and Piersol, 1993; Tallon-Baudry et al., 2001; Varela et al., 2001).
Rodriguez et al. (1999) found increased PS with a latency of 260 ms after the stimulus in the
frequency range between 35 and 45 Hz in a group of adult human subjects during visual
perception of faces, as opposed to the no-perception situation. Phase synchrony has been
found also during non-visual perception but in a different frequency band (Trujillo et al.,
2005). Another interesting result reported by Rodriguez et al. (1999) is the existence of a
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period of strong desynchronization with latency between 400 and 650 ms after the stimulus,
which reflects the active uncoupling of the neural ensembles necessary to proceed from the
visual perception cognitive state to the motor activation state (Rodriguez et al., 1999; Varela
et al., 2001). Schnitzler and Gross (2005) have reviewed the latest findings on the concept of
long-range neuronal synchronization and desynchronization in motor control and cognition,
in normal as well as pathological conditions.

Phase synchrony and gamma desynchronization reflects the successful formation of
declarative memory, as demonstrated by the analysis of the relationship between human
EEGs from the hippocampus and the rhinal cortex (Fell et al.,, 2001). Fell et al. (2003)
concluded that, whereas rhinal-hippocampal gamma EEG PS may be closely related to
actual memory processes, by enabling fast coupling and decoupling of the two structures,
theta coherence might be associated with slowly modulated coupling related to an encoding
state.

3.2 Generalized Synchronization

Chaotic systems appear to have an apparently noisy behavior, which in fact is ruled by
deterministic laws. In a purely deterministic system once its present state is fixed, the states
of all future times are determined as well. Deterministic chaos is characterized by sensitivity
to initial conditions, which means that trajectories starting from very close points may give
results that diverge exponentially after some time. Non linear neural time series analysis
was motivated by the fact that many crucial neural processes enclose nonlinear
characteristics, i.e. the regulation of voltage-gated ion channels corresponds to a steep
nonlinear step-function relating membrane potential to current flow. Human EEG data was
reported to exhibit chaotic dynamics in waking states (Accardo et al., 1997; Mayer-Kress and
Layne, 1987; Pritchard and Duke, 1992) and in the alpha rhythm (Gallez and Babloyantz,
1991; Soong and Stuart, 1989). In addition, chaotic descriptors like the fractal dimension of
the EEG were found to change through the different sleep stages (Fell et al., 1993) and
during the performance of various cognitive tasks (Gregson et al., 1990; Lutzenberger et al.,
1992). However, even if neurons are highly nonlinear devices, further studies did not find
any strong evidence of chaos in EEG (Theiler and Rapp, 1996). Hence, at present there is a
wide consensus that EEG signal are not (low-dimensional) chaotic (Lehnertz et al., 2000). In
spite of this, nonlinear measures in EEG are still used since there is evidence that even if no
chaotic behavior is mathematically evident, the use of phase space representations (see next
paragraph) of the signals may reveal nonlinear structures hidden to standard linear
approaches (Stam, 2005).

In a deterministic system it is important to establish a vector space, known as state space or
phase space for the system such that specifying a point in this space specifies the state of the
system, and vice versa. Even for nondeterministic systems the state concept is also powerful
in the sense that a system maybe described by a set of states (possibly infinite) and a set of
transition rules, which specify how a system proceeds from one state to the next.

After stressing the importance of phase space for the study of the dynamic nature of a
deterministic system, there is a need to link this concept with experiments where one
acquires time series and not phase space portraits. We therefore need to convert the time
series samples observations into state vectors. This problem of state space reconstruction is
solved by the method of delays (Takens, 1980).
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If we consider the time series to be xn then a delay reconstruction vector in m dimensions is
formed by the vectors:

=1

(21)

n = (xn ’ xn—r 300 xn—(m—Z)r 4 xn—(m—l)r)

where n=1,...,N (N equals the signal length), m is the embedding dimension and r denotes
the delay time or lag. Note that for r > 1, only the time window covered by each vector is
increased, while the number of vectors constructed from the scalar time series remains
roughly the same. This is because we create a vector for every scalar observation, with n>(m-
1)7. Finding a good embedding is always a matter of great concern and is related to the
proper selection of the embedding dimension m and the time lag 7. The right parameter
selection depends on the underlying dynamics in the data and on the kind of the analysis
intended. Generally, these parameters are optimized by either using statistics for their
determination (Cao, 1997), or by starting the intended analysis right away and further
increasing the values of m and 1 until the results are optimized. A precise knowledge of m is
beneficial in order to exploit determinism with minimal computational cost and no
redundancy. On the other hand a good estimate of the time lag 7t is more difficult to obtain.
If 7 is too small compared to the internal time scales of the system under consideration,
successive elements of the delay vectors are strongly correlated. On the contrary, if 7 is very
large, successive elements are already almost independent. However, the first zero of the
autocorrelation function of the signal often yields a good trade-off between the former
extreme cases.

