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Hyperspectral Imaging:
a New Modality in Surgery

Hamed Akbari and Yukio Kosugi
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1. Introduction

Nowadays medical diagnosis is principally supported by the imaging techniques. Several
imaging modalities such as magnetic resonance imaging (MRI), computed tomography
(CT), ultrasonography, Doppler scanning, and nuclear imaging have completely expanded
medical imaging field. Recently Hyperspectral imaging (HSI), has emerged as a new
member of the family of the medical imaging modalities. HSI provides a powerful tool for
non-invasive tissue analyses. This technology is able to capture both the spatial and spectral
data of an organ or tissue in one snapshot. In other words, the imaging system produces
many narrow band images at different wavelengths. Not similar to conventional three-
channel color cameras and other filter-based imaging systems, this system captures full
neighboring spectral data with spectral and spatial information (Akbari et al., 2008a).

HSI can visualize invisible wavelength regions and bring them to the human vision range.
Pervious decades, hyperspectral imaging was a complicated technique that was employed in
satellite or aircraft systems. However, this technology has been customized to a compact
imaging and spectroscopy tool with potential applications in medicine. In fact, Hyperspectral
imaging has already been applied in the medical field. Kellicut et al. utilized HSI to
quantitatively evaluate the tissue oxygen saturation in patients with peripheral vascular
disease (Kellicut et al., 2004). Khaodhiar et al. employed this imaging technique to predict and
follow healing in foot ulcers of diabetic patients (Khaodhiar et al., 2007). HSI was used to
diagnose hemorrhagic shock (Cancio et al., 2006), to detect chronic mesenteric ischemia during
endoscopy (Friedland et al., 2007), and to detect skin cancer in mice (Martin et al., 2006).
Hyperspectral imaging captures reliable data for the surgeons in the operating room with a
convenient instrument. It shows a greater sensitivity for detecting a residual tumor tissue
than current surgical tissue sampling techniques (Freeman et al., 2005). Monteiro et al.
employed this technique to enhance the regions covered with a layer of blood during
surgeries (Monteiro et al., 2006). HSI is utilized to detect ischemic regions of the intestine
during surgery (Akbari et al., 2008b). A hyperspectral imaging endoscope is used for the
early detection of dysplasia and cancer in lung epithelia (Lindsley et al., 2004). Zuzak et al.
coupled a surgical laparoscope for conventional minimally invasive surgical procedures
with a near-infrared hyperspectral imaging system to help guide laparoscopic surgeons to
visualize biliary anatomy (Zuzak et al., 2007).
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Fig. 1. A schematic view of a hyperspectral image of pig’'s abdomen is shown. The spectral
graph of the average spectrum from the pig’s peritoneum, spleen, colon, and urinary
bladder are shown in the four graphs. The graph depicts the reflectance for each wavelength
in that region.

This chapter presents the application of hyperspectral imaging as a visual supporting tool to
detect different organs and tissues during surgeries. Diagnosis of abnormal tissue or tissues
which are not in natural anatomic location is an important concern in surgeries.
Hyperspectral imaging can be a useful technology for finding ectopic tissues and diagnosis
of tissue abnormalities such as intestinal ischemia. The ectopic or heterotopic tissue,
particularly when missed, can cause complications in patients. Intestinal ischemia results
from a variety of disorders that cause insufficient blood flow to the intestine. The type and
prognosis of ischemic injury depend on the blood vessels involved, the underlying medical
condition, and the swiftness with which the problem is brought to medical attention for
diagnosis and treatment.
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2. Hyperspectral Imaging

Hyperspectral imaging captures and analyses data from across the electromagnetic
spectrum. This technology extends the human vision that just sees visible light.
Hyperspectral imaging can visualize the visible light as well as near-infrared to infrared.
The difference between hyperspectral and multi-spectral imaging is usually defined
according to the number of spectral bands. Multi-spectral image contains tens of bands.
However, hyperspectral image contains hundreds to thousands of bands. Hyperspectral
images are captured by one sensor that captures a set of contiguous bands. However, multi-
spectral is a set of spectral bands that are not typically contiguous and can be captured by
multiple sensors. Figure 1 shows a schematic view of the hyperspectral image.

