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An Approach to Textile Recognition

Kar Seng Loke
Monash University Sunway Campus
Malaysia

1. Introduction

Batik and Songket motifs (Ismail, 1997) are traditional Malaysian-Indonesian cloth designs,
with intrinsic artistic value and a rich and diverse history. Despite having a history
spanning centuries, they are still valued today for their beauty and intricacy, commonplace
amongst today’s fashion trends. These patterns and motifs, however, defy a simple means of
systematic cataloguing or indexing, and categorization. Linguistic terms are not accurate
enough to identify or categorize, with sufficient accuracy, a particular textile motif, save for
a few common design patterns due to the diversity of patterns.

The motifs themselves are usually highly stylised abstract designs derived from nature or
mythology. The interesting thing about them, from the point of pattern recognition, is that
the patterns are non-repeating but unmistakably belong to the same category; that is,
according to the general theme of the non-repeating motifs, they belong to the same textile.
Therefore, the pattern identification would have to be by example; making this ideal for
content-based image retrieval and recognition.

While there are other approaches that try to classify individual patterns within the textile
motifs, we approach problem as a form of "macro textures". Texture can be described as
patterns of "non-uniform spatial distribution" of pixel intensities, that is to say that, intensity
patterns are varying across space. In a similar manner, the Batik and Songket individual
patterns vary across the textile but maintaining a similar theme. Therefore we adapt the
approach for texture recognition and expand it to account for macro level variation as
opposed to at pixel level. We are able to get good results on it, and considered among the
best results reported.

In this paper, we will be using test images will be from a collection of traditional Batik and
Songket design motifs. They will be used as input for performing classification and
recognition by extending previous research on textile and texture recognition. The collection
consists of 180 different samples (Ismail, 1997), sourced from 30 different texture classes (6
samples per class). Refer to Figure 1 for samples of the classes used in this paper.
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440 Pattern Recognition

Fig. 1. Samples of texture motifs from 4 different classes used as sample data for this
research.

2. Related Work

Grey Level Co-occurrence Matrix or GLCM (also known as Spatial-dependence Matrix) has
been known as a powerful method (Davis, 1981, Walker et al., 1997) to represent the
textures. Textures can be described as patterns of “non-uniform spatial distribution” of gray
scale pixel intensities. Allam et. al (1997), citing Wezka et al. (1976) , and Conners and
Harlow (1980) found that co-occurrence matrices yield better results than other texture
discrimination methods. Haralick (1973) achieved a success rate of approximately 84% by
using the extraction and calculation of summary statistics of the GLCM found in grayscale
images, having an advantage in speed compared with other methods. Based on the good
acceptance of GLCM approaches to texture recognition, in this research, we have adopted
the use of GLCM as the basis for our textile motifs recognition. GLCM-based texture
recognition have been used in combination with other techniques, including combining its
statistical features with other methods, such as genetic algorithms (Walker et al., 1997).
Practical applications of GLCM in image classification and retrieval include iris recognition
(Zaim et al., 2006), image segmentation (Abutaleb, 1989) and CBIR in videos (Kim et al.,
1999).

For use in colour textures, Arvis et al. (2004) have introduced a multispectral variation to the
GLCM calculation that supports multiple colour channels, by separating each pixel’s colour
space into RGB components, and uses pairings of individual colour channels to construct
multiple co-occurrence matrices.

We will be using the six RGB multispectral co-occurrence matrices - generated by
separating each colour pixel into its Red, Green, and Blue components. RGB colour space is
selected as opposed to others such as YUV and HSV, as it yields a reasonable (Chindaro et
al., 2005) rate of success. The orthogonal polynomial moments for these six matrices are
used as descriptors for the matrices in place of the summary statistics such as Haralick’s
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measures (Davis et al., 1981). Allam et al. (1997) have also devised a method using
orthonormal descriptors in their work on texture recognition on a 2-class problem, with a
less than 2% error rate. Jamil et al. (2006a, 2006b) have worked on retrieval of Songket
patterns based on their shapes using geometric shape descriptors from gradient edge
detectors. Their method achieved their best “precision value of 97.7% at 10% recall level and
70.1% at 20% recall level” (Jamil et al.,, 2006a). Other approaches to textile recognition
include using regular texel geometry (Han et al., 2009)

3. Description of approach

3.1 Co-occurrence Matrices in Image Representation

A source image with 256 possible colours is defined as I(x, y), with (x, y) determining the
pixel coordinates, and the restriction of pixel values overlapping print: given by 0 < I(x, y) <
255. The multispectral co-occurrence matrix (Arvis, 2004) represents the total number of
pixel pairs in I(x, y) having a colour value i (from the channel a), and value j (from channel
b).

