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Developments in Time-Frequency Analysis of
Biomedical Signals and Images Using a
Generalized Fourier Synthesis

Robert A. Brown, M. Louis Lauzon and Richard Frayne
McGill University and University of Calgary
Canada

1. Introduction

Quantitative time-frequency analysis was born with the advent of Fourier series analysis in
1806. Since then, the ability to examine the frequency content of a signal has become a
critical capability in diverse applications ranging from electrical engineering to
neuroscience. Due to the fundamental nature of the time-frequency transform, a great deal
of work has been done in the field, and variations on the original Fourier transform (FT)
have proliferated (Mihovilovic and Bracewell, 1991; Allen and Mills, 2004; Peyre and Mallat,
2005). While the FT (Allen and Mills, 2004) is an extremely important signal analysis tool,
other related transforms, such as the short-time Fourier transform (STFT) (Allen and Mills,
2004), wavelet transform (WT) (Allen and Mills, 2004) and chirplet transform (Mihovilovic
and Bracewell, 1991), have been formulated to address shortcomings in the FT when it is
applied to certain problems. Considerable research has been undertaken in order to discover
the properties of, and efficient algorithms for calculating the most important of these
transforms.

The S-transform (ST) (Stockwell et al., 1996; Mansinha et al., 1997) is of interest as it has
found several recent applications in medicine including image transmission (Zhu et al.,
2004), the study of psychiatric disorders (Jones et al., 2006), early detection of multiple
sclerosis lesions (Zhu et al., 2001), identifying genetic abnormalities in brain tumours (Brown
et al., 2008), analysis of EEG recordings in epilepsy patients (Khosravani et al., 2005) and
analysis of ECG and audio recordings of cardiac abnormalities (Leung et al., 1998). It has
also been successfully applied to non-biomedical tasks such as characterizing the behaviour
of liquid crystals (Ozder et al., 2007), detecting disturbances in electrical power distribution
networks (Chilukuri and Dash, 2004), monitoring high altitude wind patterns (Portnyagin et
al.,, 2000) and detecting gravitational waves (Beauville et al., 2005). However, the
computational demands of the ST have limited its utility, particularly in clinical medicine
(Brown et al., 2005).
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In this chapter we consider several of the more prominant transforms: the Fourier
transform, short-time Fourier transform, wavelet transform, and S-transform. A general
framework for describing linear time-frequency transforms is introduced, simplifying the
direct comparison of these techniques. Using insights from this formalism, techniques
developed for the Fourier and wavelet transforms are applied to the formulation of a fast
discrete S-transform algorithm with greatly diminished computational and storage
demands. This transform is much more computationally efficient than the original
continuous approximation of the ST (Stockwell et al., 1996) and so allows the ST to be used
in acute clinical situations as well as allowing more advanced applications than have been
investigated to date, including analyzing longer signals and larger images, as well as
transforming data with three or more dimensions, e.g., volumes obtained by magnetic
resonance (MR) or computed tomography (CT) imaging. Finally, the STFT and ST are
demonstrated in an example biomedical application.

The terminology is, unfortunately, inconsistent between the ST, wavelet and FT literatures.
Though these inconsistencies will be pointed out when they arise, we will follow the
wavelet convention, where the continuous transform takes as input a continuous signal and
outputs a continuous spectrum, the discrete approximation transforms a discrete, sampled
signal into a discrete, oversampled spectrum and the discrete transform converts a discrete
signal into a discrete, critically sampled spectrum. Additionally, the term fast will be used to
refer to computationally efficient algorithms for computing the discrete transform.

2. Overview of Selected Time-Frequency Transforms

2.1. The Fourier Transform

The Fourier transform converts any signal, f(f), into its frequency spectrum, which
represents the signal in terms of infinite complex sinusoids of different frequency, v, and
phase:

F(v) = J' F(bye > 1)

The FT transforms entirely between the amplitude-time signal-space and the amplitude-
frequency frequency-space. That is, the spectrum produced by the FT is necessarily global -
it represents the average frequency content of the signal (Mansinha et al., 1997). For
stationary signals, where the frequency content does not change with time, this is ideal.
However, most interesting biomedical signals are non-stationary: their frequency content
does vary with time. However, the FT provides no information about this important

property.

