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1. Introduction

The human brain is a complex organ with approximately 100 billion nerve cells (neurons)
transmitting electrochemical signals. Regardless of what state we are in, whether asleep or
awake, our brain produces brainwaves that can be observed and used for clinical and study
applications. German psychiatrist named Hans Berger was the first to measure this electrical
activity in humans in 1924, he called it electroencephalogram (EEG). It is a non-invasive
method of measuring electrical activity of the brain by recording the brainwaves with
electrodes placed on the scalp. Ever since his discovery, EEG has been used to diagnose
many medical conditions, identifying the location of a suspected brain tumor, or a disease in
the brain such as epilepsy and Parkinson’s disease.

In this research the EEG method was employed for sleep disorders study. Most of us refer to
sleep as a passive process; in fact the opposite is the truth, sleeping is an extremely active
process. Sleep complexity is poorly understood during daily lives, our brain is more active
during sleep than it is during the normal waking state. There is a distinct "architecture" of
sleep, which includes five stages; four are defined as Non-Rapid Eye Movement and one as
Rapid Eye Movement. These sleep stages patterns can be observed in EEG signal by change
of waveforms, frequency and magnitude.

EEG is a widespread method for sleep disorders diagnostic and research. The challenge of
EEG is the interpolation of recorded signals. This difficult and time consuming task is
performed mainly manually by an EEG expert (technician or physiologist). In order to
simplify this manual process, an automatic sleep stage detection and classification method
should be analyzed. In this chapter a new method for automatic detection and classification
of sleep stages using a multichannel signal analysis is proposed.

1.1 Previous Work

The idea of an automatic classification system for EEG signals in general and for sleep stages
in particular, is not novel. There have been several researches utilizing various methods to
achieve high results for automatic classification of EEG signals into sleep stages. One of the
most common methods is the neural network and fuzzy rule method. Researches (Kerkeni
et al., 2005), (Pinero et al., 2004), (Heiss et al., 2001), (Shimada & Shiina, 1999) and
(Schaiboldet al., 2003) examined such methods along with some EEG signals featuring

www.intechopen.com



102 Recent Advances in Biomedical Engineering

extraction algorithm achieved acceptable results. Work (Kerkeni et al., 2005) and (Pinero et
al., 2004) had accuracy of around 70%, (Shimada & Shiina, 1999) achieved 83% of
classification using in addition multichannel information, (Schaiboldet al., 2003) reached
84.4% and (Heiss et al., 2001) succeeded in reaching 86.7% of accuracy. In (Gerla & Lhotska,
2006), the authors used Hidden Markov Model (HMM) for multichannel EEG signal
analysis and principal component analysis (PCA) for dimension reduction; they
accomplished only 70%-80% accuracy. Furthermore, the author of (Ghosh & Zhong, 2002)
used the HMM method, however with an AR model for vector feature extraction, reaching
nearly 80% of accuracy. In (Wanli & Luo, 2007) the authors used the conditional random
tield (CRF) method which is similar to the HMM method and attained merely 70% accuracy.
Another analysis method is wavelet transform, used in (Qianli et al., 2005) and (Song et al.,
2007), yielded no suitable result. In (Masaaki et al., 2002), for sleep stage classification, a
waveform recognition method and decision-tree learning was used with hardly 70%
accuracy. Clustering by k-mean is also a useable method, e.g. in (Agerwal & Gotman, 2001)
the classification accuracy was 80.6%.

In this section we presented the recent researches in the sleep stage classification of EEG
signals. Some of these researchers achieved quite good results, an accuracy of 80-86%. In
spite of that it is still not good enough for clinical application, and more research needs to be
done. In this research we try to achieve higher accuracy rate and we set as a wishful
thinking target to cross the 90%.

2. Problem Definition
2.1 Physiological Background

2.1.1 ElectroEncephaloGraphy (EEG)

EEG is a non-invasive neurophysiologic measurement of an electrical activity produced by
the brain. Usually, EEG measurement is performed during a physical task that stimulates
the brain cells, such as blinking, talking, sleeping, etc. The measurement involves a set of
electrodes placed on different areas of the outside surface of the scalp. Electrodes are sensors
that sense the electrical activity of the drain through the scalp. The electrical activity is
expressed as analog signals, which is being sampled and convert into a digital signal by an
analog to digital converter. The digital data is collected and stored for further analysis.

The recorded EEG signals are characterized by frequency, patterns, and amplitude.
Traditionally, EEG is defined by 5 frequency bands and 5 different wave forms (Zumsteg et
al., 2004): Delta waves with frequency range of 0-4Hz / 0.5-3Hz, Theta waves with
frequency range of 4-8Hz/3-7Hz, Alpha waves with frequency range between 8-11/12Hz,
Beta waves with frequency range of 12/13-26Hz and Gamma waves with frequency of
approximately 26-100Hz.

The expanded form of the EEG is the Video EEG. Video EEG consists of recording an
electrical activity of the brain along with a simultaneous recording of audio and video of
patient's environment. It can help physician to determine if there is a correlation between
movement and abnormal brain activity. In this research, a video EEG has been used mostly
for artifacts reduction.
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2.1.2 Sleep Stages

Since the early 20th century, human sleep has been described as a succession of five
recurring stages, (or sixth including awakening). Sleep stage transition is characterized by
abrupt changes in frequencies and amplitudes of the EEG signal.

The first four stages are defined as a "Non-Rapid Eye Movement" (NREM) sleep and the
tifth stage is defined as a "Rapid Eye Movement" (REM) sleep (Zumsteg et al., 2004), (Kelly,
1991), (Pace-Schot & Hobson,2002).

The NREM and REM sleep alternate in 90-110 minute cycles. A normal sleep pattern begins
at about 80-90 minutes of NREM sleep, followed by an REM period for about 10-20 minutes.
This NREM-REM cycle repeats about 4-6 times during the sleep.

REM
stag

Fig. 1. Hypnogram - Typical sleep cycle.

The five stage cycle of sleep repeats itself throughout 7-8 hours during the sleep. Stage 1
starts by shutting the eyes, and cycles through stages 2, 3 and 4. From stage 4 the processes
goes recursively back, when stage 1 is replaced by the REM sleep (Fig. 1). In the successive
cycles of the night, the amount of stages 3 and 4 decreases, and the proportion of the cycles
occupied by REM sleep tends to increase.

Wakefulness: At the wakefulness state the EEG pattern alternates between two main wave
forms. One is the beta wave that has fast activity of 13-26 Hz and low voltage of 10-30 pV.
The second wave form is the alpha wave that has higher voltage of 20-40 pV and slower
activity of 8-12 Hz.

NREM sleep: The NREM sleep occurs for 75-80 % of total sleep time and it is characterized
by low frequency and high voltage wave activity that correspond to increasing depths of
sleep. According to the Academy of Sleep Medicine (ASM) the NREM sleep can be divided
into four separate stages, stage 1 to stage 4.

Stage 1: The duration of stage 1 is about 5 to 10 minutes, it can be defined as a gateway state
between the awake state and sleep state. This stage is characterized by relative low EEG
voltage and slow movements of eye rolling. Alpha waves (8-13 Hz), seen in the awake state,
disappear in the first stage and are replaced by theta waves (4-7 Hz).

Stage 2: Stage 2 takes approximately 45-55% of the total sleep. This stage is characterized by
a lack of eye movements, sleep spindles, and K-complexes . Sleep spindles and K-complexes
are two distinct brain wave forms appearing on the background of theta waves.

A “Sleep spindle” is a burst of brain activity visible on EEG, it consists of 11-15 Hz waves
that occur for 0.5 to 1.5 seconds. A “K-complex” is a sudden, brief, high amplitude
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waveform of EEG. It consists of a brief high-voltage peak, and lasts for longer than 0.5
seconds.

