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1. Introduction

Image registration is of interest to scientists and engineers of various fields: computer
vision, pattern recognition, and robotics ( Trucco & Plakas, 2006 ). One of the remarkable
problems both in theory and in technique is how to cope with the dynamic geometric-
warps. For small objects and large camera-to-scene, i.e., the background appearance of the
target is enough far, the projective transformation effect of the target is negligible. A
satisfactory tracking result can be achieved by means of approximating the geometric warps
with the affine transformation. However, in many special and practical applications, such as
image mosaics in computer graphics and vision guidance in the military field, the projective
transformation should be considered. It is well known that the projective transformation
exactly models the motion relationship between images of the identical planar object scene,
and can describe the pan and the tilt of the camera, which the affine transformation cannot
do (Mann & Picard, 1997). The projective map model has eight independent parameters
which have widely varying sensitivities and the transformation is highly nonlinear (Michael
Gleicher, 1997), all of which affect to design the registration algorithms with efficiency,
accuracy and robustness.

Lucas-Kanade image registration method was first proposed in 1981. Within the classical
space transformation-based tracking framework proposed by Hager et al (Hager &
Belhumeur, 1998), a projective image registration approach based on the matrix
parameterization was presented (Buenaposada & Baumela, 2002) in terms of the forward-
addition algorithm on the vector space, which is called the VECTOR-GN algorithm in this
paper . The inverse-composition algorithm was proposed (Baker & Matthews, 2004) not only
to compute the Hessian matrix and the gradient matrix offline but also to improve the
efficiency by improving the iterative structure. However, these strategies can not utilize the
projective Lie group structure sufficiently and leave room to improve the performance of the
image registration algorithms.
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176 Pattern Recognition

The geometric optimization algorithm based on the manifolds, a novel approach to solve the
constrained problem, was proposed in the 1970s-1980s ( Gabay, 1982). The fundamental idea
of this approach is to regard the constrained sets as one underlying manifold and to exploit
the geometry of the underlying parameter space. That is to develop a strategy which views
constrained problems as to be equivalent to unconstrained problems posed on the constraint
sets. Philosophically, this approach is geometrically more intuitive, conceptually simpler
and mathematically more elegant. Various problem have been solved by applying the
optimization algorithms on various manifolds. Especially, the optimization algorithms
based on Lie Groups (Owren & Welfert, 1996) and Riemannian manifolds (Yaguang, 1999)
have already been applied to robot control and machine learning. Recent years have also
witnessed the rich achievements in the fields of signal processing, computer vision and
pattern recognition. Smith generalized some optimization algorithms on the vector space to
Riemannian manifolds and studied the adaptive filter problem of nonlinear signal (Smith,
1993). Yean considered the optimization algorithm on SE(n, R) about the 2D-3D pose
estimation in computer vision (Yean, 2005). Grenander proposed his famous General Pattern
theory, of which the deformable template idea (Grenander, et al., 1998) is that the object is
represented by the template and the infinite varieties of the pose and location associated
with its occurrences are represented via transformations which act on the template. These
transformations form one transitive group acting on the space of all possible transformed
templates, which becomes a Lie group orbit. Hence, the problem on the automated target
recognition and tracking switches into the parameter optimization problem on the Lie
Group manifolds.

Exploiting the deep connection between the Lie group and its associated Lie algebra which
is called the Lie group exponential map, the geometric optimization approach based on Lie
Groups theory switches the constrained nonlinear problems into equivalently unconstrained
problems, thereby significantly reducing the computational complexity. A novel
homograhy-based target image registration and tracking approach based on the Lie algebra
parameterization which is called the LEXP-GN algorithm in this paper was proposed
(Eduardo & Jaime, 2007). The performance, such as the tracking precision and rate, is better
than that of the tracking method based on the matrix parameterization.