- -~y ]

Fig. 2. Several images at different wavelength duing an abdominal surgery on pigs.

Two hyperspectral sensors were used to capture the image data for segmentation of
abdominal organs and detection of intestinal ischemic tissue: an ImSpector N17E and a
V10E, manufactured by Spectral Imaging Ltd., Oulu, Finland. The hyperspectral systems
have more than hundred bands and high spectral resolution. Hyperspectral sensors
generate a two-dimensional spatial image along a third spectral dimension. Each pixel in the
hyperspectral image has a sequence of reflectance in different spectral wavelengths that can
display the spectral signature of that pixel. Since there are a large number of data for each
image, artificial neural networks and machine classifiers along with wavelet compression
were used to segment the images. The technique was evaluated during the abdominal
surgeries on two pigs under general anesthesia. In this research, using the hyperspectral
cameras, the spectral signatures for abdominal organs has been created. Using these
signatures, the abdominal view through a large incision is segmented. Figure 2 shows the
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images in different wavelengths that are captured using two cameras in a large-incision
view during the abdominal surgery on the pigs.

2.1 Hyperspectral sensors

The hyperspectral sensors are instruments for capturing many images in different adjacent
wavelengths of an illuminated region corresponding to the entrance slit. The main
components of a hyperspectral camera are shown in Figure 3. As light sources, two halogen
lamps illuminate the object to be captured. The camera’s objective lens collects the radiation
from the object and projects an image on the entrance slit plane. The slit determines the
instantaneous field of imaging in spatial directions. The radiation from the slit is projected to
the prism-grating-prism (PGP) components (ImSpector optics). Therefore, the propagation
angle of the radiation changes depending on its wavelength. Then it is focused on the matrix
detector. Every object’s point is represented on the matrix detector by a series of
monochromatic points that makes a continuous spectrum in the direction of the spectral
axis. For example, an instantaneous image of the AB line is captured as the lines A1BI,
A2B2,..., AnBn, where “n” is the wavelength band number.
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Fig. 3. Design of the hyperspectral imaging sensor (Aikio, 2001)

Whisk-broom scanning, filtered imaging, and push-broom are three main designs for
hyperspectral cameras. Whisk-broom scanner captures the spectral dimension pixel-to-pixel.
Filtered camera captures two spatial dimensions and temporally samples the spectral
dimension. The capturing technique of ImSpector sensors is a push-broom scanning. In this
type of imaging spectrometer, the entrance slit limits the imaging field. The 2D detector
matrix instantaneously captures the spectral dimension and one spatial dimension. The
second spatial dimension is generated by scanning the object. By moving the camera’s field
of view relative to the object, the second spatial dimension is created. Figure 4 shows a
schematic of the imaging techniques.
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Fig. 4. A schematic of the hyperspectral image capturing techniques (Aikio, 2001)

The PGP is composed of a special grating, two prisms, and an aperture stop. The special
grating is located between two prisms and the aperture stop is set in contact with the
grating. Short and long pass filters are usually placed between the grating and the prisms,
eliminating unwanted wavebands and changing the spectral response. In this technique,
since the filters are incorporated inside a PGP, the reflections from their surfaces can be
eliminated. Unlike a direct vision prism where the dispersion is a non-linear small
dispersion, the diffraction grating in the PGP supplies a large linear dispersion (Aikio, 2001).
Using two cameras, the ImSpector N17E and the V10E, the wavelength range of 400 - 1700
nm may be captured. The V10E model captures the spectral range of 400 - 1000 nm, a
dispersion of 97.5 nm/mm, and a spectral resolution of 5 nm (with a 30 pm slit). The N17E
sensor captures the spectral range of 900 - 1700 nm, a dispersion of 110nm/mm, and a
spectral resolution of 5 nm (with a 30 pm slit). All the wavelengths will be passed for only
the small region of the object that is exactly in front of the entrance slit. By shifting the
sensor between subsequent images, ultimately all parts of the object and all corresponding
wavelengths are captured. Therefore, for each wavelength, a monochromatic spectral image
can be constructed from the hyperspectral image set.