A vector T may separate the pixel pairs where:

(x2, y2) = (tx+x1, ty+y1)

(1)

given (x1, y1) as coordinate of the first pixel, (xo, y2) for the second pixel. The reason that we
introduce the vector T is to provide some degree of freedom when dealing with textures of a
different scale (macrotextures have a larger T, microtextures on the other hand need a
smaller T). To yield a co-occurrence matrix with rotation-invariance (to deal with all
possible orientations of neighbouring pixels), the set of all possible t, and t, values must
satisfy x2 + y2 =12, r € Z, representing a fixed distance from the centre pixel.

Therefore, a co-occurrence matrix from channels a and b (a, b € {R, G, B}) in I(x, y), separated
by a vector T is represented mathematically as:

cab DRI cab
c,=| 1 . @

i0 ij
Cab Cab

An elements of the above matrix, cu(is, j») has the mathematical definition:

Cav(ia, o) = Zx’y Z,x,,yeu S[I(x,y)—ilxS[I(x+1,y+1,)— ] (3)

ia and jp are intensity values from channels a and b respectively, T is the distance vector as
defined in (1) and x, y € I. § is is the Kronecker Delta.

Each of the six individual multispectral matrices, Cs» (a, b € {R, G, B}) is converted to a
grayscale image (having 256 possible shades of gray), Gu(i, j), such that 0< i, j < 255. The

pixel intensity at any given position (i, j) correlates directly with the value in the co-
occurrence matrix Cu (i, j), through the following equation:
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gulif)=— 0I5 )
max(c,, (i, )

After normalization, min(ca(i, j)) will have gu = 0, while max(ca(i, j) has gw = 255.
Histogram equalization is applied to improve the contrast of the generated matrices, which
will improve visibility of outlying values in the graphical representation of the matrices.
Images in the same texture class will have a similar combination of six matrices which is
distinct to a particular class (figure 2).

Fig. 2. Multispectral RGB co-occurrence matrices for ‘Batik” motifs. Each row shows: ‘Batik’
motif and its corresponding matrices from the RR, GG, BB, RG, GB, and BR channels.

3.2 Orthogonal polynomial decomposition

We use orthogonal polynomials as a means of representing the information found in the co-
occurrence matrices. Most GLCM or multispectral co-occurrence matrix-based methods of
texture recognition uses a set of ‘summary statistics’ summarizing important textural
features found in a particular image’s matrix. Examples would be the five common features
(Arvis, 2004) are derived from Haralick’s (1973) original set of thirteen.

See et al. (2008) have shown that discrete orthogonal polynomials such as the Tchebichef
discrete orthogonal polynomial can be an effective way of representing any 2D function.
Various orthogonal polynomial moments, such as Zernike (Wang et al., 1998) and Hermite
(Krylov et al., 2005) have been applied to texture classification. However, our approach
differs in that we apply the orthogonal polynomial moments on the co-occurrence matrix
image, not on the image directly.
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Our approach require that the multispectral co-occurrence matrices to be treated as an
image, and hence can be represented as a series of image moments (See et al., 2008; Kotoulas
et al., 2005). We propose the usage of “shape” information from the multispectral matrices,
by means of orthogonal polynomial decomposition, as a basis in texture recognition and
classification. The decomposition coefficients would be larger but they contain more textural
information as compared to the summarized set of 5 common Haralick features.
The Tchebichef orthogonal polynomial is used for the purposes of decomposition of the
multispectral matrices. In the research of See et al. (2008), the Tchebichef orthogonal
polynomial outperforms other polynomials in general, second only to the Discrete Cosine
Transform which is used as the basis for comparison. Other orthogonal polynomials have
limitations which render them unsuitable for decomposing our multispectral co-occurrence
matrices. Specifically, Krawtchouk moments only work for binary images, Hahn only work
for specific cases in which the foreground is significantly whiter than the background, and
Poisson-Charlier generally yields unsatisfactory results [15]. Hence, the Tchebichef
orthogonal polynomial is ideal for decomposing the six generated multispectral co-
occurrence matrices and using the resulting moment coefficients as basis for texture
discrimination.
The limited finite expansion of the moments allow only prominent features to be preserved
while discarding those moments which carry little or no information. The first few moments
encode gross overall shape and other moments carry finer details; thus, by discarding
higher moments, we are able to save on complexity while preserving the entire set of
second-order textural statistics in the multispectral matrix.
The transformation of image intensity into moment orders is defined mathematically as Mpq
(See et al,. 2008):