Stage 3: This stage refers to a deep sleep and happens for 35-45 minutes after falling asleep.
Stage 3 takes approximately 12% of the NREM sleep. This stage is characterized by 20-40%
of delta (slow) wave and high amplitude (>75 pV). Additionally, a “K-complex” and “Sleep
spindle” can also appear at this stage.

Stage 4: Stage 4 is very similar to stage 3, in some cases both are regarded as one. Stage 4
refers to a very deep sleep. This stage presents around 13% of the NREM sleep and more
than 50% of it is characterized by delta waves.

REM sleep: Most dreaming occurs during the REM sleep, therefore a burst of prominent
rapid eye movement appears in the EEG at this stage. Adults spend about 20-25% of their
sleep cycle in the REM sleep (approximately 10 out of 90 minutes of one cycle). The EEG in
this period is aroused and it is very similar to stage 1, it exhibits a mixed frequency and low
voltage with occasional bursts of “saw-tooth” waves.

2.2 Motivation

Sleep is absolutely essential for a normal, healthy activity. Studies have shown that for
normal functionality of the immune system, sleep is a necessity. It is also essential for
maintaining a normal operation of the nervous system and the ability to perform both
physically and mentally. In addition, sleep is essential for learning and for normal healthy
cell growth. About third of the population suffers from chronic long-term disorders and
occasional sleep problems. There are more than 70 different sleep disorders that are
classified into three categories: lack of sleep (e.g. insomnia), disturbed sleep (e.g. obstructive
sleep apnea) and excessive sleep (e.g. narcolepsy). These disorders can have a very
significant effect on our daily life, such as chronic tiredness, difficulty to wake up and fall
asleep, unwanted numbing, and even heart diseases.

In most cases, sleep disorders can be easily managed once they are properly diagnosed. One
of the modern tools for sleep disorder diagnosis is the EEG test. The test provides a record of
the patient's brain wave pattern through the whole night (7-9 hours of data). The EEG
monitors various stages of sleep, which are later interpreted by a visual analysis specialist.
Such analysis can be difficult, time-consuming, tiresome procedure, and not necessarily
accurate. In order to assist in this toilsome process and to achieve a better diagnosis,
automatic classifications of EEG sleep pattern must be developed.

The aim of this research is to create a novel method for automatic sleep stage classification,
using a multichannel EEG signal. Automatic classification will help the specialists to
interpret the EEG signal and to conclude a suitable diagnosis.

2.3 Problem Definition

As mentioned above this research deals with definition and classification of EEG signals.
One of the biggest difficulties of neurologists is the interpretation of an EEG signal. Most of
the neurologic world still processes the EEG signals manually, by scanning the EEG records
visually.

The goal of this research is to solve this problem by offering a method for an automatic EEG
signal classification. The specific difficulty that this research tries to deal with is the
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detection and classification of different sleep stages in patients who suffer from sleep
disorders.

. Automatic Hypnogram,
EEG signal Sleep Stage Sleep Stage:
s(t) Classification 1.2 3 4 REM

Fig. 2. System's block diagram.

Numerous researches have been done in this field, however most of them are still not
sufficient for clinical use. Consequently, this research aims to achieve higher classification
accuracy for future clinical use in sleep EEG and in other EEG applications, by using the
multichannel analysis approach.

3. Theoretical Overview

3.1 Single and Multichannel Analysis

Signal processing can be divided into two main analyses; single channel analysis and
multichannel analysis. The single-channel analysis is very common in the signal processing
world. The use of single channel analysis is found in various fields; Medicine (EEG, ECG,
EMG etc.), Geophysics and Speech processing. Although the use of single channel analysis
for some systems description can produce incorrect system model and get false results, this
analysis simplifies the signal processing part within a complicated systems, when the input

signal is represented by a scalar s(f). On the other hand the multichannel analysis

complicates the computations and the system model. Nevertheless, for several processes the
multichannel analysis may offer a much more accurate model. In case of multichannel, the

input signal is represented by a d dimensional vector [s,(¢) s,(¢) s;(?)...s,(t)]" , where d

represent the number of channels.

The research on sleep stage classification is vastly wide and variant, but almost in all
researches the single signal analysis approach is used, (Kerkeni et al., 2005), (Masaaki et al.,
2002), (Agerwal & Gotman, 2001), (Estrada et al., 2004), (Krajca et al., 2005), (Van Hese et al.,
2001), (Shimada et al., 1998), (Sun et al., 1993). Although the classification system receives an
input of more than one EEG channel, the analysis is made per single channel only. Hence,
the main goal of this research is to examine sleep stage classification by multichannel
analysis of multichannel EEG signal. Fig. 3 & 4 present block diagrams of the discussed
signal analysis, fig. 3 demonstrates the single signal analysis and fig. 4 exhibits the
multichannel analysis.

The EEG is a digital record of a biological signal that describes the electrical activity of the
human brain. The recording is performed by using multiple electrodes (4-128 channels)
placed on the scalp, during the sleep. Each electrode that records electrical brain activity
contains important information about the neurological activity of the patient during the
sleep. The spread of several electrodes on the scalp causes an overlap between multi channel
recorded data due to electrodes neighborhood, which in many cases redundant. This
neighborhood causes by definition an inter relations between the different sensors.
Therefore, when taking this kind of data under consideration, it is much more appropriate
to use the multichannel analysis, which considers the relations between the channels and
produces a more accurate assumption about the sleep mechanism.
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One channel EEG —p Single signal —» Decision
rule
system for
Second channel EEG [ Single signal — Sleep .S.tagc.e
Classificati
Z . on
D's channel EEG —> Single signal -

v

Hypnogram
Sleep Stage: 1, 2,
3,4, REM

Fig. 3. Block diagram of traditional single analysis.

First channel EEG Automatic
Multichannel system for
Analysis Sleep Stage

2'nde channel EEG P [5,() 5,(2) 5,(2)...5,(0)] Classification

d's channel EEG [s ()] [~ O l
ypnogram
Sleep Stage: 1,
2,3,4, REM

Fig. 4. Block diagram of multichannel analysis.

3.2 Multichannel Analysis

In the previous section the single channel analysis and the necessity of multichannel
analysis for EEG signal processing was discussed. The classification method that is
presented in this work is based on the multichannel analysis, which will be described in
details in the following section. In addition review on other researches in the field will be
presented in this section.

3.2.1 Overview

The objective of this work is to classify the EEG signal into the correct sleep stage. For this
purpose the EEG signal has to be described by some mathematical model. The most
common mathematical model approach in the EEG signal research is the parametrical
approach which represents the EEG signal by a specific set of parameters.
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There are three main types of parametrical models; the all-pole model known as the
Autoregressive (AR) model, the all-zero model known as Moving Average (MA) model and
the pole-zero model known as Autoregressive Moving Average (ARMA) model (a mix of
AR and MA models) (Makhoul, 1975). These models are in fact filters, the analyzed signal is
assumed to be the output of the filter when the input is a white noise.

The most extensively used model, in biomedical signal processing, is the scalar AR model
(Makhoul, 1975), (Kay, 1988) and (Priestley, 1989). Several researches in the EEG field
showed that the use of scalar AR model can describe the EEG signal in a proper way,
yielding a feasible classification. More than 27 years ago, the potential use of the
parametrical model for EEG signal analysis, and particularly the scalar AR model was
forecasted by (Isaksson et al., 1981) and (Jansen et al., 1981). In (Isaksson et al., 1981) work,
discussed the potential that EEG research has and presented information about the
parametrical and not parametrical signal analysis in EEG signal. The (Jansen et al., 1981)
work is focused on AR model and reviews methods for parameters and model order
estimation. E. Estrada and H. Nazeran in their works (Estrada et al., 2004), (Estrada et al.,
2005) and (Ebrahimi et al., 2007), attempt to classify the EEG signal into right sleep stages by
scalar AR models.