The simplest form of synchronization occurs if the states of systems exactly coincide in time.
This type of synchronization is usually referred to as identical synchronization. It can be
observed if the coupling strength between identical systems is high enough (Pikovsky,
1984). Two systems X and Y with state vectors x(¢#) and y(¢) are identically synchronized

(X o V)if:
lim{X(#) - y()] = 0 (22)

N

In order to achieve identical synchronization the parameters of the coupled systems must be
identical. Otherwise, even if there is a slight mismatch the states of the systems may come
close but still remain different. Obviously, identical synchronization is defined in a
conceptual basis. In practice, even if the systems are not identical, weaker synchronization is
possible when one system (response) is driven by the other (driver). This phenomenon is
characterized as generalized synchronization (Pecora and Carroll, 1990; Rulkov et al., 1995)
and is met if the state of the response y is completely defined by the state of the driver x (

X — Y ). Hence, there exists a transformation function G such that:

y=G(x) (23)

Strong or weak synchronization is realized in the case of smooth or non-smooth
transformation function (Hunt et al., 1997; Pyragas, 1996). Rulkov et al. (1995) defined this
function to be continuous one-to-one, meaning that not only the response orbit may be
predicted by the driver’s orbit, but also the neighborhoods in the driver space are mapped
into the neighborhoods of the response space. The latter property is extensively utilized for
experimental purposes.
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Important concerns

Phase synchronization and generalized synchronization are not clearly related. Initially, the
phase synchronization was found to appear before the generalized synchronization pops in
and as a result it was thought that generalized synchronization implies phase
synchronization. However, later studies on several examples had shown the reverse order
(Zheng and Hu, 2000). Another thought was to apply generalized synchronization
methodologies to the phases of the systems rather than the systems themselves (Lee et al.,
2003). The latter is often described as generalized phase synchronization.

A challenging application for measures of synchronization is the study of neuronal
dynamics, since synchronization phenomena have been increasingly recognized as a key
feature for establishing the communication between different regions of the brain (Fell et al.,
2001; Varela et al., 2001). Pathological cases such as Parkinson’s disease or epilepsy have
also taken advantage of synchronization methods in revealing synchronization and
desynchronization events. Especially, when epilepsy patients undergo pre-surgical
diagnostics (Lopes da Silva, 1999), intracranial recordings are acquired in order to provide
sufficient localization information for the epileptic focus in the brain. This motivated us to
carry out a comprehensive comparison of different measures of synchronization, as
presented in Sakkalis et al. (2009).

In the experimental setting the instantaneous states of a neurophysiological process and
system are not accessible. However, considering that scalp EEG is able to provide us a set of
m channels equation 23 may be extended as:

y,(0)=G(x ()+e ), j=L2,....m (24)
where ¢(t) denotes extraneous noise. In the simplest case, the transformation function G
may be a linear superposition of a subset (denoted as s) of the X (such as the oscillating

membrane potentials), or may involve a more complex transformation. However, the
primary aim of interdependence analysis is not to recover the underlying dynamics, but
only to determine whether there is nonlinear interdependence between the observables y;

due to nonlinear interdependence between the local subsystems X .

In brief, synchronization measures quantify how well the phase space trajectory can be
predicted, knowing the trajectory of the other. Clearly, such an attempt makes sometimes
easier or more difficult to predict the own dynamics of each system alone. Schiff et al. (1996)
initially developed the first algorithm that exploited such considerations and demonstrated
nonlinear interdependence in a spinal cord preparation. The idea was to first locate the k-
nearest neighbors of each point along an orbit in one phase space and then project these
points into the other state space. Next, the center of the resulting cloud of projected points is
used to predict the state of that system. Finally, the Euclidean distance between the
predicted and observed vectors yields an error, which is then normalized by reference to a
randomly chosen vector (the predicted error is, on average, no closer than random to the
observed vector). The minimum error value of 0 or the maximum of 1 are taken when the
systems experience maximum interdependence or when the systems are completely
independent, respectively. Variants of this idea have been proposed in order to improve
predictions (Feldmann and Bhattacharya, 2004; Terry and Breakspear, 2003).