Noticeably, there exists a bi-invariant Riemannian metric on a compact Lie group (such as
SO(n,R)) and the geodesic through the identity element of group is one-parameter group.
Hence, the Lie group exponential map agrees with the Riemannian exponential map.
However, a noncompact Lie group (such as SE(n,R), SL(n,R) and GA(n,R)) has not a bi-

invariant Riemannian metric and the Riemannian exponential map based on the geodesic is
usually different from the exponential map based on the Lie group structure. Therefore, the
geometric optimization algorithms on the noncompact Lie groups based on the Lie group
exponential map have its limitations. To our knowledge, it seems that there is not very
much research on the noncompact Lie group optimization. Mahony and Manton provided
an instructive interpretation of the Newton optimization method on the noncompact Lie
groups from the Cartan-Schouten connection views of Riemannian geometry (Mahony &
Manton, 2002). However, the Newton method needs to compute the complicated Hessian
matrix and is usually not feasible to be applied to the real time application.

The core of our registration algorithm is the optimization problem on the special linear
group SL(3,R). Recently, Seok, et al studied the optimization algorithm on SL(3,R) about the

medical images registration problems (Seok, et al, 2007). Based on the Riemannian
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exponential map obtained from the geodesic equation, we propose a second-order efficient
target tracking algorithm within the intrinsic geometric optimization framework. The
comparative experiments with VECTOR-GN and LEXP-GN indicate the improvement on
the tracking rate and precision.

The rest of the chapter is organized as follows. After a brief introduction to the Lie group
exponential map and the Riemannian exponential map, the connection between them is
studied on section 2, with the geometric optimization framework. Section 3 investigates the
second-order projective image registration algorithm based on the Riemannian exponential
map within the intrinsic optimization framework. Some comparative results are shown for
illustration and verification in section 4. Finally, section 5 concludes the investigation and
proposes some further work. Some necessary supplementary material will be given in
section 6.

2. Mathematical background

The exponential map and the intrinsic geometric optimization algorithm build the basis for
our efficient projective registration method. The tools used here come primly from Lie
group and Riemannian geometry. To enable further discussion, we need to take a small
detour into geometry on them. Further information can be found in the famous textbooks
( Helgason, 1978; Berger, 2003).

2.1 Lie group exponential map
A Lie group is a group endowed with the smooth manifold structure, and its group
multiplicative operation is denoted by o. The tangent space at the identity element e of Lie

group M is denoted by T,M . Let assume me M,X, e T,M . The left-invariant vector
field X , which determines a left-invariant flow ¢ (t,m) = X,(m), can be obtained by the left-
translation X, =(L,).X,. The one-parameter group, an integral curve at e, is denoted by
7x(t) . The vector space (T,M,[,-]) equipped with a bilinear bracket operation is a Lie
algebra denoted by A(M). It is known that the left-invariant vector field, the left-invariant
flow, the tangent space at the identity element, one-parameter group and the Lie algebra are
equivalent in essence.

Definition 1. Lie group exponential map Lexp: A(M)xR — M, (X, t) = Lexp(tX) =y (t)

For convenience, we usually define the Lie group exponential map, Lexp: A(M) »> M, as
follows

Lexp(X) = 7x(1) 1)

Lemma 1. There exists an open neighborhood W of 0 in Lie algebra A(M) and an open
neighborhood U of ¢ in M such that Lexp is an analytic diffeomorphism of W onto U .

From Lemma 1, we can define its inverse function known as the logarithm map which
returns X =logy such that Lexp(X)=y . (See Fig. 1).

The space of all nxn nonsingular real matrices forms a Lie group, called the general linear
group denoted by GL(n,R). Its algebra is usually denoted by gl(n,R), the set of all real
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square matrices. Being a sub-group of GL(n,R), the special linear group SL(n,R) is the
space of all real nxn matrices H satisfying detH =1. Its Lie algebra denoted by sl(n, R)
consists of the real matrices of trace zero. What we concern in this paper is SL(3,R) whose

Lie algebra is sl(3,R) with the following basis vectors.