The mentioned studies demonstrate a successful use of scalar AR model for EEG signal in
different applications. In the PhD thesis from 1990 (Flomen, 1990), Felix A.Flomen
demonstrated the use of AR model for EEG signals and the developing of the multichannel
approach for EEG signals analysis, drawing a comparison between them. This work
(Flomen, 1990), was one of the pioneers in the MAR model using General Log Likelihood
(GLLR) distortion measure, for multichannel analysis signal. Nonetheless, the use of
Multichannel AR model (MAR) (Flomen, 1990), (Kay, 1988), (Priestley, 1989) for EEG signal
is extremely rare. In (Andreson et al., 1998) work, the multichannel analysis for modeling
the EEG signal is used. By modeling the multichannel EEG signal using MAR model,
(Andreson et al., 1998) tried to find a satisfying solution for the "Mental Tasks Model and
Classification" problem. Furthermore, (Andreson et al., 1998) proved that MAR model for
EEG signal provides not only satisfying classification results, but better results than
provided by the scalar AR model. The use of MAR model for EEG signal is still not
extensive, however, based on the mentioned researches it is clear that the use of MAR model
can help with the multichannel classification problem for the EEG signal. Therefore, this
research examines sleep stages classification problem, by using the MAR model as a basic
EEG signal model.

3.2.2 Multichannel AR Model

The following paragraph will explain in details the MAR model chosen for the multichannel
EEG signal in this research.

The basic assumption for the MAR model analysis is that the analyzed signal is assumed to

be stationary. Therefore, the MAR model is defined for each EEG signal s(n), of duration
T, which is assumed to be stationary.

The d dimensional EEG signal s(n) is defined as:

s(n) =[s,(n) s,(n)...s,(m)]" ,n=1..N (1)

Where N is the number of samples per signal duration 7 .
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By the d - dimensional MAR model, the signal s(#) is given as a linear combination of past

observations and some random input u(n) ,as presented in fig. 5:
P
s(n) == A(k)s(n—k)+Gu(n) (2)
k=1
Where G is the gain factor, pisthe model order and A(k), k =1,.., p are the dxd matrices

coefficients of the MAR model.
The matrices coefficients A(k), k =1,.., p defined as:

a, (k) a,k) ... a,(k)

a, (k) ay(k) ... a,,(k)

A(k) = k=1,..,d (3)

a, (k) ay,(k) ... a,(k)

This model is an all-pole model that can be presented in the z plan as the transfer
function H(z2) :
G

H(z)=—
1+ A(k)z™*
k=1

(4)
From Eq. (4), fig. 5 and fig. 6, it is evident that MAR is a filter, when the input u(n)is a

white noise signal and the output signal is s(7) .

G

u(n) >@ ;@ p 5(n)

P
2 A(k)s(n—k)
k=1 MAR model of
order p ¢
Fig. 5. All-pole model in the time domain
H( )_#
u(n) ——? - 4 » s(n)
- 1+ D A(h)z
k=1

Fig. 6. All-pole model in the frequency domain
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The input signal u(n) is a totally unknown biological signal, actually it is considered as

inaccessible signal, therefore the signal s(#) can be linearly predicted only approximately
by (2) and it is defined as:

p
S(my=- A(k)s(n—k) ®)
k=1
Then the error between the actual value s(#) and the predicted value §(») is given by:

() =s(n)—5(n)=s(n)+ i A(k)s(n—k) 6)
k=1

Since the assumption that the input u(n) is inaccessible, the gain G does not participate in
the linear prediction of the signal. And so, it is irrelevant to determine a value for G.

However (6) can be rewritten as:

50 =3 AR)s(n—k)+ () %
k=1
From (2) and (7) the following can be seen:
Gu(n) = &(n) ®)

Meaning, the input signal is proportional to the error signal.
From comparing (6) with (8), we get:

Gu(n) = g(n) = s(n) - 5(n) ©)
By squared Eq. (9) and taking the expectation, we receive:
E{(Gu(m)’} = G*E{u’ (m)} = E{*(n)| = E{(s(n) - 5(n)*} (10)

The input u(n) is assumed to be a sequence of uncorrelated samples with zero mean and
unit variance, i.e. £ {g(n)} =0, foralln, and Var {g(n)} =1. The derived equation is:
E{gz(n)} =1 (11)
By placing (11) into (10), we receive:
G =E{e’(n)} = E{(s(m) - 5(n))’ | (12)
When (12) can be written as:

G* = E{’(m)} = E{(s(m)~3(n)) | = E{(s(m) = 5(m)(s(m)~3(n))" }

= E{(s(n) - §(m)(s(n) -5 (n) | = (13)
E{s(n)(s(m)=5(m)" | - E{3(n)(s(m)—5(n))" |
From (13) and (9) we get:

E{s(n)(s(n)~5(m)" |~ E {5(n)(s(m) = 5(n)" | =

(14)
E{s(n)(s(m)—=3(m) |- E{3(me (n)}
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By the orthogonality principle, the next expression is valid:

E{3(me (0] =0 (15)

The (12), (14) and (15) yields:
G* = E{&’(n)} = E{s(n)(s(n) - 5(n))" |

(16)
= E{s(m)(s(m=3m) } = E{s(m)s" (m}|—E{s(m3" (n)|
Now, by placing (5) into (16) we receive:
G* =E{g*(m|=E{s(n)s" (m}+ Y AW)E{s(n)s" (n—k)} (17)
When the autocorrelation matrix of lag i is defined as:
R(i)=E{s(n)s" (n—i) (18)

Where every R(i),i=1,...,p isa dxd matrix.

By placing (18) into (17) we receive the estimation of residual error covariance matrix, as
follow:

G* = E{ () = RO+ Y, A0’ () (19)
k=1

This expression will assist us in the forward MAR parameters and order estimation.
The accuracy of the MAR model depends mainly on the A(k) coefficients estimation and
the model order p definition; therefore it is critical to estimate it as accurate as possible.

There are several ways to estimate the coefficients and the model’s order. To estimate the
coefficients, the Yule-Walker (YW) equations (Kay, 1988), (Wiggins & Robinson, 1965)
should be solved. These equations can be solved by the Levinson, Wiggens, Robinson
(LWR) algorithm (Wiggins & Robinson, 1965). The optimum order was estimated by
Akaike's Information Criterion (AIC) (Kay, 1988), (Priestley, 1989).

3.2.2.1 Yule-Walker equation for coefficients estimation
The A(k) coefficients estimation is an extremely important phase at the MAR model
creation. The aim is to minimize the prediction error given by (6). By assuming stationarity

of the signal s(n) and multiplying both sides of (6) by s "(n—1i) from the right, we obtain:

e(m)s’ (n—i)=s(n)s" (n—=i)=§(n)s" (n—i) (20)
Taking expectation from both sides of (20), yields:
E{e(m)s” (n-i)} = E{s(n)s” (n—0)—5(n)s (n—i)} @)
By the orthogonality principle, the left side of (21) equals to zero:
0=E{s(n)s" (n=i)}~E{3(n)s" (1)} 22)

From (5) and (22) we receive the following:
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p
0=E{s(n)s" (n-)}+ Y. AWE{s(n—k)s" (n-)} (23)
k=1
The autocorrelation matrix of lag i was defined by Eq. (18) as:

R(i) = E{s(n)s" (n—i)|

Therefore, (18) and (23) lead to a set of linear equations known as Yule-Walker equations:

0= ARG k) + R() 02
It may be written in the fouov:;g matrix form:
RO)  RCD .. RA-p)TAD] RO
R) RO . R2-p)| 40| | RO) o
Rp-1) Rp-2) .. RO) ||4p| |R)

We use the fact that R(—i) = R" (i), which can be proven by:
R (i) = E"{s(n)s" (n-i)} = E{s(n—i)s" (n)}
= E{s(n-i)s" ()} =E{s(n)s" (n+i)} = R(-i) (26)
= R (i) = R(~i)

When (25) can be written in the matrix form as:

RO) R'() ... R'(p-D| 4D R(1)
Efl) B(:O) R (}:9—2) A(:2) _ 1_3(:2) )
R(p-1) R(p-2) ... R(O) |L4(p) R(p)

Where the [R] matrix is a Toeplitz block matrix.