The FT, as with each of the transforms discussed in this section, is generalizable to any
number of dimensions. Higher dimensional transforms may be used to analyze images
(two-dimensional), volumetric data from tomographic medical scanners (three-dimensional)
or volumetric scans over time (four-dimensional). Though the term “time-frequency” is
commonly used, implying one-dimensional functions of amplitude versus time, these
concepts are generalizable to higher dimensions and other parameters.
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Fig. 1. A sample signal (A) and its Fourier transform (B).

The continuous FT can be calculated analytically according to Eq. (1) for many useful
functions but computation of the FT for arbitrarily measured signals requires a discrete
formulation. The discrete Fourier transform (Cooley et al., 1969) (DFT) is calculated on a
discretely sampled finite signal and provides a discretely sampled finite spectrum.

Simply evaluating the discrete form of Eq. (1) has a compuational complexity of O(N2). That
is, the number of operations required to calculate the DFT grows approximately as the
square of the signal length. The fast Fourier transform (Cooley and Tukey, 1965) (FFT)
utilizes a divide-and-conquer approach to calculate the DFT more efficiently: it has a
computational complexity of O(NlogN). This difference means that computing the FFT of
even short signals may be much faster than the DFT, so the FFT is almost universally
preferred.

Fig. 1 shows a non-stationary test signal along with its discrete Fourier spectrum, calculated
via the FFT algorithm. Note that Fourier spectra are normally complex-valued and include
both positive and negative frequencies. For simplicity, figures in this chapter show the
absolute value of the spectrum, and the positive-frequency half only. The test signal
includes three frequency components: (1) a low frequency for the first half of the signal, (2) a
higher frequency for the second half and (3) a very high burst added to the signal in the
middle of the low frequency portion. The Fourier spectrum shows strong peaks
corresponding to (1) and (2) but (3) is not well detected due to its short duration.
Additionally, the sharp transitions between frequencies cause low-amplitude background
throughout the spectrum. Note that the Fourier spectrum does not indicate the relative
temporal positions of the frequency components.
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2.2. The Short-Time Fourier Transform

The Gabor, or short-time Fourier transform (STFT) (Schafer and Rabiner, 1973), Eq. (2),
improves Fourier analysis of non-stationary signals by introducing some temporal locality.
The signal is divided into a number of partitions by multiplying with a set of window
functions, w(t-7), where 7 indicates the centre of the window. In the case of the Gabor
transform, this window is a Gaussian but the STFT allows general windows. In the simplest
case, this window may be a boxcar, in effect, partitioning the signal into a set of shorter
signals. Each partition is Fourier transformed, yielding the Fourier spectrum for that
partition. The local spectra from each partition are combined to form the STFT spectrum, or
spectrogram, which can be used to examine changes in frequency content over time.

Frequen

Time
Fig. 2. The STFT of the signal in Fig. 1A with boxcar windows whose widths are 16 samples
(A) and 32 samples (B).

F(z,0)= _[ F(yw(t —o)e >t )

Fig. 2 shows the STFT spectrum of the test signal in Fig. 1, using boxcar windows of two
different widths. The STFT does provide information about which frequencies are present
and where they are located, but this information comes at a cost. Narrower windows
produce finer time resolution, but each partition is shorter. As with the FT, shorter signals
produce spectra with lower frequency resolution. The tradeoff between temporal and
frequency resolution is a consequence of the Heisenberg uncertainty principle (Allen and
Mills, 2004):
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AtAD > C 3)

which states that the joint time and frequency resolution, At - Ay, has a lower bound.
Additionally, the Shannon sampling theorem (Shannon, 1949) requires that a wavelength be
represented by more than two samples and, to avoid artifacts, the window must be wide
enough to contain at least one wavelength. This means that lower frequencies are better
represented by wider windows (sacrificing time resolution) while high frequencies benefit
from narrower windows (sacrificing frequency resolution). In the STFT the window width is
fixed so it must be chosen a priori to best reflect a particular frequency range of interest.

A B

Fig. 3. Examples of two mother wavelets: (A) the continuous Ricker or Mexican hat wavelet
and (B) the discrete Haar wavelet.