1 N-1 N-1

i , 6
) 2 e I () )

rq

0<p, q x ¥y £N-1, mu(x) is a set of finite discrete orthogonal polynomials, w(x) the weight
function, and p(n) the rho function.
The Tchebichef polynomial is defined mathematically as (See et al, 2008):

m,(x) = n!i (-"* [Nn__l ]: k)(n ; kj(zj (6)

p(n) = (Zn)!(;\;-:_’; J )
w(x) =1 )

where m, is the n-th Tchebichef polynomial, p(n) the rho function and w(x) the weight
function. Further details can be found in See et al (2008).
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4. Classification

Firstly we compared the compared the results obtained from the Batik/Songket database
and the VisText database. Images wused are 100-by-100 pixel samples. For the
‘Batik’/’Songket’ database, 132 images from 16 different classes are used; for the VisTex
database, 200 images from 40 different classes are used. A pixel radius of one unit, i.e. r =1
is used for the construction of the multispectral matrices as it has been identified from prior
research in GLCM to give optimum results. This results in 256 x256 GLCM matrices per
image. We also need to compare the results obtained from varying orders from the discrete
orthogonal polynomials.

For comparing two sample images S and T, we need to calculate the distance the visual
representation S,y and the visual representation Tab (a, b € {R, G, B}). The distance between
the N2 pairs of coefficients would have to be calculated. The distance( San, Tav) is defined as
the Euclidean distance in the N2 dimension between coefficients of Sy, and Tap. Once the six
distances for each of the six multispectral representations have been obtained, the final
difference score, diff(S, T) is then obtained from the Euclidean distance (in the 6th
dimension) of these six values. Hence, the smaller diff(S, T), the more similar S and T are
,diff(S, T) is 0 iff S=T; and diff(S, T) is symmetrical.

The k-nearest neighbor classifier is used to evaluate our findings, where k = 3. In order to
estimate the moment order to use, we tested it from order 5 to 20. The percentage of correct
classifications for the DCT and Tchebichef methods applied to our two data sets, versus the
number of moment orders used in the process, is given in Figure 2 below. The best success
rate was found using the Tchebichef orthogonal polynomial, with 10 as the best order of
moments used. Some of these results have appeared in Cheong & Loke (2008a, 2008b).
Overall the results using Vistex is better than using the Batik image database.

The Tchebichef orthogonal polynomial the reconstructed multispectral matrices strike a
balance between preserving the shape of the matrices’ visual representation and a good
degree of variance when matching with other samples. DCT also creates a good
approximation of the matrix pattern, however its reconstructions create a more rigid pattern
while discarding certain outlying values visible in the matrix; this rigidity allows little room
for error and will sometimes reject similar patterns. An order of 10 seems to allow for
adequate intra-class variance. Lesser orders fail to capture the matrix shape well; greater
orders result in a detailed reconstruction lacking in variance, causing certain samples to be
rejected as false negatives.

www.intechopen.com



An Approach to Textile Recognition 445

Overall classification rate comparison

1040004
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Fig. 2. Graph of average classification rate vs. number of moment orders used, for all sample
data with both DCT and Tchebichef methods.

The best results we obtained (Figure 2) was using the 3kNN at 99.5% for VisTex textures and
95.28% for the Batik/Songket motifs.