For coefficients estimation, the YW equations should be solved. The most efficient and
known way to do it is by applying the LWR recursive algorithm (Wiggins & Robinson,
1965). The LWR algorithm is a generalized form of Levinson's single channel case (Makhoul,

1975). At the end of this process we get p autoregressive coefficients A(k) matrices of

d x d dimensions, for every recorded EEG signal.

There are two methods for coefficients estimation, the covariance and the autocorrelation
methods. This research has used the autocorrelation method, since it is a more convenient
and a widespread method. The autocorrelation method leads to a solution based on the
LWR algorithm (Makhoul, 1975), (Chen & Gersho, 1998).

3.2.2.2 Model Order estimation by AIC
An important decision to be made in the MAR model is the determination of an optimal
order model. Since the order p of the model is apriori unknown, it is to be determined by

minimizing the widespread order criteria AIC (Kay, 1988), (Priestley, 1989). The (Aufrichtig
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& Pedersen, 1992), (Herrera et al., 1997), (Akin & Kiymik, 2005) and (Palaniappan, 2006)
researches deals with challenging issue of AR model order estimation for EEG signals.
The AIC is defined as:

AIC(p) = N In(det Zp Y+2d* p (28)

When the Zp is the estimation of residual error covariance matrix using a pth order that

was defined by Eq. (19), meaning:
>.,=G" = E(g'(n)=R(0)+ Z A(F)R" (k) (29)

This matrix is a by-product of the LWR algorithm; therefore it is calculated recursively by
the algorithm. The aim of AIC is to estimate the optimal order by finding the trade-off
between the estimated prediction error matrix and the model order value. The AIC is
calculated each time for a range of p's , and the selected p yields the minimum AIC.

4. Classification Method

The goal of this research is to classify the EEG signal into different sleep stages, by a
multichannel analysis. In this chapter the suggested method will be described. The first
section gives a general review about the processes, using a block diagram. The next section
broadens the blocks of this diagram (Fig. 7).

Phase one
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multichannel EEG signal

Supervised multichannel
EEG signal

v

Preprocess I

v

Codebook generation

Preprocess II

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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1
1
1
1
1
1
1
1
1
1
1
1
1
1
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——p|  Probability mass

function creation

1
1
1
1
1
1
1
1
1
1
1
1

Phase three

—P s
Probability

1

1

1

1

Sleep stage !

Preprocess I [ mass function [— —»| classification |1
creation '
1

1

1

1

Unsupervised
multichannel
EEG signal

v

Hypnogram

Fig. 7. Block diagram of the proposed classification system.
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4.1 Classification System - Block Diagram

The block diagram appearing in fig. 7, describes the classification system that was created in
this research. The system consists of three main phases; the first and the second phase are
presented as the training phases. The first phase creates K size codebook from unsupervised
data. The second phase builds histogram for each of the sleep stages, using supervised EEG
signals and the codebook’s codewords. The final phase is the classification stage that verifies
the performance of the system.

4.2 Preprocess

The classification system composed of three phases (Fig.7), receives as an input some
multichannel EEG signals. Every signal that gets into the classification system has to pass
through the preprocess step, described by a block diagram in fig. 8. The preprocess step
takes the raw EEG signal and makes it ready for the classification system. There are two
kinds of preprocess steps: preprocess I and II. Both preprocesses are very similar, the
difference between them will be explained in the following chapters. Preprocess I is used in
the first phase and preprocess Il is used in the second and third phases (Fig. 7). This section
will explain in details preprocess I.

S, (n), EEG multichannel signal

ﬁm Number of
H
-V

channel reduction

S,(n),d << D l

Filtering

v

Signal Division, Segmentation

{gd(n)}", j= 1,...,Jl

Multichannel AR model k9 (R(i), A(i)}/, j=1,...,J

Fig. 8. Preprocess of EEG signal block diagram.

Preprocess I starts with a channel reduction. The raw EEG signal S, (#), can contain up to
128 recorder channels (D) that can cause data redundancy. Therefore, according to the
recommendation of an expert neurologist, a sub set of few channels (d, d << D) is chosen

to represent the originally recorded EEG signal. Following channel reduction, the signals
pass thorough an anti aliasing and if necessary a down sampling filter, for noise reduction.

The EEG signal is a stochastic non-stationary multichannel (vector) process. Therefore, the
sampled EEG signal has to be divided into fixed length segments, when j is the segment
index. For further MAR model creation, the segments length N (n=1,..., N ) should be

short enough in order to be considered stationary. Nevertheless, N should be long enough
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to enable accurate feature estimation, meaning enough samples per one coefficient
estimation. The next part is the main part of the preprocess I step, the MAR model
parameters estimation. The MAR model is described profoundly in chapter 3.2. In this step,

the matrix coefficients A(i) are calculated for every one of signal segment ;. The
coefficients are calculated by the LWR recursive algorithm for the MAR model. Each phase

in the system receives as an input a set of coefficients {R(i), A(i)}’ , where R(i) is the

autocorrelation matrix and A(7) is the matrix coefficients. The autocorrelation matrix R(i)is
necessary for GLLR (Flomen, 1990) calculation which is part of every phase in the proposed
classification system. Therefore, in addition to A(7) matrix, the autocorrelation matrix
R(i) considered as a part of the EEG signal representation.

After the preprocess I, the classification system works only with the coefficient’s matrices
and has no direct use with the original EEG signal.

The following sections will explain in details the automatic classification system in all three
phases.

4.3 Codebook Generation - First Phase
The first phase creates from unsupervised EEG signals a K codewords codebook, using the
Linde, Buzo, Gray (LBG) algorithm (Linde et al., 1980). The LBG algorithm takes the MAR

coefficients {]_Q(i),é(i)}j ,j=1...,J that calculated from an unsupervised EEG data in

preprocess I, and creates new K clusters called codewords. The role of this phase is to
present a large amount of data by a reduced amount of representatives called codewords.
First phase block diagram:

Unsupervised
Multichannel EEG signal

v

Preprocess I

v

{R@, A@D)Y, j=1,....J

l Codebook of size K
Unsupervised
codebook generation >
by LBG algorithm

Fig. 9. The first phase block diagram.

As mentioned above, the data used in this phase is an unsupervised data, i.e. the input EEG
signal does not pass through visual analysis and is not classified for any sleep stage. The
entire unsupervised EEG signals, existing in our data base, pass through the preprocess I

step yielding a set of J coefficient’s matrices denoted by {R(i), 4(i)}’ . The J coefficient’s
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matrices are the input parameters of the clustering algorithm LBG. The aim of the LBG
algorithm is to reduce the number of MAR coefficients J , eventually creating a codebook

with K (K << J) coefficient’s matrices {E(l),é(l)}k as codewords.