2.3. The Wavelet Transform

The obvious solution to the window-width dilemma associated with the STFT is to use
frequency-adaptive windows, where the width changes depending on the frequency under
examination. This feature is known as progressive resolution and has been found to provide a
more useful time-frequency representation (Daubechies, 1990). Eq. (4) is the wavelet
transform (Daubechies, 1990) (WT), which features progressive resolution:

\P(mb)zﬁjf(t)w[%jdt @

where g is the dilation or scale factor (analogous to the reciprocal of frequency) and b is the
shift, analogous to 7. The WT describes a signal in terms of shifted and scaled versions of a

mother wavelet, W[ﬂj , which is the analog of the complex sinusoidal basis functions
a

used by the FT, but differs in that it is finite in length and is not a simple sinusoid. The finite
length of the mother wavelet provides locality in the wavelet spectrum so windowing the
signal, as with the STFT, is not necessary. Examples of two common mother wavelets are
plotted in Fig. 3.

However, since the mother wavelet is not a sinusoid, the WT spectrum describes a
measurement that is only related to frequency, usually referred to as scale, with higher
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scales roughly corresponding to lower frequencies and vice versa. Additionally, since the
mother wavelet is shifted during calculation of the WT, any phase measurements are local;
i.e., they do not share a global reference point (Mansinha et al., 1997).

Time

Fig. 4. The continuous Ricker (Mexican hat) wavelet transform (A) and discrete Haar
wavelet transform (B) of the signal in Fig. 1A.

Some wavelets, such as the Ricker wavelet (Fig. 4A) or the Morlet wavelet, do not have well
behaved discrete formulations and must be calculated using a discrete approximation of the
continuous wavelet transform (CWT). This continous approximation is generally difficult to
calculate and only practical for short signals of low dimension. However, many mother
wavelets yield transforms that have discrete forms and can be calculated via the
computationally efficient discrete wavelet transform (DWT). Some wavelets, such as the
Haar (Allen and Mills, 2004), Fig. 4B, have a computational complexity of O(N), even faster
than the FFT (Beylkin et al., 1991).

2.4. The S-Transform
The S-transform (Stockwell et al., 1996; Mansinha et al., 1997) (ST) combines features of the
STFT and WT.

The ST is given by:
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0 (t—z')2 02
_ | v I T —i2zot
S(z,v)= | f(t) e e dt ®)
R 27

which can be interpreted as an STFT that utilizes a frequency-adaptive, Gaussian window,
providing progressive resolution. Alternatively, the ST can be derived as a phase correction
to the Morlet wavelet, yielding a wavelet-like transform that provides frequency and
globally referenced phase information. The ST of the test signal in Fig. 1 is shown in Fig. 5.

Unfortunately, these advantages come at a cost. The Morlet wavelet must be calculated via
the inefficient CWT. Similarly, the continuous approximation of the ST in Eq. (5) has a
computational complexity of O(N?3). A more efficient algorithm, however, is described in Eq.
(6), in which the ST is calculated from the Fourier transform of the signal (Stockwell et al.,
1996):

_27[2;12

S(z,0) = jF(,u+U)€ 2 gy, 6)

where F(u+v) is the Fourier transform of the signal, and it is multiplied by a Gaussian and
the inverse Fourier transform kernel. The integration is over frequency, w. In this form, the
ST can be calculated using the FFT but this algorithm is still O(N2logN). Additionally, the ST
requires O(N2) units of storage for the transform result, while the DFT and DWT require
only O(N). For a 256x256 pixel, 8-bit complex-valued image, which requires 128 kilobytes of
storage, the DFT or DWT will occupy no more space than the original signal. But, the ST will
require 8 gigabytes of storage space. Either the compuational complexity, memory
requirements or both quickly make calculation of the ST for larger signals prohibitive.
Addressing these problems is a prerequisite for most clinical applications and also for
practical research using the ST.

Frequenc

Time

Fig. 5. The ST of the signal in Fig. 1A.
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Further discussion of the transforms covered in this section, along with illustrative
biomedical examples, can be found in (Zhu et al., 2003).