Alternatively, another set of in principle more robust measures have been proposed, where
instead of looking for predictions one quantifies how neighborhoods in one attractor maps
into the other. In the following section this kind of algorithms will be discussed thoroughly.

www.intechopen.com



506 Recent Advances in Biomedical Engineering

Arnhold et al. (1999) similarly use k-nearest neighbors, but calculate the average radius of
the cloudlike region formed by these neighbors. The ratio of the cloudlike radius to that of
the cloud in the other system's reconstructed phase space defines a measure of system
interdependence. This idea turned out to be a robust and reliable way of assessing the extent
of GS (Sakkalis et al., 2009; Schmitz, 2000).
First, we reconstruct delay vectors (Takens, 1980) out of our time series;

Xn=( Xy .r Xn m-1yr) AN Y=Yy .., Y -(m-1)7) (25)

where n=1...N, and m, T are the embedding dimension and time lag, respectively. Let r;,; and
Snj, j=1,...,k, denote the time indices of the k nearest neighbors of x, and y,, respectively. For
each x, the mean squared Euclidean distance to its k neighbours (blue arrows, Fig. 2) is
defined as:

1 k
R"(X)= ;Z (x,-x, ) (26)
= '

and the Y-conditioned squared mean Euclidean distance R:k) (X |Y ) is defined by replacing

the nearest neighbors by the equal time partners of the closest neighbors of y, (red arrows,
Fig. 2):

k
RO (x|r) = %Zm x, ) @)
= !

If the set of reconstructed vectors (point cloud x,) has an average squared radius
R(X) = (I/N)z;ll R:N")(X) , then R:“(X |Y) = R:“(X) << R(X) if the systems are strongly
correlated, while R;/‘)(X |Y )=~ R(X) >> R;/‘)(X ) if they are independent. Hence, an
interdependence measure S’ (X |Y ) is defined as (Arnhold et al., 1999):

, 1 & RY(X)
sYxlyy=—) ——~— 28
| N;Rn‘“(X|Y) %)

Since R;“(X |Y )2 R:“(X ) by construction, it is clear that S ranges between 0 (indicating
independence) and 1 (indicating maximum synchronization).

Following equation 28 another nonlinear interdependence measure H'"' (X |Y ) is possible to
be defined as (Arnhold et al., 1999; Quian Quiroga et al., 2000):

1L R (X
H(x|r) = —ZIOg# (29)
N

- RX|n

This is zero if X and Y are completely independent, while it is positive if nearness in Y
implies also nearness in X for equal time partners. It would be negative if close pairs in Y
would correspond mainly to distant pairs in X. This measure if applied to coupled chaotic
systems was found to be robust against noise (Quian Quiroga et al., 2000), but with the
drawback that it is not normalized.

www.intechopen.com



Linear and Nonlinear Synchronization Analysis
and Visualization during Altered States of Consciousness 507

Hence, another normalized and more robust version of S maybe defined as in equation 30
(Quian Quiroga et al., 2002) and is the one actually used in our work (Sakkalis et al., 2009):

I &R (XN)-RI(XY)
NY(X|N)=—>, | (30)
N 2 R (X)

In fact, all three measures described are just different ways of normalizing the point cloud
ratio of distances.

The opposite interdependences S (Y|x), H" (Y|x) and N (Y|X) are defined in

complete analogy but in general are not equal to $"(X|r), H"(X|r) and N (X|Y),

respectively. However, this asymmetry as opposed to other symmetrical nonlinear measures
such as the phase synchronization may be advantageous, since it can give information about
driver response relationships (Arnhold et al., 1999; Quian Quiroga et al., 2000; Schmitz,
2000). A schema representing the idea of this algorithm is represented in figure 2.

Fig. 2. Scheme representation of the basic idea of the synchronization method described by
Arnhold et al. (1999). The blue and red arrows reflect an exemplar case of three nearest
neighbors of x; and y;, respectively. The black arrows denote the respective positions of the
neighbors of x; in the Y domain.