The LBG algorithm, like any cluster algorithm, is based on some distortion measure. We
used a Generalized Log Likelihood Ratio (GLLR) distortion measure that was first
developed by Felix A.Flomen in 1990 (Flomen, 1990), as part of his thesis work. The Log
Likelihood Ratio (LLR) (Itakura, 1975), originally proposed by Itakura, is widely used in
speech processing application for measuring the dissimilarity between two AR processes.
The LLR measure was already tested on the EEG signal in the past. In (Estrada et al., 2005)
and (Ebrahimi et al., 2007) by means of LLR, a similarity between EEG and electro-
oculographic (EOG) is measured during different sleep stages. In (Kong et al., 1997), a
change in EEG pattern was detected by the LLR and in (Estrada et al., 2004) a similarity
between base line EEG segments (sleep stage) with the rest of EEG was measured. The
works (Estrada et al., 2005), (Kong et al., 1997) and (Estrada et al., 2004) showed that LLR
may be used as a distortion measure in an AR model for EEG signals. We use the LLR in its
generalized form, for the multichannel case and it is defined as:

det(AR A")
Dgy 1 =log [—j

det(4 R A")
D,,,, is the GLLR distortion, 4 and R, are the reference AR coefficients, and 4, is the

tested AR coefficients.

It is important to mention that without the generalized form of LLR distortion measure of
Felix A.Flomen (Flomen, 1990) it would be impossible to use the MAR model for
classification of the EEG signal by the proposed system.

(30)

4.4 System Training - Second Phase
Sp(n), EEG multichannel

B AAAA AN Codebook of size K
Signal

supervised by
visual analysis

l{gmn)}s,sﬂ,---,s

Histogram
Preprocess | | > GLLR ’ creation, pmf
{R(), A}y s =1,...,5 +

wh b

Fig. 10. The second phase block diagram.

www.intechopen.com



116 Recent Advances in Biomedical Engineering

Following the codebook creation, the second phase can be carried out. The intention of this
phase is to represent each sleep stage by discrete probability mass function (pmf), of
K codewords that estimated by histogram. Fig. 10 provides a general look on the training
phase.

At first, a new unused and unsupervised EEG signals visually classifieds into a suitable

sleep stage. The manual classification of unsupervised EEG signal is performed by an EEG
expert. The manually supervised EEG signals clustered into five groups according to the
supervised sleep stage. Every supervised EEG signals group is pass through the preprocess
I that generates M MAR coefficients. Preprocess II is slightly different from preprocess I,
the channel reduction and the filtering is the same, however the segmentation step has been
changed according to the new needs of the second phase. In firs the supervised EEG signal
divided into one minute duration fragments. Of course every one minute fragment
represents only one specific sleep stage. Subsequently, every minute fragments, 60 seconds,

were divided into Q (¢;,..,q, ) segments with 50% overlap. When segment's duration is T

and samples number N , as it illustrated in fig. 11.

1 minute fragment = Q segments 1 minute fragment = Q segments
J MMM W"’"W‘*: m,ﬂw,.,gw.[«mwlkhwg
wﬁgﬂwm”mwﬂﬁwﬁﬁww
A\ i AR 8 e NN A AR o Aol
\ ) — \ —
Segment ¢, Segment qQ %b‘\

N Samples

Segments overlapping
Segment ¢,

Fig. 11. Classification for every segment of EEG signal.

Preprocess Il yields a M set's of {R(i), A(i)}]" coefficients for all the segments when s is
the sleep stage tag in the range of s =1,...,5.

Codebook
of size K

(R(), A(D)}

Proper codeword's
indexes for every
sleep stage

(R, ADYY s =1,....5 —>

Fig. 12. Block diagram focused on codewords selection for every sleep stage.
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After the parameters estimation for all segments of every one minute fragment, the next step
can be preformed. The {R(i), A(7i)}, coefficients of the supervised data are compared by the
GLLR distortion measure (30) with each of the codeword {R(i), 4(i)}* from the codebook.

Fig. 12 illustrates a close-up look of this step in the second phase.
The GLLR distortion measure, D, ., is calculated between parameters of segment ¢ and

every codeword from the codebook. The codeword that produce the minimum DéLLR , is
the chosen codeword index to represent the segment, i.e.:

Index, . =argmin, {DS, .}, m=1.,M, s=1..5 (31)
In other words, for every segment, a codeword is fitted by minimization of D, ., k =1,.K ,

resulting its argument i.e. index.
This process repeats for all segments of the supervised signal. At the end of this process we
get a set of Q codeword indexes for every minute of the data. Next, for every minute, a

histogram from the Q codeword indexes is created and normalized. In fact by this way we
define a new random variable x as follow:

Let k be the codeword index from the codebook (k =1,..,K ). Let us define a random
variable x which indicates which indexk has been chosen for some segment g (of
duration7") by theargmin,_, , {DL,,x ).

The distribution of x is given by:
Pr(x=k)=pk) k=1..K

Zp(k) =1

By this action we receive a probability mass function (pmf) Pr(x = k), for random variable

(32)

X per every minute of data that is estimated by a histogram.
We locate all the pmfs (histogram) of a certain sleep stage and by averaging them we receive
a single pmf which represents the codewords distribution for a certain sleep stage.

Eventually, a specific pmf P (x=k),s =1,..,5 is estimated for every sleep stage. Fig. 13

exhibits the averaging of all pmfs (represented by histograms) ascribed to one sleep stage,
and create the pmf of codebook indexes.

Wl ..
Index H, ,Pr(x=k),s=1.,5
P
Index >_ Normalization —p

& Averaging
, .
Index J

Fig. 13. Histogram for each sleep stage.

Index
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The histograms provide the relevant information for the classification phase, i.e. the relation
between the coefficients of the unsupervised data to the supervised data for each sleep
stage.

4.5 Signal Classification — Third Phase

Previous sections discussed the classification system fundamentals - the training phases.
This section will discuss the third phase of the system - the classification of a new, unknown
EEG signal.

The classification phase input, is a new set of an unseen EEG test signal. Actually it’s the
second set of unseen EEG signal used for fair system evaluation. The test signal passes
through the preprocess II step, the MAR coefficients are estimated and compared to the
codewords of the original codebook by GLLR distortion measure. Histograms created from
codewords indexes and compared to the sleep stages histograms (chapter 4.4). By a minimal
Kullback-Leibler (KL) divergence between the new signal pmf and all the five stages pmfs
the classification is made. Fig. 14 illustrates the classification phase.

New unknown EEG
signal for classification

¢ Few Sleep stage
Codebook of size K Preprocess histograms, from second
phase
l{E(i),A(i)}[ TI . ]
{R(), A}
»  GLLR

v

tl__'__l, New unknown EEG
I signal classification by

New unknown EEG KL divergence
signal histogram +
Hypnogram,

Sleep Stage: 1, 2, 3, 4, REM
Fig. 14. Block diagram for classification phase.

This phase describes the classification of a new multichannel EEG signal into five different
sleep stages. As mentioned in section 4.2, every raw EEG signal entering the classification
system first has to pass through the preprocess step in this case preprocess II. Section 4.4
explains that in the preprocess II, the signal is divided into one minute fragments, and every
fragment divided once again into Q overlapping segments of N samples (Fig. 12).

Following the segmentation, the MAR coefficients are calculated for every segment ¢ .

Eventually preprocess II yields L MAR coefficients {R(i), A(i)}' ,/ =1,..,L, where L is the

total number of segments in the new EEG signal.
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Considering the preprocess II step, we have L MAR coefficients separated into sets of
QO coefficients per every minute. Next, by the Index, = argmin,_, {D; (31), codewords

GLLR } 4
indexes matched for each of the L MAR coefficients. Identically to the second phase
(section 4.4), for every minute of the new EEG signal a normalized histograms is created, as

can be seen in fig. 15. To be precise, these histograms are the pmf's, Pr,(x = k) (32), of the

K codewords.