Using Weka (Witten et al., 2005), we tested with various other classification methods to see
if further improvements can be obtained using the best Tchebichef polynomial
decomposition moment order set of 10. We also increased the number of samples to 180
encompassing 30 classes.

We used two unsupervised clustering algorithms and two supervised classifiers to classify
our sets of generated moment coefficients.

The unsupervised clusterers are IBk (k-means with the k value set to the number of expected
classes, i.e. 30), FarthestFirst (an optimized implementation of the k-means method); while
the two supervised classifiers are BayesNet and kNN (k-nearest neighbour, with the k value
set to 5). All of them use default parameters as defined in Weka. For the supervised
classifier, we use 10-fold cross-validation to automatically partition the test and training
data: the collection of sample data is partitioned into 10 mutually-exclusive partitions (called
folds) (Kohavi, R., 1995).

The k-means algorithm by McQueen (1967) works to partition our sample data
(unsupervised) into k distinct clusters. The naive K-means algorithm does so by minimizing
total intra-cluster variance; in the context of our methods, it tries to identify the samples
which minimize the variance within a particular texture class, thereby properly grouping
these samples by texture class. FarthestFirst (Hochbaum et al., 1985) is an implementation of
an algorithm by Hochbaum and Shmoys, cited in Dasgupta and Long (2005). It works “as a
fast simple approximate clusterer” modeled after the naive k-means algorithm. kNN (the k-
nearest neighbour) classifier works by assigning a texture (whose class is yet unknown) to
the class in which the majority of its k neighbours belong to. In this case, we compare the
linear distance between a texture sample and each of its k (we fix the value of k=5)
neighbors, finally assigning it a class based on the majority of its 5 neighbours. The
BayesNet Bayesian network learning algorithm in Weka uses the K2 hill-climbing strategy
to construct a Bayesian network from the given coefficient data; by constructing a model to
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determine Bayesian probability of a single sample image as belonging to a class (Korb et al.
2004). The results have improved from earlier results, increasing the classification rate from
95.28% to 99.44% using the BayesNet and to 97.78% using the 5kNN classifier. Even the
FarthestFirst returned better results compared to earlier classification runs.

The results are presented below.

Method Samples  |Correct Incorrect  |Percentage
Supervised: BayesNet 180 179 1 99.44 %
Supervised: 5NN (kNN) 180 176 4 97.78%
Unsupervised: FarthestFirst 180 173 7 96.11%
Unsupervised: k-means (IBk) 180 167 13 92.78%
Table 1. Experimental results as determined in Weka for each of the four methods.
Comparison of the various clustering and
classification methods used
100.00% 5% 97.78%
96.11%

95.00% a2 78%

90.00%

85.00%

80.00%

75.00% T !

BayesNet FarthestFirst k-means

Fig. 3. Graph comparing the correct classification percentage for each of the four methods
used

5. Dimension Reduction

The number of attributes generated, in order of 700, prompted us to study if the
dimensionality can be reduced. As previously mentioned, using the Tchebichef orthogonal
polynomial decomposition (with 10 moment orders) on 6 co-occurrence matrices yields a
total of 726 attributes. The high number of attributes increases the complexity in storing the
pattern descriptors. Another issue is the extended runtimes, deteriorating performance of
the classification algorithms, and inefficiency of the knowledge discovery process due to
irrelevant or redundant attributes, which could be compounded by the existence of a large
number of samples in the knowledge base. Occam’s Razor - in our case, the principle of
using only the features that are necessary for textile classification - is the basis for our
motivation to counter the 'curse of dimensionality’. Therefore, it is necessary to examine the
effects of the reduced number of attributes on the accuracy of the classification.

If N is the number of moment orders used for the decomposition process then the total
number of coefficients resulting from the decomposition process for each matrix is N2. For
the 6 matrices involved, the total number of coefficients per sample image is therefore 6N2.
The Tchebichef orthogonal polynomial used in the decomposition of the 6 generated
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multispectral matrices resulted in the many attributes in the order of 700. This resulted in
6(10+1)2 = 726 moment coefficients because 10th order moments were used.