2.2 Capturing setup

The ImSpector sensors capture the images using the push-broom scanning technique.
Therefore, to generate the second spatial dimension the object must be scanned i.e. the
second spatial dimension is captured by moving the camera’s field of view relative to the
object. The linear actuator, a ROBO Cylinder Slider (model RCS-SM-A-100-H-1000-T1-S), is
used to move the camera. This actuator is controlled by an XSEL-J-1-100A-N3-EEE-2-1 type
controller. The actuator and controller are manufactured by IAI Corporation, Japan. The
actuator works with a ball screw drive system, a 100 W motor, and an absolute incremental
encoder. The actuator has an 84.9 N rated thrust, a 1-1000 mm/s speed, a +0.02 mm
positioning repeatability, and a maximum backlash of 0.05 mm. The actuator is connected to
the controller by two cables: the encoder cable and the motor cable. The movement and
velocity are adjusted by a setting tool that is connected to the controller. The actuator moves
the camera with a constant velocity.
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The acquisition setup consists of a pair of 500 W halogen lamps with diffusing reflectors as
the light sources and the computer-controlled linear actuator. The linear actuator is fixed on
a bridge installed over the surgical bed and the camera has been calibrated and fixed on the
frame. Therefore, the distance between the lens and the abdomen is constant and a fairly
uniform illumination of the subject is provided by using the two halogen lamps. Figure 5
shows the acquisition setup.

2.3 Data normalization

The captured data should be normalized to treat the spectral non-uniformity of the
illumination device. The raw data are changed by illumination conditions and temperature.
Therefore, the radiance data were normalized to yield the radiance of the specimen.

White reference and dark current are two data that should be captured for normalization.
White reference is the spectrum acquired by the hyperspectral sensor corresponding to the
white reference and dark current is a dark image acquired by the system in the absence of
light. Figure 6 shows a spectral signature and corresponding white reference and dark
current. White reference is used to show the maximum reflectance in each wavelength. Dark
current spectroscopy is used to address the defects by calculating the peaks in the dark
current spectrum with temperature. To perform this pre-processing step, the radiance of a
standard reference white board placed in the scene and the dark current are measured by
keeping the camera shutter closed.
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Fig. 6. A spectral signature in blue and corresponding white reference in red and dark
current in black.
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Fig. 7. Reflectance spectra using visible and near infrared camera: the horizontal axis shows
different wavelengths in nanometers, and the vertical axis shows the reflectance.

Then the raw data are corrected to reflectance using the following equation:

Lraw (M) - Idark ()

RG)= Lwhite (*) — Idark (V)

(1)

where R(1)is the calculated reflectance value for each wavelength, I,y (A) is the raw data
radiance value of a given pixel, and Iy, (A) and Iypite(r) are, respectively, the dark

current and the white board radiance acquired for each line and spectral band of the sensor.
The dark current and white reference in the ImSpector N17E sensor is separately captured
and included in the main *.raw data file. However, in the ImSpector V10E, it was captured
in a separate file in *.drk format. The white reference board should be placed in the
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capturing field when the ImSpector V10E is used. However, the dark current should be
captured separately. Figure 7 and Figure 8 show the reflectance spectra of the abdominal
organs.
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Fig. 8. Reflectance spectra using near infrared and infrared camera: the horizontal axis
shows different wavelengths in nanometers, and the vertical axis shows the reflectance.

3. Segmentation of Abdominal Organs

Due to the ambiguity between the organ and its adjacent tissues, it is difficult to segment the
organs and tissues during surgeries. Due to the movements of the object, dynamic situations
such as in live and/or moving subjects will worsen the detection (Liu et al., 2007). In special
situations such as anatomic variations, ectopic tissues, and tissue abnormalities, this
problem becomes more challenging. Hyperspectral imaging is used to segment the
abdominal organs during the surgeries on two pigs. Two approaches are utilized to classify
the hyperspectral data. In the first approach, the data are compressed via wavelet
decomposition then classified using learning vector quantization (LVQ) (Akbari et al.,
2008a). In the second approach, the data are classified by a support vector machine (SVM)
(Akbari et al., 2009).