0 01 0 00 010 0 00
e,=10 0 0 e,=|0 0 1 e,=|0 0 0 e,=|1 0 0
1000 0 0 0 0 00 0 00
1 0 0 0 0 0] 0 00 0 00
es=/0 -1 0 e, =0 -1 0 e, =0 0 O es=(0 0 O]
0 0 0 0 0 1] 1 00 010

For matrix Lie groups, the group operation is matrix multiplication. The Lie bracket
operation is [A,B]=AB-BA and the Lie exponential map of a matrix Aegl(n,R) is
computed by the formula

n

« A
Lexp A=exp A=zn20—' (2)
n!

Fig. 1. Lie group exponential map and its inverse map

2.2 Riemannian exponential map
Let M be a smooth manifold of m dimensions. For every point p € M , if an Euclidean inner

product g(p)=<,>: TMxT M —R is assigned on its tangent space, (M,g) is called a
Riemannian manifold of m dimensions and g is called its Riemannian metric

Let M be a smooth manifold of m dimensions. For every point p € M , if an Euclidean inner
product g(p)=<,>: TMxT M — R is assigned on its tangent space, (M,g) is called a

Riemannian manifold of 7 dimensions and g is called its Riemannian metric.
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Let y:[a,b] > M be a smooth curve in M . Its length is defined as
7l = [N<r (.7 @) >}at )

A smooth curve y(t) is called a geodesic on Riemannian manifold if the family of tangent

L(r)= f

vector field y'(¢) is parallel with respect to y(¢). The geodesic has an important property
that it is the minimal length curve of the following energy function

E(r(t) = [[|7/ (0 at (4)
Let y(t)=y(t;p,v) , t€[0,1] is a geodesic on Riemannian manifold satisfying y(0)=p,
7'(0)=v, and B,(¢) be an open ball on 7, (M) whose center is origin and radius is ¢ . The
Riemannian exponential map at p is defined as follows.
Definition 2. Riemannian exponential map: Rexp, : B,(¢) > M, Rexp ,(#v) = y(#; p,v) .
In what follows, we denote the map Rexp,, the Riemannian exponential map from the
tangent space T,M at the identity element e of the Lie group M , by Rexpp,
Rexpp(0) = Rexp,(v) = (1) (5)
Lemma 2. Let (M,g) be a Riemannian manifold of dimensions. For any point p € M , there
exists an open neighborhood V of origin such that Rexp is an analytic diffeomorphism of
V onto U =Rexpp(V).
From Lemma 2, if we define Rexp,(v) = ¢, its inverse function known as the
logarithm, can be defined as v=Rlog ,(¢) such that, y(0)=p,y(1)=q and y(0)=v. (See
Fig. 2)

Fig. 2. Riemannian exponential map and its inverse map

For SL(n,R), Rexpp(v) is one-to-one on |[V||< % ( Begelfor & Werman, 2005).
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2.3 Relationship between Lie group exponential and Riemannian map
Definition 3: Let G be a Lie group, ¢ be a Riemannian metric onG , ¢ is a left-invariant

(right-invariant) Riemannian metric if its left-translation L, (right-translation R,) is an

isometric transformation on Riemannian manifolds. A metric is bi-invariant if and only if
the metric is both left-invariant and right-invariant.

Lemma 3. There exists a bi-invariant Riemannian metric on a compact Lie group and the
geodesics at the identity element e are one-parameter subgroups.

Lemma 3 shows that the Riemannian exponential map at the identity defined by the bi-
invariant Riemannian metric agrees with the Lie group exponential map, that is, for any
tangent ve A(M)

Lexp(v) = Rexpp(v) ©)

Let us consider the general linear group GL(n,R). For every point p on the tangent space

TpM , inner product <-> is defined as follows
<A,B>=Tr(AB") (7)

where A,BeT M, and Tr(-) is the trace of a matrix. Hence, the length of a tangent vector is
defined

Jol* = Tr(vo") ®)

Now, we begin to consider the Riemannian exponential map on a noncompact Lie group.
First, we propose the following theorem on the minimal geodesics with respect to the right -
invariant Riemannian metric on general linear group manifolds. Please pay attention to the
point g on the Riemannian manifold, which is not the Riemannian metric.