Stam & van Dijk (2002) proposed a method which, by normalizing to a reference
neighborhood, yields a synchronization likelihood (SL) measure that is not biased by the
dimension of the systems’ phase spaces (which are not necessarily equal). It is closely
related to the previous idea and represents a normalized version of mutual information.
Supposing that x;, xj and y;, y; be the time delay vectors, SL actually expresses the chance that
if the distance between x; and x; is very small (bounded by the white circular area in Fig. 3),
the distance between the corresponding vectors y; and y; in the state space will also be very
small. For this, we need a small critical distance ¢,, such that when the distance between x;
and x; is smaller than &, x will be considered to be in the same state at times i and j. & is
chosen such that the likelihood of two randomly chosen vectors from x (or y) will be closer
than &, (or ¢,) equals a small fixed number p,.s. prsis the same for x and y, but &, need not be
equal to &,. Now SL between x and y at time i is defined as follows:
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1 Al
SL =— D 0,1y, -y, DO, ,~|x, -x, ) (31)

w, <[i=jl<w,

Here, N'=2(w>-w1-1)Pyys, ||is the Euclidean distance and 6 is the Heaviside step function,

0(x)=0 if x<0 and 0(x)=1 otherwise. w; is the Theiler correction for autocorrelation effects and
w» is a window that sharpens the time resolution of the synchronization measure and is
chosen such that wi<<w,<<N (Theiler, 1986). When no synchronization exists between x and
y, SL; will be equal to the likelihood that random vectors y; and y; are closer than ¢,; thus
SLi=py. In the case of complete synchronization SL; =1. Intermediate coupling is reflected by
pre< SL; <1. Finally, SL is defined as the time average of the SL; values.

X Y

Fig. 3. Scheme representation of the basic idea of the synchronization method described by
Stam et al. (2002). SL expresses the chance that if the distance between x; and x;
(neighboring delay vectors) is less than r,, the distance (r,) between the corresponding
vectors y; and y; in the state space will also be very small.

4. Surrogate time series analysis

So far we have discussed about linear and nonlinear methods for detecting synchronization
in bivariate EEG signals. But how can one decide on whether a linear or nonlinear model
better describes the data under study? A possible answer lies in the surrogate data testing
method. In other words, to demonstrate that the synchronization methods addressed are
sensitive in detecting nonlinear structures and thus reliable, surrogate data testing is used.
The surrogate data method was introduced about a decade ago and the basic idea is to
compute a nonlinear statistic Q for the original data under study, as well as for an ensemble
of realizations of a linear stochastic process, which mimics “linear properties” of the studied
data the surrogate data (Theiler, Eubank et al. 1992). If the computed nonlinear statistic for
the original dataset is significantly different from the values obtained from the surrogate set,
one can infer that the data is not generated by a linear process; otherwise the null
hypothesis, that a linear model fully explains the data is accepted.

The surrogating procedure preserves both the autocorrelation of the signals and their linear
cross-correlation, but the nonlinear individual structure of the individual signals, as well as
their nonlinear interdependence, if any, is destroyed. This simply means that an ensemble of
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“surrogate data” has the same linear characteristics (power spectrum and coherence) as the
experimental data, but is otherwise random.

In practice, a set of p time series (surrogates) is constructed, which share the same
characteristics, but lack the property we want to test, the nonlinearity in our case. Using the
newly created surrogates the same index Qsurrogates is repeatedly calculated leading to p+1
estimations of this. This procedure allows testing of the null hypothesis Hy that the original
value of the statistic belongs to the distribution of the surrogates, hence Hy is true. In other
words, one has to determine whether Hy can be rejected at the desired level of confidence.
By estimating the mean and the standard deviation of the distribution of the statistic from
the surrogates and then comparing them with its value from the original signals Z-score is
calculated:

,_le-o... -

surrogates

Z-score reveals the number of standard deviations Q is away from the mean Qs of the
surrogates. Assuming that Q is approximately normally distributed in the surrogates
ensemble, Hy is rejected at the p<0.05 significance level when Z>1.96 (one-sided test). If, in
addition, no other possible causes of such a result can be accounted for, then it is reasonable
to conclude that the tested measure accounts for any nonlinear phenomena.