We first generate the 726 moment coefficients on our set of 180 texture samples (each being
16.7 million colours, of size 100-by-100 pixels). The total number of classes is 30 with 6
samples in each class. The coefficient data obtained is fed into Weka (Witten et al., 2005) for
classification (see 4.1). Five-fold cross validation was used for testing. The co-occurrence
matrix coefficients are generated from the database of 180 sample images of 30 classes of
‘Batik” and ‘Songket’ textures. The coefficients are then stored in CSV format and imported
into Weka for further analysis.

InfoGain (Dumais et al., 1998), one of the simplest attribute ranking methods, work by
determining the Shannon information After testing using the entire raw coefficients, we
further tested with dimension reduction on the coefficients. Different attribute-selection
filters are applied on the data to reduce the dimensions of the coefficient. For each filter,
‘maximum attribute’ parameter is set to values ranging from 2 to 16, i.e. reducing to
dimension to 2 to 16. Experiments were performed using 5-fold cross-validation to classify
the data.

The Weka FilteredClassifier and AttributeSelectionFilter options are used for this purposes
to ensure that the same attribute selections are applied for training set and test set. The
attribute-selection filters used are independent of the classification algorithms used. The list
of filters selected were the ones used in Hall et al (2003) and (Deegalla et al. 2007). They are
the Information Gain Attribute Ranking method (InfoGain), the RELIEF method, and finally
Principal Components Analysis (PCA).

InfoGain (Dumais et al., 1998), one of the simplest attribute ranking methods, work by
determining the Shannon information gain between an attribute and its class; the higher the
information gain, the more relevant the attribute is. RELIEF (Kira et. al 1992; Konoeneko,
1994) randomly samples an instance from the data, locates its nearest neighbours and uses
their attribute values in turn to update relevance scores for each attribute. The underlying
principle behind RELIEF is that useful attributes are similar for instances of the same class,
and vice versa.

Random projection (RP) (Bingham et al., 2001) uses a random matrix to project the original
data set into a lower dimensional subspace. RP depends on the Johnson and Lindenstrauss
theorem (Dasgupta et al., 2003) which states that any points in a d-dimensional Euclidean
space can be mapped to a smaller k-dimensional Euclidean space while maintaining all pair-
wise distance within an arbitrarily small factor.

PCA uses a linear transform to project the original attribute space to a lower dimensional
subspace. Both PCA and RP are unsupervised in that class information is not required,
whereas InfoGain and RELIEF are supervised, i.e. it uses class information for attribute
selection.

For classification testing, we used the k-nearest neighbor lazy classifier (Aha et al., 1991),
with k=1 (IB1) and k=3 (IB3), and the Bayesian Network (BayesNet) classifier. The k-nearest
neighbor classifier works by assigning a sample to the class in which the majority of its k
neighbors belong to. BayesNet in Weka constructs a Bayesian network from the data; by
constructing a model to determine Bayesian probability of a single sample as belonging to a
class. The advantage of BayesNet is that it can take into consideration the conditional
dependency of attributes.
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5.1 Dimension Reduction Results
The experimental results obtained via Weka are presented in the following figures 4-7.

Principal Components 5-Fold
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e 40 BayesNet
g 20
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2 4 6 8 10 12 14 16 18 20

Number of attributes

Fig. 4. Plot of classification rate versus number of attributes using Principal Components
Analysis with 5-fold cross-validation.

Random Projection 5-Fold
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Fig. 5. Plot of classification rate versus number of attributes using Random Projection with
5-fold cross-validation.
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Fig. 6. Plot of classification rate versus number of attributes using RELIEF Attribute
Evaluation with 5-fold cross-validation.

Info Gain 5-Fold
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Fig. 7. Plot of classification rate versus number of attributes using Info Gain Attribute
Evaluation with 5-fold cross-validation.

Results in figures 4-7 were obtained on the same data set using 5-fold cross validation.

Results in figure 8 were obtained using a new test set of 60 samples, each class represented
by 2 samples, and trained entirely on the data set used in the 5-fold cross validation test.
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Principal Components
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Fig. 8. Plot of classification rate versus number of attributes using Principal Components
Analysis with new test data set.