3.1 Normalized difference indexes

Hyperspectral images may be visualized in a real-time manner using the normalized
difference index (NDI). This is a simple method to enhance organs or tissues in
hyperspectral data. NDI has been employed in many research studies to estimate
chlorophyll content (Richardson et al. 2002), to evaluate the effects of nitrogen fertilization
treatments (Moran et al. 2000), to estimate water content (Datt et al., 2003), and to estimate
the yields of salt- and water-stressed forages (Poss et al., 2006).
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Flg 9. Eight sample images uémg the proposed NDI at different wavelengths using visible
and near infrared camera (400-1000 nm).

Many combinations of the reflectance and intensity were evaluated to find the appropriate
NDI. Each NDI can enhance one or several organs. Several combinations of wavelengths
were selected to enhance the difference of organs or tissues. The following equation is
applied to calculate the NDI in the hyperspectral data in 400-1000 nm:

I(A)—1(945nm)
I(A)+1(945nm) @

NDI() =

where NDI(A) is the normalized difference index in the wavelength) and I(1)is the

intensity of a given pixel in the wavelength A . Figure 9 shows this normalized difference
index images in some sample wavelengths. The equation that is utilized to calculate the NDI
in 900-1700 nm hyperspectral data is as follows:

R(X)-R(1660nm)
R(%)+ R(1660nm) ®)

NDI(1) =

where NDI(L) is the normalized difference index in the wavelengthA and R(A)is the

intensity of a given pixel in the wavelength A . Figure 10 shows this normalized difference
index images in some sample wavelengths. Although this technique is a fast method for
visualization, it does not result in precise segmentation in the image processing. Therefore,
for the image segmentation, the hyperspectral data were processed by the image processing
techniques.
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Fig. 10. Eight sample images using the proposed NDI
infrared and infrared camera

at different wavelengths using near

3.2 Wavelet compression and LVQ classification

Since there is a large quantity of data for each image, it is better to compress the data before
processing. In this study, a wavelet transform is used for data compression and LVQ is used
to segment the image. Wavelet transform may be used as a type of signal compression for
compressing the spectral data. The elements of a signal can be represented by a smaller
amount of data. The wavelet transform produces as many coefficients as there are data in
the signal, then these coefficients can be compressed. The information is statistically
concentrated in just a few coefficients. The wavelet compression is based on the concept that
the regular signal component can be accurately approximated using a small number of
approximation coefficients and some of the detail coefficients (Chui, 1993; Daubechies,
1992).
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Fig. 11. A large-incision view during an abdominal surgery on pigs

T Bladder

Self-organizing networks can learn to detect regularities and correlations in their input and
adapt their future responses to that input accordingly. The neurons of competitive networks
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learn to recognize groups of similar input vectors. LVQ is a method for training competitive
layers in a supervised manner (Kohonen, 1987). The wavelet-based compressed spectral
signatures are the input vectors. The abdominal organs are assigned to be the output of the
neural network. The input vectors are correlated to one of seven classes corresponding to
the spleen, peritoneum, urinary bladder, small intestine, colon, background, and ambiguous
regions. After classification, the pixels which were detected as ambiguous pixels were
labeled in the post-processing steps. Figure 11 shows a large-incision view during an
abdominal surgery on a pig.

3.3 Support vector machines (SVMs)

Hyperspectral image classification using SVMs has shown superior performance to the
other available classification methods (Camps-Valls & Bruzzone, 2005) (Camps-Valls et al.,
2004) (Melgani & Bruzzone, 2004) (Huang et al.,, 2002) (Brown et al., 2000). Multilayer
perceptron (MLP) and radial basis function neural networks (RBFNNs) are successful
approaches to classify hyperspectral data. However, the high number of spectral bands
results in the Hughes phenomenon (Hughes, 1968). Support vector machines (SVMs) can
efficiently handle large input spaces or noisy samples (Camps-Valls & Bruzzone, 2005).
SVMs use a small number of exemplars selected from the tutorial dataset to enhance the
generalization ability. The SVMs are supervised classifiers that have a pair of margin zones
on both sides of the discriminate function. The SVM is a popular classifier based on
statistical learning theory as proposed by Vapnik (Vapnik, 1995; Brown et al., 2000). The
training phase tries to maximize the margin of hyperplane classifier with respect to the
training data.