3. General Transform

Though the different transforms, particularly the Fourier and wavelet transforms, are often
considered to be distinct entities, they have many similarities. To aid comparison of the ST
with other transforms and help translate techniques developed for one transform to be used
with another, we present several common transforms in a unified context. Previous
investigators have noted the similarities between the FT, STFT and wavelet transform and
the utility of representing them in a common context. To this end, generalized transforms
that describe all three have been constructed (Mallat, 1998; Qin and Zhong, 2004). However,
to our knowledge, previous generalized formalisms do not explicitly specify separate kernel
and window functions. Separating the two better illustrates the relationships between the
transforms, particularly when the ST is included.

The ST itself has been generalized (Pinnegar and Mansinha, 2003):
S(z,0) = j F(byw(t —7,0)e 27 dt ?)

This generalized S-transform (GST) admits windows of arbitrary shape. It may additionally
be argued that w(7/—7,v) can be defined such that the window does not depend on the
parameter v . The result is a fixed window width for all frequencies, and the transform
becomes a STFT. However, the presence of vin the parameter list is limiting and we prefer
the following more general notation:

S(z,0)= I F(byw(t - 7,0)e 27 d ®)

where o may be chosen to be equal to v, to perform an ST, or may be a constant, producing
an STFT. In the latter case, if w(f—7,0)=1, the transform is an FT. Thus, Eq. (8) is a general
Fourier-family transform (GFT), describing each of the transforms that utilize the Fourier
kernel.

3.1. Extension to the Wavelet Transform

The wavelet transform, though it accomplishes a broadly similar task, at first glance appears
to be very disctinct from the Fourier-like time-frequency transforms. The WT uses basis
functions that are finite and can assume various shapes, many of which look very unusual
compared to the sinusoids described by the Fourier kernel. However, when the basis
function is decomposed into its separate kernel and window functions, the WT can be
united with the Fourier-based transforms.
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t//()

Consider the wavelet transform, defined in Eq. (4). Let g(¢)= , that is, a version of the

mother wavelet divided by a phase ramp. For a shifted and scaled wavelet, this becomes:

w(t_b]
t-b
g( a J: _iZIIZ—b) (9)

e a

Rearranging and substituting into Eq. (4) yields:

© LN i2a(tb)
! J f(t)g(%je « gt (10)

jal J

The complex exponential term can be expanded into two terms, one of which is similar to
the familiar Fourier kernel:

i2zb  i2xt

1 t-b -
b)=ﬁ_£f(t)g[7]e e o dt (1)

Letting 7=b, v= l, and S(v,7)= ‘{’[l, r], this becomes:
a v

( 7) T \/7 J.f Ul:t T:I i2zvr —127z'vtdt (12)

Finally, letting w(z—7,v)=g(v[t—-7 ])\/H ¢?™7, Eq. (12) becomes the GFT, Eq. (8), with o=v.

Substituting the Fourier-style variables into Eq. (9), rearranging and simplifying gives the
window function in terms of the mother wavelet:

w(t,z,v) \/_w(v[t T:|) g2 (13)

Thus, the wavelet transform can also be described as a GFT.

4. The Fast S-Transform

Though calculating a discrete approximation of a continuous transform is useful, as with the
continuous wavelet and S-transforms, a fully discrete approach makes optimal use of
knowledge of the sampling process applied to the signal to decrease the computational and
memory resources required. In this section a discrete fast S-transform (FST) (Brown and
Frayne, 2008) is developed by utilizing properties that apply to all of the discrete versions of
transforms described by the GFT, Eq. (8).

www.intechopen.com



200 Recent Advances in Biomedical Engineering

A sampled signal has two important features - the sampling period, At, and the number of
samples, N. Multiplying these two values gives the total signal length, V,. Sampling the
signal and limiting it to finite length imposes several limitations on the transformed
spectrum. The Fourier transform is the simplest case. The DFT of a signal is limited to the
same number of samples, N, as the original signal, conserving the information content of the
signal. The highest frequency that can be represented, vinax, is the Nyquist frequency, which
is half the signal sampling frequency, i The sampling period of the frequency spectrum,
Ay, is the reciprocal of the signal length, 1/V,.