The computation of the model using RP took the least time, ranging from 0.02-0.08 seconds.
This was followed by Info Gain which took around 0.6s, RELIEF about 4s, and finally PCA
which ranges around 8s.

Attribute Selection Comparison

BinfoGain
BRELIEF

RR GG BB RG GB BR

Fig. 9. Comparison of attribute selection of InfoGain and RELIEF

The results from dimension reduction are rather mixed. The supervised method of attribute
reduction InfoGain and RELIEF returned the worse results. BayesNet did not particular
work well on RELIEF. However the 1-NN returned respectable results using InfoGain
attributes. Analyzing the attribute top 40 rankings from RELIEF indicate that it preferred
attributes selected from the RR, BB and GG co-occurrence matrix whereas InfoGain
preferred BB and BR attributes higher (see figure 9). There was considerable overlap in the
BB, RG and CB.

The best results are obtained on unsupervised methods using subspace projection namely
PCA and RP method. PCA returned the best results peaking at 8 attributes for 1-NN, 10
attributes for 3-NN, and 20 attributes for BayesNet, the results returned respectively are
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98.9%, 98.9% and 98.3% correct classification rates. Random projection required twice the
amount of attributes to reach their best values, for 1-NN and 3-NN at 16 attributes, and 20
attributes for BayesNet. The returned results are 98.3%, 97.8% and 95.6% correct
classification rates respectively. The results on PCA reduction using 20 attributes only
differs by only 1% using the full attribute set. The results using nearest neighbour
classification in fact is better than obtained using the full attribute set.

The results obtained for PCA and RP are in agreement with the results obtained in (Deegalla
et al., 2007), that is random projection requires a larger number of dimensions compared to
PCA to achieve comparable results. In this case 1-NN and 3-NN classification peaked at
around 8 attributes for PCA compared to 16 for RP. This is a significant reduction from 726
attributes needed in the original method. Even though nearest neighbour classification is not
efficient for large datasets, this reduction in the number of attributes will increase the
computational efficiency.

To confirm the results, we did additional testing on a new set of test data not included
earlier. The data set consists of 30 classes with 2 samples in each class. This will also allow
us to test if using a larger training set will increase the accuracy of the model. The results are
in figure 8. The results showed that the results have improved when trained on a larger
training set. 100% correct classification was achieved using 8 PCA attributes for 1-NN and 3-
NN, while BayesNet reached 100% classification using 10 PCA attributes.

6. Discussion and Analysis

Prior research on the GLCM has focused predominantly on textures. Arvis et al. (2004) with
their multispectral co-occurrence matrix method, with a 5-Nearest Neighbours classifier
yielding a 97.9% percentage of good classification for VisTex textures. Previous research
work involving color texture analysis using a combination of Gabor filtering and the
multispectral method on the Outex (Ojala et al., 2002) database has yielded a rate of success
of 94.7%. Allam’s (1997) result of a 2% error rate differs in the fact it is only applied to a 2-
class problem, restricted to grayscale texture. This differs in our motivation of using the
“shape” of the co-occurrence pattern, and we achieved between 98%-100% classification on
Batik/Songket.

The results for ‘Batik’ and ‘Songket” achieved here are among the best for such kinds of
irregular textile patterns based on the limited prior research found. Our experimental tests
on co-occurrence matrices using summary statistics suggest that summary statistics may not
always capture the full representation of the co-occurrence matrix. The rationale being that
it is possible for many similar distributions to have the possibility of producing a similar
value (Walker et al., 1995). An illustration of such a case is as follows, whereby the 5
common Haralick features combined with the 6 multispectral matrices yield a very low
Euclidean difference even though the two samples (below, figure 10) are of visually
different texture, highlighting the inadequacy of the statistical measure especially in non-
uniform and colored texture images.

However, for development of a successful end-user application, some issues still need to be
addressed, namely lighting variation and scale.
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Fig. 10. Sample of two images with similar Euclidean distance using Haralick features.