Theorem 1. Let g(t), t€[0,1] be a minimal geodesic connecting g¢,heGL(n,R). The

1 2
tangent vectors minimizing the energy function L lot)|| dt and

satisfying dg(t)/dt =v(t)g(t),g(0)=g,g(1)=h are the solutions of the following matrix

differential equation

do(t)/dt = o(t)o" (t)— 0" (t)o(t)
=[o(t), 0" ()]

A proof of Theorem 1 is given in 6.1.
From Theorem 1, it follows that the equation of the minimal geodesic on GL(n,R) is

§(t) =exp((v(0) + v(0)")t)exp(-v(0) )g (10)
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Therefore, the Riemannian exponential map, the equation of the minimal geodesic equation
on GL(n,R) which emanates from the identity with a velocity v is expressed

Rexpp(v) = exp((v" +v))exp(-0v") (11)

Now, we consider the exponential map on the subgroups of GL(#n,R). The special orthogon
al matrix SO(n,R) is a compact group, and its algebra so(n,R) are skew symmetric matrice

s with zero trace. It follows that, for every v e so(n,R) , we have v = ", yielding

Rexpp(v) = exp((0" +0))exp(~0") = exp(0) (12)

We can see that the Riemannian exponential map is the same as the Lie group exponential
map for the compact groups, which completely consists with the Lemma 3. For the
noncompact group SE(n,R), its geodesics can be obtained by lifting the geodesics from

SO(n,R) and R" ( Zefran & Kumar, 1998). However, for the noncompact group SL(n, R),
every vesl(n,R), Rexpp(v) # Lexp(v) . We construct the optimization algorithm with the

Riemannian exponential map Rexpp(v) = exp(v" +v)exp(-v") , vesl(3,R) in this paper

2.4 Framework for geometric optimization

If a Lie group is embedded in Euclidean space to be a sub-manifold, the optimization
problem on it can often become a classical constrained optimization. The conventional
approach of dealing with the structure of the group is to use Lagrange multipliers. Based on
the geometric optimization theory, we use local canonical coordinates to represent
parameters and intrinsically take care of the geometric structure of Lie Groups to allow the
use of unconstrained optimization routines (Vercauteren & Malis, 2007).

Let x be a point in the neighborhood of teM . From Theorem 1, there exists

o= 27 v,e; € A(M) such that
x=toLexp(w)=to Lexp(Z:;1 v.e;) (13)

where v=(v,,0,,:-,0,)"; e,(i=1,---,n) is the basis of Lie algebra A(M) .Then, the Taylor

series of a smooth function ¢(-) on Lie group M is obtained

p(toLexp(@) = p(t)+ 7o+ 2 0" Hro + O(fol) (14)

0 0
where[ ] | =—o(toLexp(@))|,.o and [Hf ], =——o(to Lexp(@))..q
oo, i ov,
The Taylor series (14) allows us to construct various optimization algorithms on Lie groups
by generalizing algorithms on vector space. For example, the classical Newton-Raphson

method adopts the following intrinsic update step
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t < toLexp(w) (15)
where v solves H!v = —[]ﬂT o(t).

Unfortunately, in many cases, the Hessian matrix HY is often difficult or impossible to

compute. Even worse is that the convergence problem may arise when it is not definite
positive. Hence, Benhimane et al constructed the intrinsic Gauss-Newton algorithm by
preserving the linear part and discarding the quadric item of Taylor series ( Benhimane &
Malis 2007). Motivated by the second-order minimization method based on the Lie algebra
parameterization, we take place of the Lie group exponential map with the Riemannian
exponential map to construct an efficient second-order minimization algorithm based on the
geodesics on manifolds, which is called REXPP-ESM algorithm in this paper. This algorithm
can also find back the Hessian matrix information discarded by LEXP-GN algorithm within
the intrinsic optimization framework to further improve the registration performance. The
performance of the REXPP-ESM will be explained in 4.2.