v v
Umax
A B
0 et T
“Vmaz
ﬁ w. 0 Wi
lV
Ymam
D
0 T T

Wy

—Venax

0 Wi

Fig. 6. v-t sampling scheme for (A): a uniformly sampled signal with N = 8, (B): the Fourier
transform, (C): the conventional S-transform and (D): a discrete Wavelet transform.
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Ideally, the result of the continuous S-transform of a one-dimensional signal is S(71), a
spectrum with both time and frequency axes. A fast ST must sample the v plane
sufficiently such that the transform can be inverted (i.e., without loss of information) but
also avoid unnecessary oversampling. If the original signal contains N points, we possess N
independent pieces of information. Since information cannot be created by a transform (and
must be conserved by an invertible transform) an efficient ST will produce an N-point
spectrum, as does the DFT. The original definition of the ST produces a spectrum with N2
points. Therefore, for all discrete signals where N>1, the continuous ST is oversampled by a
factor of N.

In addition, the ST varies temporal and frequency resolution for different frequencies under
investigation: higher frequency/lower time resolution at low frequencies and the converse
at higher frequencies, but this is not reflected in the uniform N2-point v plane sampling
scheme. According to the uncertainty principle, at higher frequencies the FST should
produce 7-v samples that have a lesser resolution along the frequency axis and greater
resolution along the time axis, in analogy to the DWT. The cost of this oversampling is
evident in the increased computational complexity and memory requirements of the ST.

Vv
Ymax4
0 T
-V
max
0 W,

Fig. 7. Sampling scheme for the discrete S-transform of a complex 8-sample signal.

The dyadic sampling scheme used by discrete wavelet transforms provides a progressive
sampling scheme that matches underlying resolution changes. In light of the similarities
between the DWT and ST illustrated by the GFT, a dyadic sampling scheme can be used to
construct a discrete ST. In the case of the ST of a complex signal, a double dyadic scheme is
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necessary to cover both the positive and negative frequency ranges. In this arrangement,
time resolution is at a minimum for low frequencies, both positive and negative, and
increases with the absolute value of frequency. For comparision, the t-v plane sampling
schemes for the signal, FT, continuous (i.e., conventional) ST and DWT are shown in Fig. 6.
The double dyadic scheme of the FST is illustrated in Fig. 7, and a particular algorithm for
calculating the FST with this type of sampling scheme is presented in Algorithm 1. The
result from Algorithm 1 is presented for a sample signal in Fig. 8.

As might be expected from the GFT formalism, Algorithm 1 is very similar to a filterbank
DWT algorithm. High- and low-pass filters, applied in the frequency domain, divide the
signal into high- and-low frequency halves (often called “detail” and “approximation”,
respectively, in the wavelet literature). The high frequency portion is then multiplied by the
necessary windowed kernel functions. The low frequency portion forms the input to the
next iteration of the algorithm, where it is further decomposed. This simple arrangement
produces a dyadic scale with a strict power of two pattern, but can be modified by adjusting
the filters to produce finer or coarser frequency domain sampling. However, care must be
taken to appropriately modify the time domain sampling to match, and never to violate the
Nyquist criterion.

The Gaussian windows of the ST are effectively infinite in extent but when calculating the
transform of a finite length signal, the Gaussians are necessarily multiplied by a boxcar
window the width of the signal itself. Therefore, the actual window for any finite length
signal is a Gaussian multiplied by a boxcar. This situation is particularly apparent at lower
frequencies, where the Gaussians are wider and may still be of appreciable amplitude when
they are clipped at the edges of the signal. In the discrete approximation of the continuous
ST, the Gaussian window is scaled with frequency but the boxcar is not. This contrasts with
the Morlet wavelet, which, using the general formalism of Eq. (8), can also be defined with a
window that is a composite of a Gaussian and a boxcar. However, in the Morlet wavelet, the
Gaussian and boxcar are scaled together. This joint scaling is also inherent in the FST
algorithm. Scaling of both parts of the window function is a key refinement, as it both
produces more consistent windows and significantly decreases the computational
complexity of the FST.