\ 1 minute ) \ 1 minute ) o \ 1 minute )
Y Y Y

Il_l_l_l, il IIJL.
Ind Ind

Pr (x = k) P, (x = k) 9 Pr, (x=k)

Fig. 15. Histogram per each minute.

In the current situation, there is a histogram per every minute of the new classified signal,
and pre trained five histograms for every sleep stage.

The classification strategy is based upon a measure of similarity between two pmfs
histograms. Therefore, every histogram of the tested signal has to be compared to each of
the five sleep stages histograms that were created during the training phase (phase 2, section
4.4). In other words, some similarity measure has to be determined between the tested pmf
Pr,(x = k) and the sleep stage reference pmf Pr, (x =k).

The Kullback-Leibler (KL) divergence (or relative entropy) (Flomen, 1990), (Cover &
Thomas, 1991) is a measure of the difference between two probability distributions, when
discrete probability distributions characterized by a pmf. Therefore KL divergence can be

used as a similarity measure between pmf Pr,(x =k)of the tested EEG signal and the

referents sleep stage pmf Pr, (x = k) . The KL divergence is defined as:

K k K K
Dy, (i)=Y p,(k)log ]lj i.(( k; =" p,(k)log p,(k)—= p,(k)log p; (k) (33)
k=1 = k=1 k=1

The p,(k), is the probability of the tested signal and p: (k) is the sleep stage reference
probability. KL divergence measure is not symmetric, always non-negative and is equal to
zero only in case of p, (k) = p; (k). The KL divergence measure calculation occurs between

the distribution of the tested signal Pr,(x = k) and the distribution of all sleep stages signals,
ie. {Pr,(x=k)},_, 5. The unknown EEG signal is classified according to a minimum KL

divergence (maximum similarity) measure between the new signal pmf and all the reference
stages pmf. A sleep stage which distribution produces the minimum Dj, is the classified
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one, i.e.:

S = arg mins:l,...,S {D;Q } (34)

S represent the sleep stage classification of unknown EEG signal per one minute,
where § =1,..,5.

5. System Evaluation

Chapter 5 describes the suggested classification system of EEG signals into sleep stages. The
system has been theoretically described and explained; real data producing real
classifications has yet to be tested. This chapter will evaluate the proposed system, by
testing the classification accuracy on real EEG signals. The goal of this system is to classify a
real EEG data, verify its performances, and justify the use of multichannel analysis upon
single channel analysis.

This research classifies EEG signal into four sleep stages, rather than five as the theory
mentions (steps 1,2,3,4 and REM). Stages 3 and 4 are considered as deep sleep stages,
classifieds as the same stage, stage 3&4, rather than two different stages. Brain waves
appearing in these two stages differ only in threshold of delta wave presence (chapter 3);
therefore it is especially difficult to distinguish between them. Numerous latest researches
(Heiss et al., 2001), (Gerla & Lhotska, 2006), (Virkkala et al., 2007)) in the field of sleep
classification considered these two stages as one, a slow wave sleep stage. Moreover, at this
stage of research the classification system cannot classify movement or awakeness as well,
given that the database contains EEG signals recorded only during sleep. Correction and
improvement of these weaknesses should be the source of further research, as mentioned in
chapter 6.

5.1 Database - General Information

The data used for system evaluation was taken from the EEG lab for epilepsy study at
Soroka hospital. The “data” is a Video EEG test that recorded electrical activity of the brain
and in parallel documented subject's functioning by video camera, which contributes to the
visual classification phase. Video documentation provides imperative information on EEG
recording quality; it tracks when the subject is awake, asleep and moving, etc.

The database this research is based on contains about 30 hours of recorded EEG signals
collected during the sleep process. It was collected from 25 subjects of different ages and
gender, suffering from epilepsy. Striving to create a global classification system, this
research is not interested in testing a certain cut of the population. The original EEG signals
recorded nonstop during 24 to 96 hours per subject. For this research, the EEG signals were
carefully chosen from the recorded data. The chosen data take only during sleep time and
with minimal signal interruption, e.g. moving and other artifacts.

5.2 Framework

After the database presentment, the constants parameters such as channels number, signal
sample rate, segments length and model order have to be defined. These constants are the
keystone of the classification system, since; every computation will be established on them.
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Original EEG signals are recorded through 29 electrodes (channels), in a sampling rate of
256 Hz. These EEG signals have to be processed before entering the classification system,
such preprocess is described in general in section 5.2.

Due to redundancy existing in 29 channels, a sub set of five electrodes; Pz, Cz, Pz, T3, T4

(d =5) has been chosen.

Fig. 16. Electrodes location on the scalp, the red circles mark the chosen electrodes.

Specific channels were selected according to trial and error technique cooperated with
neurologist expert recommendation. The preferred channels achieved minimal MAR model
order, while keeping segments duration reasonable.

The common frequency range of EEG signal during the sleep is between 0.5 Hz to 25 Hz,
therefore a sampling frequency reduction is carried out using anti aliasing filter of 40 Hz,
notch filter of 50 Hz (to reduce the power line noise) and additional down sampling to 85
Hz is performed.

The multichannel EEG signal is analyzed per short segments; therefore the next step is
segment duration and model order definition. In fact the model order and segment duration
are connected. In order to define one of them, the other has to be known. Hence, segment
duration and model order determination are a tradeoff. Segment duration has to be long
enough for all MAR coefficients estimation, when the MAR coefficients number is defined
on the model order, and yet short enough for the stationarity assumption to be valid (as
mentioned in section 4.2).

Several segment duration and model order combinations were examined, using trial and
error method. The optimal segment duration was 4 seconds (duration 7 of one segment q )

which is 340 samples per segment (N =340) . The optimal model order was determined to

be p = 6. With these constants the system will have enough samples for all parameters

estimation; nevertheless the segment is short enough for stationarity assumption.

The estimation of MAR coefficients and model order is explained theoretically in section 3.2.
The MAR coefficients are the foundation of the proposed system, and they are estimated per
each segment of EEG signal with 50% overlapping between the segments. Coefficient
estimation significantly depends on model order estimation. The suitable model
order p =6 is estimated according to AIC (Eq. (28) in section 3.2) of training data. A set of
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AIC’s is calculated per range of p's , from 1 to 30 for every segment of the training data, fig.

17 (a-d). The order producing minimum AIC is determined as segments order. A repetition
of the mentioned procedure for all tested segments will produce a set of optimal orders
(p's). A probability density function of optimal p'sis estimated by using a histogram,

which will be described in fig. 18. The most probable order pis selected out of the

histogram.
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Fig. 17. (a-d).This figure shows an example of segment AIC’s calculation for range of
orders, 1 to 30.

A known phenomenon is AIC’s over determining the model order (Kay, 1988). As a

practical result one usually selects a lower order than the most probable order. In fig. 18 it
can be seen that the optimal order p =7 is estimated by AIC, the order for this research is
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chosen tobe p =6 .0Order p =6 and segment length N =340 are the optimal option of the
tradeoff between these parameters under the system limitations.

Histogram of Optimal Orders

6000

5000

4000

3000

2000

Distribution of Model Order

1000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Model Order
Fig. 18. Histogram of all optimal orders p's of the training data.

5.3 System's Practical Consideration

After defining the constant parameters of the system in section 5.2, the evaluation system
could be created and evaluated for both training and test data.

Chapter 4 explained that the training of the system is divided to two phases; the first phase
creates the codebook of the MAR coefficients, and the second phase creates a pattern
histogram for every sleep stage.