Lemma 4. Any manifold of dimension d can be embedded in E***' (Berger, 2003).

From Lemma 4, we know that for a Lie group, there naturally exists an embedding map

7:G—>R" , t—>z(t) such that it is a sub-manifold in Euclidean space. Especially, the

spatial transform groups (e.g. rigid body, affine, projective.) used in the target recognition
and tracking are often represented and computed by common matrixes in homogeneous
coordinates.

3. Projective registration with manifold optimization

3.1 Problem Statement

Suppose the camera is not be calibrated and the tracked object has a flat appearance. When
the target is moving in the space, the relation between images can be described by projective
transformation. The projective transform group is the group of the matrices of the form

R
T ={ J , where R is a 2x2 nonsingular matrix, ¢ is a column vector for the translation
v

and (v,1)" is the projection of the line at infinity. We choose the scale factor to normalize the
projective group matrices T such that the determinants of T are equal to 1. Then the
matrices T belong to the special linear group SL(3,R). This normalization cannot change
the degree of parametric freedom and is reasonable in real applications [21].

From Lemma 4, we can suppose the homogeneous coordinate of point p be (x,y,1)" and
the embedding map in Euclidean space of SL(3,R) be 7 :t — 7(t). Define a group action
from SL(3,R) on p: w:SL(3,R)xp —p . The projective transformation is represented as
follows

1 ApX +ayy +ay
w(z(h))(p) = At | Tt Al iy (16)
! ud T Ay X + AplY + g
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Let I(p) be the brightness value of the template and I(w(t)(p)) be the intensity of

projective-transformed target in the input image. The algorithm assumes the gray value is
invariable at the same target position in two consecutive frames and calculates the projective
transformation parameters to know the current position where the target is in the current
image by solving the following function

arg min|[I(w(z(t))(p)) - 1(p)|’ (17)

3.2 Optimum parameters for projective registration
To solve the projective parameters is in fact to perform optimization on SL(3,R). Based on

. . . 8 . .
the Lie algebra parameterization, wzzi_lviei , where v=(v,,--,v,)" is the incremental

motion parameter vector, we take place of the Lie group exponential map with the
Riemannian exponential map and the nonlinear least-squared optimization problem can
switch into

2

argmin|I+toRexpp(3" 0,¢)(p)~I(p) (18)
Let f,(toexpp(w)) =1Ieteexpp(w)(p)-I(p) we get
|, (£ Rexpp(@))| =[I o t > Rexpp(@)(p) - 1(p)|]
2 (19)

~
~

o0+ 50 H 0+ Ol)

Lot(p)-I(p)+ ]

We pay attention to fact that when the images are aligned with the optimal spatial
transformation in target tracking, the template and the warped image as well as their

gradient should be very close to each other, ie. V Iot ~V I . An efficient tracking
algorithm will be constructed by utilizing this information to recover the information
discarded with Gauss-Newton method by means of expanding the Jacobian matrix at the

optimal transformation ¢ , hence avoiding computing the Hessian matrix at the same time.