It is only necessary to compute the sums in step 5 of Algorithm 1 for non-zero points (those
that are inside the boxcar window). The boxcar must always be wide enough to contain at
least one entire wavelength, but the width does not need to be a multiple of the wavelength.
This effectively decreases W;: the full signal length is required only for calculating the DC
component, and shorter portions are used at higher frequencies. Since we are
downsampling in step 4, At is smallest at high frequencies and becomes progressively larger
at lower frequencies and so the summation operation in step 5 will always be over a
constant number of points. The examples in this paper use 4 points, which produces a
slightly oversampled, but smoother, result. This reduces the complexity of step 5, which is
nested inside two FOR loops, from O(N) to constant complexity: O(C). As an additional
benefit, adjusting the width of the boxcar window greatly reduces the number of kernels
and windows that must be pre-calculated in steps 2 and 3 of Algorithm 1, since the kernels
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and windows remain essentially constant while the signal’s length and resolution are

manipulated.

Algorithm 1: The Discrete S-Transform with 2x
Oversampling

1. Calculate the Fourier transform of the signal, (%)

2. Pre-calculate the required kernel functions:
_ 27kn 2 kn

¢+:(kT,%):e N and ¢_:(kT,%)=e N

3. Pre-calculate the window functions: w(kT, %)

FOR n in {l,ﬁ,ﬁ,...,4,2,1} DO:
2 4 8

4. Band pass filter H(x):
H'(x)= H(x) where g < |K'| <n

and inverse FT to obtain /'(¢).
FOR every point j in #'(¢) DO:

5. Calculate the transform samples:

N-1
' 3n 3n n 3n
S(jT, = WETY wkT -T, . kT,
UTo) kZZO( )-w( R ALy
3n = 3n 3n
S(jT,— = WkT) - wkT -T, -¢ (kT,
UT= ) kZ::,)< )- w( i KA Ay
END FOR
END FOR
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Frequency

——

Time
Fig. 8. The fast discrete ST of the signal in Fig. 1A.

The computational complexity of the FST algorithm is O(NlogN) - the same as that of the
Fourier transform. The storage requirements are O(N), like the FFT and discrete wavelet
transforms (Brown and Frayne, 2008).

5. The Inverse Fast S-Transform

A discrete version of the S-transform should be invertible by the same procedure as the
inverse continuous ST: summation of the transform space over the raxis, producing the
Fourier spectrum, which can then be inverse discrete or fast Fourier transformed to obtain
the original signal. The inverse discrete and fast Fourier transforms require a coefficient for

each integer value of the frequency index variable v from - V‘;ax to + Vrgax . Since the FST

uses an octave (ie., dyadic) system along the 1-axis, the missing coefficients must be
calculated from known points and a priori information. Note that the following derivation
uses the general definition for the window, w(7—7,0). In the specific case of the FST, o =v e

Consider a single line of the GFT spectrum for v fixed at some value v: (7)=S(7,v,).
Then, from Eq. (8):

() jf w(t—7,0)e P dt (14)

The Fourier transform of I(7), L(V) is:

0

J' J' Fhw(t—7,0)e " dt e 27 gy (15)

—00 | —00
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Rearranging terms gives:
L(0') = j F(tye j w(t—7,0)e 2 dr (16)
Evaluating the second integral using the Fourier shift theorem, this becomes:
+00 '
L(0') = J' fe [ W (0, 0)e 27 | (17)

where W *(1',0) is the inverse Fourier transform of the window. In the common case

where the window function is real and even the inverse and forward FT are identical, in
which case W *(v',0) is interchangeable with W(v',o), the forward Fourier transform of

the window. This can be rearranged to give:
+00 )
L) =W * (0", o) j F()e 2 iz gy (18)

Evaluating the integral, which is a Fourier transform, gives:

L(v)=W*(v',0)F(v'+ vp) (19)
Finally, after rearranging:
L(v")
F(v' =
(v+vp) W (0'0) (20)

It is clear that, in the continuous case, any Fourier coefficient can be obtained from the
Fourier transform of any fixed v = v, line of the GFT spectrum. In the discrete, fast transform
case, as calculated by Algorithm 1, recall that the Fourier spectrum is band pass filtered
during computation of S(7,v,). This means that the Fourier spectrum retrieved from Eq.
(20) will also be filtered. However, as each v = y, line results from a different band pass
filtering, the full Fourier spectrum can be reconstructed from the S(z,v,) spectrum via Eq.
(20). It is then a simple matter to perform an inverse FFT and reconstruct the original signal.
Note that the inversion procedure for the continuous approximation of the ST (Mansinha et
al., 1997), summation over the r-axis, is equivalent to applying Eq. (20) to each line but
discarding all but the DC component, F(v'+v,) where v/ = 0.
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1.5

oy)

Frequency (Hz)

O

Frequency (Hz)

Time (s)
Fig. 9. A short segment of an electrocardiogram (A), its STFT (B) and FST (C). Red indicates
high power while blue indicates low power.