5.3.1 Codebook Generation

The first phase creates a codebook by using 41% of the whole database, i.e. 12.4 hours of
recorded EEG signals. These 12.4 hours of data first pass through preprocess I (detailed at
section 4.2) and produce nearly 21,576 segments that yielding 21,576 sets of MAR

coefficients {R(i), A(i)}’, j =1,...,21,576 . By the LBG cluster algorithm (explained in
chapter 4.3) the 21,576 MAR coefficients are quantized into 64 clusters that represent the
codebook codeword's. Namely the codebook contains 64 sets of {R(i), A(i)}* representing

all of the training data, when k =1,..,64 (K =64).

Fig. 19 describes schematically the process of codebook generation that will be used by the
classification system in all it phases.

Several sizes of codebook were evaluated and tested; 32, 64 and 128 clusters (codewords)
were examined for classification accuracy. The 32 and 128 codebook size provided
insufficient classification results. Classification results showed that 32 clusters were not
enough for training data representation and 128 clusters caused a redundancy in
codewords. The choice of 64 clusters produces the best classification accuracy.
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Training EEG
Data
¢ (R(i), AG)} {R(0), A(D}
Preprocess i=1,..,21576 LBG k=1,..,64

Fig. 19. Block diagram of codebook generation.

5.3.2 Histograms Representing Sleeping Patterns

Phase two is the second part of the training system using 21% of the database i.e. 6.18 hours
of recorded EEG signals. Before the beginning of phase 2, the data used in this phase is
visually classified into four sleep stages (stage 1, 2, 3&4 and REM). Visual classification is a
vital process in the training phase, the entire system creation is established on this
classification. In case that the data is classified incorrectly by an EEG expert, the
classification will be wrong.

After visual classification, the training data passes through preprocess II (section 4.2)

producing 10,753 sets of MAR coefficients {R(i), A(i)}’, j =1,..,10,753 for all 6.18 hours of

data. In the framework section (section 5.2) segment duration was set to be 4 sec.
Consequently, the number of segments per one minute O equal to 29, due to 50%

overlapping between the 4 sec segments.

As mentioned in section 4.4, indexes of specific codewords were chosen for every MAR
coefficient of the tagged data. The codewords have been chosen according to minimal GLLR
distortion measure (chapter 4) between the codewords and the coefficients.

For every minute of data, a histogram was created from the chosen codeword indexes (Fig.
19). According to the visual sleep stage classification, all histograms of every sleep stage
were summarized and normalized. This action produced pmf (Pr,(x=4k)=p (k)) for

every sleep stage.

6.1 hours of tagged data were not divided equally between the four stages, the amount of
minutes representing each sleep stage is: Stage 1 - 33 minute of tagged data, Stage 2 -134
minute of tagged data, Stage 3 & 4 - 164 minute of tagged data, Stage REM - 40 minute of
tagged data.

Sleep stage 1 and REM (sleep stage 5) are very hard to detect in patient's EEG signals;
consequently these stages have less data for testing. Sleep stage 1 lasts only five to
maximum ten minutes in the beginning of sleep. Unfortunately, in case there is any
movement these few minutes (which happens occasionally in the process of falling asleep),
the recorded signal has much more noise than a physiological signal and cannot be used as
training or testing data. Most people, who take the EEG test in labs, feel uncomfortable
during the test and therefore they tend to move while trying to fall asleep. The REM sleep
stage occurs when the patient has fallen deeply asleep. As stated above, it is very hard for
people to sleep in unfamiliar places in addition to a set of electrodes attached to their heads,
therefore the patients do not necessarily get to the REM sleep stage and wake up instead.
The classification accuracy is influenced by the amount of training data, thus it can be
expected that the classification of stages 1 and REM will be less accurate than stages 2 and 3
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& 4, due to lack in training data. As a result, the four histograms have to be normalized to
the same scale for the pmf creation.

Codebook
{R(i), A(i)}*

Codeword’s

K=1,.., 64

Training Data

{R(i), AG)}

i=1,..,10,753

indexes for .
GLLR every minute Normahzat}on
distortion | %] and averaging
per sleep stage
Histogram Histogram Histogram Histogram
Stage 1 Stage 2 Stage 3&4 Stage REM

Fig. 20. Block diagram of Histograms creation.

The process described in this section creates four normalized histograms representing the
sleep stage pattern by codewords distribution. Fig. 21-24 demonstrates the fourth sleep stage
histograms used in this research. These histograms will take part in the classification stage
as examples of the known data.

Histogram - Sleep Stage 1

Fig. 21. Histogram of sleep stage 1.
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Histogram - Sleep Stage 2
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Fig. 24. Histogram of sleep stage 5 (REM).
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According to fig. 21-24, the difference among sleep stage histograms is proven. This fact
makes the proposed method of EEG signal classification possible.

Fig. 25 presents a 3D graph of all four distributions together. This view emphasizes the
difference between the distributions.

All Sleep Stage Histograms

0.8 —,

0.7 —

I

Codevvord Index
o o
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Sleep Stage 20 25 30

Probability 55 60 65

Fig. 25. The histograms of all the sleep stages on one graph.

5.3.3 Phase 3- Signal Classification

The classification of a new signal is performed by comparing the referential sleep stage
histograms (from the training phase) and the new signal histograms. As detailed in
section4.5, for every minute of new EEG signal a histogram (pmf) is created according to the
codebook from phase one. This histogram is compared by the KL divergence to each of the
four histograms from phase two.

System evaluation is performed by two EEG databases, one is the training database used
during the second phase (21% of entire database) and the other is a completely new set of
EEG signals consisting of 11.5 hours.

First, the system is quantitatively tested by the tagged data from the training phase. Since
the tagged data is carefully visually classified per every minute, the classification quality is
evaluated according to this data. By leave-one-out cross-validation (LOOCV) method all the
training data is classified by the suggested classification method. Then, the data is divided
into small groups of observations of different stages and subjects. One group is used for
system evaluation and the rest of the groups are used as the training data for referential
histograms creation, this process is repeated over and over, thus each group in the database
is used as the evaluation data. Eventually all the training data is classified by the system, yet
without using the same data in training and classification.

The classification system output is a Hypnogram of continuous EEG signal, therefore the
second evaluation test the final Hypnogram generation. This test is a more qualitative
evaluation, given that the results are presented in graphical form. The tested EEG signal is
recorded continuously for several hours from two subjects. As opposed to the basic
classification per each minute of the signal, the final classification system classifies the raw

www.intechopen.com



128 Recent Advances in Biomedical Engineering

EEG signal into four stages (as mentioned before) and another fifth stage called the "zero"
stage. "Zero" stage means, the classification is not good enough for any of the four defined
stages, therefore this minute is classified as an exception which the system does not
recognize. Such events occur when the subject is moving during the sleep or waking up. If
the minimal KL divergence measure is above some determined threshold the analyzed
minute will be classified as a "zero" stage. The threshold was determined by applying the
trial and error method on all the tested data.

In addition, in order to reduce the noise and other distortions of the signal, a median filter
for every three minute with two minutes overlapping is considered, and was formally
defined as:

Median class(i) = class{(i—1),class(i),class(i+1)} (5.1)

According to neurologist opinion, three minutes smoothing is acceptable and will neither
decrease the classification quality nor harming the medical diagnose. Five minutes median
filter was also tested, but produced much less accurate classification.
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Fig. 26. Stage smoothing.

Fig. 26 demonstrates the performance and the outcome of the median filter per every three
minutes. With the help of this technique no data is being wasted, every minute of data has a
representation in the Hypnogram, while the Hypnogram is more robust to any distortion
(e.g. moving during the sleep).

6. Evaluation Results

In this subchapter the evaluation results of the proposed sleep stage classification method
are presented and analyzed.