Textile design motifs such as those found in these textiles tend to have a more non-uniform
distribution in the GLCM as opposed to textures. This also makes it difficult to be captured
by Haralick’s summary statistics as the “shape” information is not adequately represented.
Our method has the best success rate using the Tchebichef orthogonal polynomial, with 10
order of moments used (Cheong et al., 2008). This is due to the fact that with Tchebichef, the
reconstructed matrices strike a balance between preserving the shape of the matrices” visual
representation and a good degree of variance when matching with other samples.

. |
Fig. 11. (Top) The full Batik cloth. (Bottom) Sampled regions used for training are not
identical but bear “family resemblance”.

The results indicate that nearest neighbour classification perform slightly better than
BayesNet. This is probably because the textile patterns that we used are not identical, nor
are they, considered on the whole, statistically uniform. They are more akin in a “family
resemblance” manner (Wittgenstein, 1953). This can be explained by that no sample within
the same class shares all the features, but each sample in the class shares overlapping
features with each neighbours (see figure 11). Or as Wittgenstein puts it: “Something runs
through the whole thread - namely the continuous overlapping of those fibres".

Reduction from 726 to 8 attributes means that only 1.1% of the original information is
significant for classification. Arvis (2004), which achieved 97.9% on VisTex textures, still
required 30 attributes based on 5 measures specified on each colour pair co-occurrence
matrix. Based on the results presented here a reduction of down to 2% from the original
attributes is adequate for classification.
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7. Potential Applications

A simple non-textual access to textile patterns is capable of opening up a wealth of
applications. For designers it could unlock their creative potential, by using access to textile
pattern collection for inspiration or to stimulate innovation. One such project is Fashion and
Apparel Browsing for Inspirational Content (FABRIC) (Ward et al., 2008). They could use it
compare the designs, or to study them by browsing, or to survey the trend. It could also be
used to avoid copyright issues, and to distinguish one’s work by stamping their uniqueness
on it.

There are also cultural aspects to it, because an accessible collection of patterns could be
used for archival purposes, storing the narrative, the times and trends of particular groups
of people through history, as well as charting the changes. It would be useful for
understanding historical trends, as many of the patterns may shed different narratives
throughout their history. In the Malay Archipelago, textiles, apart from artistic expression
are also linked to religious and cultural beliefs. The patterns in the textile are a means of
communication between the human and spirit world, and play a significant role in birth and
death rites, whereby it is thought that the more powerful patterns, the more potent
protection they offer (Hout, 1999).

Commercially an efficient method of comparing and recognizing textile patterns could spur
the application of visual comparison shopping for fashion and clothing. A visual-based
search engine could let shoppers select similar items based on colour, shape and pattern, in
addition to price. Useful categories for such comparison shopping include shoes, handbags,
and clothing. A usage scenario would that a shopper has some clothes of a particular
pattern, but would like a matching pattern for the shoes, or sees a pattern that he or she
likes, and wants possibly a matching pattern for shoes or clothing. This could be extended to
mobile-based comparison shopping. In this scenario, the mobile phone camera snaps an
image of the pattern, and the online store searches for similar items available.

8. Conclusion

We have successfully demonstrated the multispectral co-occurrence matrices method for use
in the recognition of Batik and Songket design motifs and introduced the use of the
Tchebichef orthogonal polynomial to decompose each of these matrices into a series of
moments as a means to capture more complete second-order pixel statistics information.

The advantage to this method is having a good degree of accuracy as compared to the use of
summary statistics which is commonly used in GLCM research. We have also shown that
this method is viable in matching non-uniform design motifs as opposed to only textures.
This makes our approach suitable to be used in image retrieval applications for not only
traditional Batik and Songket textile motifs but other design motifs. While Haralick’s
measures (1973) have been successfully applied to texture recognition, it is not so good for
non-uniform patterns like textile motifs.

We have shown that a significant reduction in attributes down to about 2% of the original
attributes contributed only slight deterioration of classification rate.

This makes this approach, combined with an appropriate attribute selection scheme,
suitable for fast content-based retrieval applications, not only for traditional Batik and
Songket textile motifs, but other design motifs where the patterns are overlapping in
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similarity. In particular, the application of principal components attribute reduction
provided the highest accuracy at a higher computational cost. If computational cost is an
issue, then the random projection method returned respectable results, the next best
compared to other methods tested.
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