6. Biomedical Example

Fig. 9 shows a sample biomedical signal, along with its STFT and FST. The signal (Fig. 9A) is
a short electrocardiogram (ECG) recording from a publicly available subset of the European
ST-T Database (Physionet, http:/ / pysionet.org), consisting of the first 2048 samples from the
V4 lead of record e0103, a 62 year old male subject complaining of mixed angina. Although
the STFT (Fig. 9B) and the FST (Fig. 9C) both provide spectra on the time-frequency plane,
their respective temporal-frequency resolutions are very different. The window width of the
STFT is fixed for all frequencies, in this case at 64 points, yielding the same combination of

www.intechopen.com



Developments in Time-Frequency Analysis
of Biomedical Signals and Images Using a Generalized Fourier Synthesis 207

time and frequency resolution in all parts within the spectrum. In contrast, the FST
demonstrates progressive resolution, trading decreased frequency resolution for increased
time resolution at higher frequencies.

This difference is most obvious in the major spectral features corresponding to the R-waves
(the dominant peaks in the ECG signal, which are associated with depolarization of the
ventricles). In the STFT spectrum, localisation of the R-wave peak is limited by the time
resolution of the transform. In this case, the peak can only be approximately located. Note
also that the low frequency features corresponding to the other characteristic ECG
components that occur between R-waves appear in the lowest frequency band of the STFT.
Using this window, these features are not distinguishable from the DC, or zero-frequency
component. In order to show these features, the DC component was removed from the
signal before transforming.

In the FST spectrum, the R-wave can be localized much more precisely by examining higher
frequencies, between 20 and 40 Hz, where the time resolution is much better. At the same
time, increased frequency resolution at lower frequencies in the FST spectrum has allowed
low frequency features to be better resolved and separated from the DC component.

The example signal in Fig. 9 consists of few samples and it can be transformed in a
reasonable time even with the inefficient continuous approximation of the ST: the ST takes
1.6 s and 64 MB compared to 1.7 ms and 2 KB for the FST (2.5 GHz Intel Core 2 Duo, one
core only). However, the full ECG signal consists of almost two million samples. Higher
dimensional datasets, including medical images and volumes, can be even larger. ST and
FST computation times and memory requirements for a few biomedical signals are
compared in Table 1.

ST FST
Samples Time Memory Time Memory
MR Image 256 x 256 40 min 64 GB 40 ms 1 MB
CT Image 1024 x 1024 9 days 16 TB 08s 16 MB
ECG 21 37 days 64 TB 1.7s 32 MB
MR Volume ~ 2°° 2 556 * 156 days 256 TB 365 64 MB
Visible 7.6
Human I2XS12 X thousand 3 EB 9 minutes 7GB
1871
(male) CT years

Table 1. Approximate computation times and memory requirements for (i) the continuous
approximation of the ST and (ii) the FST of various biomedical signals. These estimates are
based on computations using one core of a 2.5 GHz Intel Core 2 Duo processor.

7. Conclusions

In this chapter we have defined a generalized framework that describes time-frequency
transforms, including the familiar Fourier and wavelet transforms, in unified terms. Using
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the generalized framework as a guide, we examined the ST, a transform that has proven to
be particularly useful in biomedical and medical applications as well as in non-medical
fields. A discrete fast implementation of the ST, the FST, was derived, which has a
computational complexity of O(NIogN) and memory complexity of O(N), a significant
improvement on the continuous approximation of the ST computational complexity of
O(N2logN) and storage complexity of O(N2). This decrease in complexity allows calculation
of the FST, with modest resources, of signals of more than 21¢ points, i.e., images larger than
256x256 pixels, volumes, and higher dimensional datasets of non-trivial size. The increased
efficiency and wider applicability of the FST allows it to be considered for more
applications, including those that have strict size or time limitations such as compression,
progressive image transmission or acute care medical image analysis.
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