Since the spectral data are not linearly separable, the kernel method is used. Kernel-based
methods map data from an original input feature space to a kernel feature space of a higher
dimensionality and then solve a linear problem in that space. The Least Squares SVM (LS-
SVM), a new version of the SVM, is used for classification (Bao & Liu, 2006; Camps-Valls &
Bruzzone, 2005; Liu et al., 2007). A convex quadratic program (QP) solves the classification
problem in the SVMs. In LS-SVMs, instead of inequality constraints, a two-norm with
equality is applied (Suykens & Vandewalle, 1999). Therefore, instead of a QP problem in
dual space, a set of linear equations is obtained. The SVM tries to find a large margin for
classification. However, the LS-SVM looks for a ridge regression for classification with
binary targets. The selection of hyperparameters is not as problematic and the size of the
matrix involved in the QP problem is also directly proportional to the number of training
points (Van Gestel et al., 2004). The optimization function of the SVM is modified as follows:

: LT 1 2
Min f(w,e)=—w w+7y— ) e: 4
w,b,e ( ) 2 Y2 - ! ( )
1=
subject to the equality constraints
yilwlo(x)+bl=1-¢;, i=1,.,N )

where w is the weighting vector, b is the bias term, e is for misclassifications, and y is the

tuning parameter. This constrained optimization problem can be solved by determining the
saddle points in the Lagrange functional as:
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N
L(w,b,e;a)=f(w,b,e)—Zai{yi[wT(p(xi)+b]—1+ei} (6)
i=1
where o; eR are Lagrange multipliers that can be positive or negative in the LS-SVM
formulation. It is possible to choose many types of kernel functions including linear,
polynomial, radial basis function (RBF), multilayer perceptron (MLP) with one hidden layer,
and splines. The RBF kernel used in this study was as follows:

K(x,x;) =exp{—||x—xi||§/02} (7)
where cis constant.
Multi-class categorization problems are represented by a set of binary classifiers. To prepare
a set of input/target pairs for training, 100 pixels of data from each region in the surgical
hyperspectral images are captured. The SVMs are applied one by one to the image for each
class, and each pixel was labeled as an organ (Akbari et al., 2009).

3.4 Experimental results

The experiment was done on two pigs under general anesthesia. A large incision was
created on the abdomen, and the internal organs were explored. Vital signs were evaluated
during the surgery to assure constant oxygen delivery to the organs. Nine hyperspectral
images by the ImSpector N17E and seven hyperspectral images by the ImSpector V10E were
captured. The actuator velocity was set such that the resolutions of the two spatial
dimensions were equal. The performance (i.e. the quality of detection) was evaluated with
respect to the hand-created maps produced by a medical doctor and by using anatomical
data.

‘ _,
Fig. 12. The RGB image is made using three channels of near-infrared and infrared

hyperspectral camera (900-1700 nm) is shown on the left side. Using LVQ method, the
segmented image can be viewed on the right side. Spleen is shown in red, peritoneum in

pink, urinary bladder in olive, colon in brown, and small intestine in yellow (Akbari et al.,
2008a).

#

The hand-created maps were used as reference maps in calculating the detection rates of the
method. Performance criteria for organ or tissue detection were the false negative rate (FNR)
and the false positive rate (FPR), which were calculated for each organ. When a pixel was
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not detected as an organ or tissue pixel, the detection was considered a false negative if the
pixel was a pixel of that organ on the hand-created map. The FNR for an organ was defined
as the number of false negative pixels divided by the total number of the organ pixels on the
hand-created map. When a pixel was detected as an organ pixel, the detection was a false
positive if the pixel was not an organ pixel on the hand-created map. The FPR was defined
as the number of false positive pixels divided by the total number of non-organ pixels on the
hand-created map. The pixels that were ambiguous and that the medical doctor could not
label as an organ were not considered in our calculation. Figure 12 shows a segmented
image using the LVQ method. The numerical results of the FPR and FNR for each organ and
a comparison between LVQ and SVM methods (Akbari et al., 2008a; Akbari et al., 2009) are
given in Table 1.