A first-order Taylor series around 0 of | ,f‘ in (20) can lead to

o"H]" = ]I (0) = ] (0)+ O(Jo]") (20)

Incorporating this expression into (19), we can get a true second-order approximation

2

Jf, ¢ Rexpp(@)] = 1o t(p)~ 1)+ 3G @)+ I @)+ O(lel) ea)
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The following is to compute the Jacobian matrix J;”(0) and J;"(v) corresponding to the
derivative of at O and v .

f o Olot oRexpp(z;viei)
t (0)_ oo" lo-o
_dletlg)  owltp),  orRexpp(Y me))  onRexpp(Y ve))
o7 " ot t=r(Id) o0, 0 =0/""7 o0, vs=01 (22)
ow(t,
v BB ae) e aes)]

; _ot'
V,(Iot)] e,

For every line of the matrix [, (0), [V;(I ° tl , is corresponding to the spatial derivative of

the current warped image using the projective transformation ¢; [ ] ]3 . is the Jacobian

matrix for projective transformation (13), and [e,], . is the Jacobian matrix where 7(e;) is

the matrix e, reshaped as a vector ( the entries ai(: picked line per line ). Id is identical
transformation. The two Jacobians | and e, are constants to be computed once and for all
while the Jacobian J,”(0) has to be computed at each iteration since it depends on the
updated value of projective parameters.

However , the Jacobian matrix J,”(v) is complicated and usually depends on t. Hence,
we do not directly compute J;"(v). If replacing the gradient of the optimally warped image
Iot =Iotoexpp(v;) by its equivalent gradient of the template image, we can get a simple

linear approximation of J/(v,) v, as follows

@) 0= VL] e, (23)
A proof of (23) is give in 6.2.
Let ], be the following matrix
1 w,
J =5 (VL4 V(Lo )] e, 9

By incorporating (24) into (21), we have

I£, e Rexpp(@))]* =1 1)~ 1p) + s + Ol 25)

This cost function has a local or global minimum at v

v, =] (It(p)-1(p)) (26)
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where |, is the pseudo-inverse of |, . Hence, the intrinsic iterative update is

8

t=to Rexpp(Z:i:1 v.e;) (27)

4. Experimental Results and Analysis

4.1 Experimental Results

To validate the feasibility and efficiency of our algorithm, we compare our REXPP-ESM
algorithm with VECTOR-GN algorithm and LEXP-GN algorithm. All the algorithms are
implemented in matlab and tested in the computer with Intel PIV 2.4GHZ and 512 Memory.
Since the 8 parameters in the projective warp have different units, we compute the RMS
(root-mean-square) error of the corresponding points between the template and target
image rather than the RMS of parameters. In addition, it should be emphasized that neither
preliminary image filtering nor multi-scale pyramid implementations nor other robust
techniques has been used for this evaluation.

Fig. 3. Input image and template. (a) Input image. (b) Template.

Experiment 1: We utilize the experiment data provided by Baker etc. in CMU and the same
experiment setting to compare the three algorithms
(http:/ /www.ri.cmu.edu/people/bakers_simon.html). We experimented with the image in
Fig. 3(a) and manually selected a 100x 100 pixel template (see Fig. 3(b)) in the center of the
image. We randomly perturbed the four corner points of the template 1000 times with
additive white Gaussian noise of a certain standard variance o from one pixel to ten pixels
and fitted for the projective warp parameters that these perturbed points define (for each
standard variance, we generated 100 randomly inputs). We say that an algorithm converged
if the RMS error in the canonical point locations is less than 3.0 pixels after 15 iterations. We
computed the percentage of times that each algorithm converged for each standard
variance. The results are shown in Fig. 4(a) that shows when the perturbation to the
canonical point locations is less than about 3.0 pixels, all the three algorithms converge
almost always. With the increase of the o, the frequency of convergence for LEXP-GN
algorithm rapidly decreases. While o =10, the frequency of convergence for VECTOR-GN
algorithm, LEXP-GN algorithm and our REXPP-ESM algorithm is 30%, 49% and 60%
respectively. For 100 times experiments of o =6, all experiment test data are shown in Fig.
4(b). Our REXPP-ESM algorithm requires 8 iterations to coverage while LEXP-GN requires 9
iterations and VECTOR-GN requires 14 iterations.
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(a) (b)
Fig. 4. Comparison between REXPP-ESM and other two methods. (a) Frequency of
convergence. (b) Average converge rates