However, it should be noted that, although the above surrogating procedure preserves both
the autocorrelation of the signals and their linear cross-correlation, the nonlinear individual
structure of the individual signals, if any, is also destroyed. In other words, any nonlinearity
not only between but also within the signals is not present in the surrogates. Therefore,
these surrogates only test the hypothesis that the data are bivariate stochastic time series
with an arbitrary degree of linear auto and cross-correlation (Andrzejak, Kraskov et al.
2003). Nevertheless, if the two signals studied do have any nonlinear structure, it is not
possible to ascribe a rejection of the hypothesis that the interdependence is nonlinear due to
the nonlinearity of the interdependence, because the nonlinearity of the individual signals
may also play a role. Hence, the generation of surrogate data preserving all the individual
structure but destroying only the nonlinear part of the interdependence is currently one of
the most challenging tasks in the field, and it is a subject of ongoing research (Andrzejak,
Kraskov et al. 2003; Dolan 2004).

Pure nonlinear interdependence can contribute to linear correlations, but cannot be detected
by linear methods alone. It signifies the formation of macroscopic, dynamic neural cell
assemblies and transient low-dimensional interactions between them. Nonlinear
interdependence informs that the underlying dynamics are governed by nonlinear
processes, or that they are linear but evolving in the vicinity of a non-linear instability and
driving noise. Nonlinearities generate correlations that cannot be generated by stochastic
processes, such as coupling between oscillations with different frequencies (Friston 1997;
Breakspear and Terry 2002).

The most widely used method to obtain surrogate data is to randomize the phases of the
signal in the Fourier domain (Theiler, Eubank et al. 1992). Recent advances such as
employing iterative loops (Schreiber and Schmitz 1996), simulated annealing (Schreiber
1998) and others (Schreiber and Schmitz 2000) are all aimed to improve the goodness of the
fit between the linear properties of the experimental data and surrogate ensemble.
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Unforunately, as noted beforehand, no surrogate technique is perfect (Schreiber and Schmitz
2000).

To conclude the whole nonlinearity section it should be stressed that even nonlinear
techniques look promising one should be cautious in practice. Many findings may have
been premature in that apparent nonlinear effects were in fact caused by limitations of the
data such as the sample length (Ruelle 1990). During the previous years there was a general
notion that EEG is chaotic, but nowadays there is a wide consensus and it is certainly no
longer generally accepted that the healthy EEG is a chaotic signal.

Fig. 4. A “healthy” network (left graph) appears to exhibit strong lateralization compared
to the “alcoholic” one (right graph) which exhibits interhemispheric symmetry, when the
broadband signals are analyzed.

5. Graph Theory in EEG analysis

An alternative approach to the characterization of complex networks is the use of graph
theory (Strogatz 2001; Sporns, Chialvo et al. 2004; Sporns and Zwi 2004). A graph is a basic
representation of a network, which is essentially reduced to nodes (vertices) and
connections (edges) as illustrated in Fig. 4. Both local and long distance functional
connectivity in complex networks may alternatively be evaluated using measures and
visualizations derived from graph theory. Special interest in using graph theory to study
neural networks has been in focus recently, since it offers a unique perspective of studying
local and distributed brain interactions (Varela, Lachaux et al. 2001; Fingelkurts, Fingelkurts
et al. 2005).

Using the interdependence methods and measures analyzed in the previous sections one is
able to measure (in terms of 0 to 1) the coupling between different channels. If such
interdependence measures are constructed for every possible channel pair a coherence
matrix (CM) (i.e. 30x30, if 30 channels are used) with elements ranging from 0 to 1. Next, in
order to obtain a graph from a CM we need to convert it into an NxN binary adjacency
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matrix, A. To achieve that we define a variable called threshold T, such that T e [0, 1] . The

value A(i)j) is either 1 or 0, indicating the presence or absence of an edge between nodes i
and j, respectively. Namely, A(i,j)=1 if C(i,j)>T, otherwise A(i,j)=0. Thus we define a graph
for each value of T, i.e., for the purposes of our work, we defined 1000 such graphs, one for
every thousandth of T (Sakkalis et al., 2006a). After constructing A, one is able to compute
various properties of the resulting graph. These include the average degree K, the clustering
coefficient C and the average shortest path length L of our graph, which will be presented in
the next section. Figure 4 illustrates an example graph that resembles a “healthy” network
(left graph) compared to the “alcoholic” one, in both broadband and lower beta frequency
bands (Sakkalis et al., 2007).
b AN