C;r;?(? d& Organs Spleen ;223?; Peritoneum Colon Irizr;?il;e
V10E FPR 3.9% 3.7% 5.3% 5.1% 8.7%
(SVM) FNR 4.5% 5.6% 7.3% 6.4% 7.2%
N17E FPR 1.1% 1.2% 4.3% 1.2% 7.3%
(SVM) FNR 1.3% 0.7% 5.1% 9.5% 2.7%
N17E FPR 0.5% 1.3% 6.3% 1.2% 12.3%
(LVQ) FNR 1.3% 1.4% 7.1% 15% 2.7%

Table 1. The evaluation results and comparison (Akbari et al., 2008a; Akbari et al., 2009)

The peritoneum has the highest value in visible and invisible wavelengths. The higher fat
content of this tissue could be a possible explanation. In most spectral regions, the colon has
the second highest reflectance value, after the peritoneum. In the colon, the adventitia forms
small pouches filled with fatty tissue along the colon. The special histology and the fact that
the urinary bladder is hollow inside, can explain the lowest spectral reflectance measured
for this organ (Junqueira and Carneiro, 2005).

4. Intestinal Ischemia

Intestinal ischemia results from a variety of disorders that cause insufficient blood flow to
the intestinal tract. The intestine like other live organs requires oxygen and other vital
substances. These essential substances are delivered by arteries and carbon dioxide and
other disposable substances are removed by veins. Intestinal ischemia results from
decreasing the blood flow of the intestine to a critical point that delivery of oxygen is
compromised. This problem results in intestinal dysfunction and ultimately necrosis. The
prognosis of ischemic injuries depends on the quickness that the problem is brought to
medical attention for diagnosis and treatment (Rosenthal & Brandt, 2007). Ischemia can be
regional and limited to a small part of the intestine, or it may be more extensive. The
intestinal ischemia may result from a shortage in blood passage through an artery or vein.
There are several ways in which arterial or venous flows can be restricted: an embolus, a
thrombus, or a poor blood flow through an artery or vein because of spasm in the blood
vessel or clinical interventions (Rosenthal & Brandt, 2007).

Hyperspectral imaging may provide reliable data in near real-time with a convenient device
for the surgeon in the operating room to diagnose the intestinal ischemia. In this section,
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using the hyperspectral camera (900-1700nm), the spectral signatures for intestine, ischemic
intestine and abdominal organs have been created. Using these signatures, the abdominal
view through a large incision is segmented. Wavelet transform is used as the compression
method and the SVM is used for classification.

4.1 Material and methods

ImSpector N17E is used to capture the hyperspectral data. The data are normalized to
address the problem of spectral non-uniformity of the illumination device and influence of
the dark current. The image digital numbers are normalized to yield the radiance of the
specimen. The white reference and dark current were measured and raw data was
normalized to these values as described in section 2.3.
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Fig. 13. The spectral signature of normal intestine, ischemic intestine, white reference, and
dark current are shown in magnet, blue, red, and black, respectively.