Visually classified training data was used for system evaluation. The period of one minute
was classified by the LOOCV method into four different sleep stages; stage 1, stage 2, stage 3
& 4 and stage 5, when stage 1,2 and 3 & 4 are the NREM stages and stage 5 is the REM stage.
In fact, the period of one minute is the second layer of the classification. The first layer is the
basic 4 second segment of an EEG signal consisting of one minute period, represented by
histogram as depicted in fig. 15.

Table 1 presents the classification performance during the period of one minute when the
evaluation data contains 33 minutes of stage 1, 134 minutes of stage 2, 164 minutes of stage
3&4 and 40 minutes of the REM stage.
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The Automatic Sleep Stage Classification
Stage Stage Stage Stage o e s
1 2 384 REM YoSensitivity

_§ Stage 1 29 4 0 0 87.8
Q
§ Stage 2 0 122 12 0 91
-~
§ Stage 364 1 4 156 3 95.1
S
S
[ Stage REM 0 1 0 39 97.5

% Specificity 96.6 93.1 92.8 92.8 93.2

Table 1. Evaluation results.

In order to evaluate the classification results we used two common statistical measures:
specificity and sensitivity. Sensitivity is a statistical measure of how well a classification test
identifies a condition, specificity on the other hand is a statistical measure of how well a
classification test identifies the negative cases, or cases that do not meet the condition, thus,
the two measures complete themselves. Table 1 demonstrates the satisfying classification
results of the proposed system. Classification performances of the method are 93.8%
specificity and 92.8% sensitivity with an average of 93.2%.

The results confirm the strong potential this method possesses in the field of EEG signal
processing. Although the results meet the expectations, there are still inadequacies, the
amount of classified and tested data in each stage is uneven what can affect the classification
quality and reliability. This fact does not damage the classification performance, yet it bears
an influence on the confidence level of the classification system. The following classification
test provides proof that the reliability of the classification system is very high.

Evaluation by LOOCV provides quantitative measure of the classification method and
proves that the system is reliable for sleep stage classification. The next system test provides
more visual evaluation of the classification quality, yet followed by quantitative
information.

The classification system receives an input of several hours of EEG signals recorded during
the sleep, and the output of the system is the sleep pattern of the signal, a Hypnogram.
Eventually, producing a Hypnogram of the continuous sleep signal is the purpose of the
system; therefore this test provides Hypnograms of two subjects produced by automatic
classification method against the classification of an expert. The following figures (Fig. 27-
32) demonstrate these Hypnograms.

Fig. 27-32 shows the results of real continuous EEG signal classification. Fig. 27
demonstrates automatic classification of almost 4%2 hours of sleep collected from a single
subject "A" and fig. 30 demonstrates automatic classification of nearly 7 hours of sleep of
single subject "B", when fig. 28 and 31 present expert's classification of subject "A" and "B",
respectively. The Hypnograms created by the automatic classification are one minute
resolution and median filtered for every three minutes (as explained in section 5.3.2).
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Aoutomatic Classification - Subject "A"
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Fig. 27. Hypnogram of subject "A", automatic classificatin.
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Fig. 28. Hypnogram of subject "A", expers classification.
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Fig. 29. Error Graph- A diffrence between automatic and expers classification of subject "A".
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Aoutomatic Classification - Subject "B"
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Fig. 30. Hypnogram of subject "B", automatic classification.
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Fig. 31. Hypnogram of subject "B", experts classification.
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Fig. 32. Error Graph-A diffrence between automatic and expert classification of subject "B".
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The difference in qualitative pattern description between the automatic and expert
classification can be seen in fig. 27, 28 and 29, 30 representing subjects "A" and "B',
respectively. A quantitative difference among automatic and expert's classification for
subject "A" and "B" are shown in fig. 29 and 32, respectively. These two graphs present the
classification errors per every minute of an EEG signal. Each stem in the graphs is
represented by binary method showing the dissimilarity between the classifications. The
agreement rate between automatic and expert's classification for subject "A" is 89.8% and for
subject "B" is 92.2%.

As can be seen from fig. 27-32 and from the agreement rate, the classifications of the
automatic system and of the human eye are very similar. The produced Hypnograms
provide quite an accurate over-all aspect of the sleep stage pattern. Although the
classification results are very fulfilling there are several dissimilarities between the
classifications.

The most noticeable dissimilarities between the automatic and the expert's classification
appear in cases the subject is moving during the sleep. The expert classifies these
movements as awakening stage ("zero" stage), however the system predominantly classifies
it as unstable state expressed in repeated sleep stages changes.

The Hypnograms depicted in fig. 27 and 28 belong to a subject who hardly slept during the
recording time. Most of the sleep period subject "A" was in stage 2 and intermediately
between stage 1 and alertness. The automatic classification implemented in this research has
no ability to classify alertness or movement, therefore these events are expressed as unstable
stages and the agreement rate between the system and the experts is relatively low. Apart of
the mentioned weakness, the classification system provides very accurate information on
sleep patterns of the subjects. For subject "B", the Hypnograms in fig. 30 and 31 have a high
agreement. Subject "B" had a smooth and relaxed sleep, therefore the classification of the
system is almost similar to the experts opinion. Although subject "B" had some undefined
stages (movement during the sleep) the classification accuracy error is less than 8%.
Evaluation results show, that the classification system presented in this research allows very
high classification accuracy of 93.2% and can be used on real EEG signals.

7. Conclusions and Discussion

The aim of this research is to develop an automatic classification system based upon
parametric multichannel analysis approach. This classification system would classify
multichannel EEG signals during sleep into the correct sleep stage. The Classification system
created in this research succeeded in classifying EEG signals into the right sleep stage with a
high accuracy rate, specificity of 93.8% and sensitivity of 92.8%.

The evaluation results of the research are significant due to the employed rich EEG
database. The database includes 30 hours of real EEG signals recorded from 25 different
subjects.

The developed system classifies EEG signals into four sleep stages when stage 4 represents
both stage 3 and 4 (since they differ only in delta wave percent appearance and are known
to be slow waves sleep stages (SWS), or rather deep sleep stages). This assumption is
considered conventional by EEG expert (neurologist advisor) and by most of the recent
researches (Ebrahimi et al., 2007), (Song et al., 2007), (Heiss et al., 2001), (Virkkala et al.,
2007) in sleep.
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The weakness of the system comes from the lack of awake stage classification; the awake
stage was not a part of the training sleep stages set. This awake stage is not a regular
condition stage due to many environmental influences. Therefore, the system does not
recognize movement and awakeness in the EEG signal. This fact decreases the classification
accuracy of the Hypnogram, a though it does not impair the classification of the other
stages. Instead of classifying these actions as an awake stage (stage “zero”), in most cases the
system classifies them as noise (unstable stages, as can be seen in fig. 27, chapter 6).
Movement and awakeness can be observed in the current system in cases where the
Hypnogram behavior is physically feasible and instable. A further research overcoming this
weakness should be considered. The awake stage model must include both brain behavior
and environmental impacts on the stage.

Sleep stage classification enfolds numerous issues that should be the source for further
research. For instance, in the framework of this research we have decided to utilize five EEG
channels Pz, Cz, Pz, T3 and T4, however it still has to be examined in what matter the
number of channels and their locations affect the system behavior.

In conclusion, the method suggested in this work provides a relatively accurate sleep stage
classification (93.2%), by using a multichannel analysis as the basic principle. The genuine
multichannel approach of this research, in contrast to the customary researches, turns this
research into a very valuable study.

The promising and encouraging results achieved by the multichannel approach for EEG
signal classification in this work, emphasize it's the high potential. This approach posses a
great aptitude not only in sleep stage classification but also in many other medical fields,
including epileptic seizure detection and classification, diverse brain researches - brain
computer interface (BCI), and of course classification of other biomedical signal such as
ECG, EMG EOG etc.
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