C

Fig. 5. a) Aerial view of the scalp with the position of electrodes. The depicted average
network reflects a local prefrontal and occipitoparietal synchrony, as identified in gamma
band using the nonlinear synchronization method on the actual electrode signals in a
working memory paradigm. The next parts of this figure (b, c) are considering cross-
regional synchrony. b) The nonlinear synchronization method is applied in gamma band
ICs reflecting the underlying activity in the different brain regions (prefrontal (upper node),
temporal (left and right lateral nodes), parietal (lower middle node) and occipital (lowest
central node)). This figure focuses on the inter-region connectivity between the prefrontal
and occipital brain areas. c) Similarly to the middle graph but using PDC; again ICs in
gamma band exhibit significant linear coupling between the prefrontal and occipital areas,
as well as between the occipital and parietal areas. Directionality is also identified. The
apparent bidirectional coupling indicates no single influence between the “cause” and
“effect” relationship. The illustrated graphs are averaged over all subjects.

Another study (Sakkalis et al., 2008b) was able to identify and visualize the established brain
networks in gamma band by means of both linear and nonlinear synchrony measures, in
working memory paradigm. The nonlinear GS method was initially applied on all the actual
electrode recordings. The scalp map obtained (Fig. 5a) identified a network tendency to
localize synchronization activity mostly at frontal and occipitoparietal regions. However, no
linking between the two regions is evident. When we focus on the independent components
(instead of the actual electrodes themselves), the prominent inter-region connectivity in
gamma band between the prefrontal and occipital brain areas becomes evident (Fig. 5b).
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Finally, a similar network topology is also derived by the linear PDC method (Fig. 5c). The
latter method is able to derive additional information on the “driver and response”
significant relationship between observations, denoted by arrows in Fig. 5c. However, the
bidirectional arrows denote no single one-way interconnection, but a significant pathway
connecting the prefrontal and occipital areas, as well as the occipital and parietal areas, is
identified (Fig. 5c).

Graph theory is for sure an emerging field in EEG analysis and coupling visualization.
Recent articles illustrate that graph properties maybe of particular value in certain
pathologies, i.e., alcoholism (Sakkalis et al., 2007) and Alzheimer disease (Stam, Jones et al.
2006).

6. Conclusion

Throughout this chapter both linear and nonlinear interdependence measures are discussed.
Even if the complex nature of EEG signals justify the use of nonlinear methods there is no
evidence to support and prejudge that such methods are superior to linear ones. On the
contrary, the information provided by nonlinear analysis does not necessarily coincide with
that of the linear methods. In fact, both approaches should be regarded as complementary in
the sense that they are able to assess different properties of interdependence between the
signals. In addition the linear ones most of the times appear to be robust against noise,
whereas nonlinear measures are found to be rather unstable. Stationarity is again a main
concern, since it is a prerequisite which is not satisfied in practice. The selection of an
adequate method will depend on the type of signal to be studied and on the questions
expected to be answered. One should also bear in mind that all nonlinear methods
presented require stationary signals. If this is not the case, one is better off using a linear
alternative like wavelet coherence, due to its inherent adaptive windowing scaling. Another
alternative is phase synchronization calculation, PLV method in specific, which requires
neither stationarity nor increases with amplitude covariance like coherence. In addition,
since phase-locking on its own is adequate to indicate brain lobe interactions, PLV is
superior because it is only based on the phase and does not consider the amplitude of the
signals. However, an interesting extension in identifying the most significant regions, in
terms of increased coherence, as compared to background signals is possible using the
significant wavelet coherence.

Visual ways to illustrate the results and possibly fuse them together are the topographic
maps and graphs. Topographic colour maps may be used in visualizing the power spectral-
based estimations, where different colourings reflect altering brain activity. In addition,
interdependencies may be illustrated using graph visualizations, where channel pairwise
coupling is visualized using edges of increasing thickness with respect to increasing
coupling strength.

As noted throughout this chapter most of the methods presented, traditional linear or
nonlinear, must assume some kind of stationarity. Therefore, changes in the dynamics
during the measurement period usually constitute an undesired complication of the
analysis, which in EEG may represent the most interesting structure in identifying
dynamical changes in the state of the brain. Hence, a fundamental topic for further research
should be the formation of a powerful test for stationarity able to indicate and reject, with
increased certainty, the sections of the EEG raw signal that experience stationary behavior.
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Another active research direction focuses on extending current interdependence analysis
from bivariate to multivariate signals. This is important since pairwise analysis is likely to
find plasmatic correlations in special cases where one driver drives two responses. In this
case both responses may found to have a common driver component, even if the responses
might be fully independent.
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