The hyperspectral data are compressed using wavelet transform. Then the normal and
ischemic loops of the intestine are segmented using SVM. The comparison of the spectral
signatures of normal and ischemic regions of the intestine demonstrates a maximum
difference in 1029-1136nm (see Figure 13). Since the main difference between normal and
ischemic intestine is in the mentioned wavelength region, for discriminating the normal and
ischemic tissues, these twenty two bands are used without compression. Some pixels which
were lost because of glare are detected in post-processing. Since most of missed pixels were
located at the mid portion of organs an image fill function is utilized as a post processing
step. The hyperspectral images are compressed using wavelet transform. Each spectral
signal is decomposed choosing the db3 (Daubechies-3) wavelet with level 2 compression
(i.e. 1/4 compression). The compressed data are classified using SVM. Since the training
data are not linearly separable, the kernel method is used in the study. The wavelet-based
compressed pixel signatures are the input of SVM, and each input vector is to be assigned to
one of two classes (intestine and non-intestine). In the next step, twenty two elements (1029-
1136nm bands) of the original spectral data are the input vectors, and each input vector is to
be assigned to one of ischemic or normal classes.
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4.2 Experimental results

To perform the experiment, a pig was anesthetized. A large incision was created on the
abdomen and intestine and other abdominal organs were explored. Vital signs were
controlled during the surgery to guarantee a fairly constant oxygen delivery to the organs.
An intestinal segment and the vessels supplying this segment were clamped for 6 minutes
and the image was captured. The ImSpector N17E is fixed on the computer controlled linear
actuator that was installed on a bridge over the surgical bed. The performance of the
method was evaluated for detection of intestine and ischemic intestine. The evaluation was
performed for the quality of detection in respect to hand-created maps. The hand-created
maps are used as the reference maps in calculating the detection rates of the method.
Performance criteria for intestine and ischemic intestine detection are false negative rate
(FNR) and false positive rate (FPR). Figure 14 shows the ischemic intestinal pixels that are
detected using the proposed method.

LY

Fig. 14. An RGB image is made using three channels of the hyperspectra1 image. The
detected ischemic intestinal tissue via the proposed method is shown with white (Akbari et
al., 2008b).

In the first step, the algorithm detects intestinal pixels. When a pixel is not detected as an
intestine pixel, the detection is a false negative if the pixel is a pixel of intestine on the hand-
created map. FNR is defined as the number of false negative pixels divided by the total
number of the non-intestine pixels on the hand-created map. When a pixel is not detected as
an ischemic intestine pixel, the detection is a false negative if the pixel is a pixel of ischemic
intestine on the hand-created map. FNR is defined as the number of false negative pixels
divided by the total number of the normal intestine pixels on the hand-created map. In the
second step, the ischemic intestinal pixels are detected. When a pixel is detected as an
intestine pixel, the detection is a false positive if the pixel is not an intestine pixel on the
hand-created map. FPR is defined as the number of false positive divided by the total
number of intestine pixels on the hand-created map. When a pixel is detected as an ischemic
intestine pixel, the detection is a false positive if the pixel is not an ischemic intestine pixel
on the hand-created map. FPR is defined as the number of false positive divided by the total
number of ischemic intestine pixels on the hand-created map. The ambiguous pixels that the
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medical doctor can not label are eliminated in the calculation. The numerical results are
given in Table 2 (Akbari et al., 2008b).

Intestine | Ischemic Intestine
FPR 4.3% 2.3%

FNR 2.7% 9.7%

Table 2. The evaluation results of intestinal tissue and ischemic intestinal tissue detection
(Akbari et al., 2008b).

5. Conclusions

This chapter described a new imaging method of hyperspectral imaging as a visual
supporting tool during surgeries. Spectral signatures of various organs are presented and
difference between normal and ischemic intestinal tissues is extracted. Large quantities of
data in hyperspectral images can be processed to extend the range of wavelengths from
visible to near infra and infra red wavelengths. This extension of the surgeon’s vision would
be a significant breakthrough. Capturing and visualizing the optical data of human organs
and tissues can provide useful information for physicians and surgeons. This previously
unseen information can be analyzed and displayed in an appropriate visual format.
Hyperspectral imaging allows surgeons to less invasively examine a vast area without
actually touching or removing tissue. A merit of this technique is the ability to both spatially
and spectrally determine the differences among variant tissues or organs in surgery. The
image-processing algorithms can incorporate detailed classification procedures that would
be used for region extraction and identification of organs or tissues. Utilizing this
technology in surgery will allow a novel exploration of anatomy and pathology, and may
offer hope as a new tool for detection of tissue abnormalities.
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