Experiment 2: We show three experiment results for three typical image sequences using
the three algorithms. The size of each frame in the first sequence is 512 x 512 (

http:/ /esm.gforge.inria.fr/ESMdownloads.html ) and the size of the tracked region is 150x

150. The tracked region shows projective transformation. The VECTOR-GN algorithm,
LEXP-GN algorithm and REXPP-ESM algorithm converge after 11, 7 and 6 iterations
respectively. Fig. 5 shows some tracking results of them. The 161st and 187th frames have
larger deformation. The VECTOR-GN algorithm cannot converge and the tracker slides off
the tracking region. LEXP-GN algorithms cannot lock the tracking region at 161st frame.
However, our REXPP-ESM algorithm can be implemented very well on all the frames. The
second  virtual house sequence includes one  hundred = still = frames

(http:/ /vasc.ri.cmu.edu/idb/html/motion/index.htm). The size of each frame is 512x 480.

The tracked target is the window of the house and the size of template is 52x 40. The
tracked region shows larger projective transformation. The VECTOR-GN algorithm, LEXP-
GN algorithm and REXPP-ESM algorithm converge after 7, 5 and 4 iterations respectively.
Fig. 6 shows some tracking results of them. The sequences after 80th frame have larger
deformation. The VECTOR-GN algorithm cannot converge and LEXP-GN algorithms
cannot lock the tracking region at 91st frame either. However, our EXPP-ESM algorithm can
be implemented very well on all the frames. The third car sequence contains 150 frames .The
size of each frame is 768x 576. The tracked target is the back of the running car and the
tracked region shows larger enlargement warp. The VECTOR-GN algorithm, LEXP-GN
algorithm and REXPP-ESM algorithm converge after 6, 4 and 3 iterations respectively. Fig. 7
show some tracking results of them. The sequences after 130th frame have larger
deformation. The VECTOR-GN algorithm cannot converge and the tracker suffers form the
drifts from the tracking region. LEXP-GN algorithm cannot lock the tracking region at 150th

www.intechopen.com



Projective Registration with Manifold Optimization 187

frame. However, our REXPP-ESM algorithm can be implemented very well on all the
frames. The table 1 summarizes the comparative performance of of the three algorithms.

x

Fig. 5. Comparison of the VECTOR GN (first row), LEXP-GN (second row) and REXPP-ESM
(third row). The sequences contain 200 frames. From left to right in each column is No. 1, 50,
100, 161, 187 frame in wooden box sequences. See text for details.

Fig. 6. Comparison of the VECTOR-GN (first row), LEXP-GN (seond row) and REXPP-ESM
(third row). The sequences contain 100 frames. From left to right in each column is No. 31, 60,
80, 90, 100 frame in virtual houses box sequences. See text for details.
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Fig. 7. Comparison of the VECTOR-GN (first row), LEXP-GN (second row) and REXPP-ESM
(third row). The sequences contain 150 frames. From left to right in each column is No. 1, 60,
130 150 frame in virtual houses box sequences. See text for details.

4.2 Analysis

From the results of the two experiments, we conclude that our algorithm utilizes the
minimum geodesics and avoids computing Hessian matrix can make our REXPP-ESM
algorithm is much superior to the VECTOR-GN algorithm and is slightly better than the
LEXP-GN algorithm in the convergent frequency and convergence rate. Firstly, it is evident
that the VECTOR-GN algorithm performs not well because it can not exploit the projective
parameters intrinsic manifold structure. Secondly, it should be noted that when the distance
between the two points are much close to the identity element, the REXPP-ESM
performance is almost identical with the LEXP-GN because now the geodesic on
SL(3,R) can be replaced by Lie exponential map. This can be obtained from the Fig. 4(a) of

the first experiment where its data are synthesized when the perturbation is very small,
namely, the projective warp is not remarkable. Although we adopt the second-order
optimization, our REXPP-ESM doesn’t perform much better than LEXP-GN. In real video
sequences, although the deformation of the two continuous frames is usually not big, the
drawbacks of the VECTOR-GN algorithm make it very easy to get local minimum while
LEXP-GN and our REXPP-ESM perform well similarly. When the warps are bigger on some
frames, our REXPP-ESM performs better than LEXP-GN, especially on the coverage rate.
The reason for this is that our REXPP-ESM algorithm marches along the shortest distance
during the optimization process than that of LEXP-GN. We confirm that some deep theory
on Riemannian geometry should be introduced to explain it and leave it to work in the
future.
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sequence algorithm number of average iteration | Average coverage rate
VECTOR-GN 11 89%
wooden box LEXP-GN 7 96%
REXPP-ESM 6 99.5%
VECTOR-GN 7 90%
virtual house LEXP-GN 5 95%
REXPP-ESM 4 99.5%
VECTOR-GN 6 86%
car LEXP-GN 4 98%
REXPP-ESM 3 100%

Table 1. Comparative performance of the three algorithms

5. Conclusion

We have presented the Riemannian exponential map on the noncompact Lie groups based
on the minimum geodesics and constructed the registration and tracking algorithm without
computing the Hessian matrix. The experimental results compared with the classical vector
space algorithm and the Gauss-Newton optimization algorithm based on the Lie group
exponential map show that the accuracy and the convergent rate demonstrate some evident
improvements. It is emphasized that both Lie group exponential map and the Riemannian
exponential map are based on the local linearization and are easy to diverge if the initial
value and the iterative step size are not chosen improperly. Besides, we also investigate that
the representative methods of the projective parameters have important effect on the
experiment results and should be considered seriously.

6. Appendix

6.1 Proof of theorem 1
Assume 7)(t) € gl(n,R) . Perturbing the shortest length curve g(t) with exp(en(?)) along

n(t) leads to
8(t &) = exp(en(t))g(t) = (id+ &n(t))g(t) + o(e) (28)

where the perturbation has the property that 7(0)=0, 7(1)=0 and that the boundary
conditions remain satisfying at g(0,¢)=g¢,g(1,&)=h.
From (9), we can draw (29 ) and (30 ) . On one side

d(g(t) + en(t)g(t))/dt = v(t)g(t) + en(t)g(t) + en(t)o(t)g(t) (29)
on the other side

d(g(t) + en(t)g(t)/dt = v(t)g(t) + v(t)n(t)g(t) + e do(t, £)/de g(t) + o(¢) (30)
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Comparing (29 ) with (30 ) gives the equation

do(t,)/de =1(t) = [o(t), n(t)] (31)

2
The minimal geodesic g(t) should satisfy to minimize the energy function _E lo(t)| dt

d p 2
— [lot)+ & do(t,2)/dt] at |,
1
=2| <o(t),do(t,e)/dt >dt |,_
[j< oty dott,)/dt >t )
J J
=2 [ <o(t)7(t) >dt +2 [ <[o(t), 0 (B)],n(t) >dt
=2 [ <~o(t) +[o(t), 0" ()] n(t) >dt =0
with using integration by parts and the boundary conditions on the perturbation 7(0) =0

and 7(1) =0 . Since this is zero over all perturbations 7(t) , then we have

(33)

End

6.2 Proof of (23)
Paying attention to the definition of the directional derivative and using compound
derivative chain rule, we have

Ji' ()0,
=0(I et Rexpp(v, /aq |q Rexpp(-v; )eRexpp(v; )(p) . .
aw(s L N — - 07 (Rexpp(~2;)-Rexpp())/ov" |, ;o

34
Vo (Iot)-ouw(s, p)/as L B — -0(Rexpp(-v, ) - Rexpp(v, +t-v,))/o0" |,_ 0( )

):
:(VZI-F&‘) ] -0 (Rexpp(tv, /61,‘|t=0
~V,I-]" e -0,

where & is a noise term of image to be discarded.
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