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Detection and Recognition

Michael E. Farmer
University of Michigan-Flint
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1. Introduction

Traditional methods for object detection and classification in images involve either matched
filter detectors which are convolved over the image, or else strong image segmentation
followed by classification of the resultant segmented regions in the image. Neither of these
have lived up to their potential due to (i) the inflexibility of the first approach in detecting
objects of varying scale and orientation in varying collection conditions, and (ii) the inherent
semantic gap between segmentation and classification in the second approach. Existing
segmentation algorithms are built upon the following two common underlying
assumptions; (i) the object homogeneity with respect to some characteristic, and (ii)
difference between adjacent regions. In this chapter, we propose improving the
segmentation process by infusing semantic knowledge into the segmentation process by
combining the problems of segmentation and classification through a wrapper framework.
Li et al. have noted, “it is often difficult....to determine which regions....should be used for
the final segmentation” (Li et al., 2000). The goal of the wrapper framework is to directly
address this problem by integrating segmentation processing with a classification process to
provide the required semantic information needed to identify the regions of interest.

The key to integrating semantics into the low-level segmentation is to utilize additional
feature information of the objects of interest to provide the additional needed contextual
information. The features available for classifying an object for image retrieval include
texture, color, shape and structure (Safar, 2000). Since texture and color are used as low-level
cues, shape and structure are the remaining features to provide additional semantic content.
Using the structure of the objects of interest requires associating regions in the image with
key structures of the object of interest, and then combining these semantically meaningful
regions to provide the complete semantics of the desired object. These regions can either be
semantically meaningful on their own, for example, head, limbs, torso for recognizing
people, or they can be shape fragments that consistently occur on an object, for example
using critical object boundary characteristics. A region combination algorithm then uses a
shape template of the object of interest to guide the assembly of these fragments.
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We believe a fundamental flaw of these structure-based approaches is requiring the
identification of critical shapes and even semantically meaningful sub-shapes within the
image. In images with complex natural illumination shadows and bright regions can be
created which obfuscate sub-structures. In order to not require mapping of image regions
with sub-structures the wrapper framework uses the overall shape of the object of interest as
the source of semantic information and does not rely on sub-structures. The approach
performs a low-level segmentation of the image, and then, irrespective of the shape of the
labeled regions in this segmentation, applies an algorithm to combine regions based on
knowledge of the shape of the desired object of interest. The proposed approach has been
validated through successful demonstrations on a wide range of image applications
including automotive occupant sensing, breast cancer detection in mamograms, and wide
area disaster surveillance using aerial imagery.

2. Related Work

There is an abundance of literature on image segmentation, due to its importance in serving
as the foundation for applications such as image understanding, object detection, and
content-based image retrieval. Unfortunately, mechanisms to improve the results to provide
strong segmentation where the objects of interest are reliably isolated from the background
has continued to elude researchers. Early methods for improving segmentation involved
pixel-level post-processing of the initial segmentation to further regularize the segmentation
output. This approach has often relied on mathematical models such as Markov Random
Fields (Boumané& Shapiro , 1994) (Kim, et al., 2000), or other models such as the harmonic
oscillator model by Shi and Malik (Shi& Malik, 2000). More recently Luo and Guo proposed
regularization at a region level rather than a pixel level, and they apply a Markov Random
Field to combine regions using a non-purposive grouping approach that combines regions
based on a defined characteristics of a ‘good” segmentation rather than relying on any model
of the desired object of interest (Luo & Guo, 2003).

There has also been a significant amount of research in adaptive image segmentation, where
the control parameters of the underlying segmentation algorithm are modified, based on
some general figures of merit of the output segmentation (Bhanu & Fonder, 2000). More
recent low-level segmentation approaches proposed a continuously executing algorithm
where the user stops the algorithm when the resultant segmentation appears acceptable (Tu
& Zhu, 2002). These methods still relied on the assumption that the pixels belonging to the
object of interest share a common set of low-level image attributes, thereby allowing the
object to be extracted as a single entity. Unfortunately even relatively simple objects of
interest can be composed of multiple regions of differing texture or color which would cause
the object to be oversegmented and hence divided into multiple regions. The results of these
approaches had limited generalized performance and demonstrated the need to devise a
means for integrating additional semantic information into the segmentation process.

One of the earlier approaches to integrating segmentation with classification for infusing
semantic information, involved adjusting the segmenter control parameters of the
underlying segmentation algorithm based on the classification of the binary (foreground-
background) segmentation (Bhanu & Peng, 2000). Unfortunately, this approach still
assumed the object of interest is homogeneous in the segmentation feature, and finding it
was a matter of discovering the correct control parameter via the classification results.
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Integrating semantics into the segmentation have found some early success in very focused
domains, such as the work by by Tu, et al. (Tu et al., 2003) which performs simultaneous
human face and word segmentation from an image for a system for assisting the blind. This
method directly relies on the fact that the objects of interest can be completely defined by
their texture (text) or color (human face). Another approach for integrating classification
information into the segmentation process was proposed by Sifakis, et al. where they
provide context by providing a set of two coarse object contours, one ensured to be outside
of the object of interest, and the other designed to be inside the object of interest, in a
manner similar to the marker-based approaches to Watershed processing (Sifakis et al.,
2002). While this method clearly provides strong context, it still is based on two key
assumptions; (i) the object of interest “should be uniform and homogeneous with respect to
some characteristic”, and (ii) “adjacent regions should be differing significantly” (Bhanu et
al, 1995). Additionally these methods operate at the pixel level and hence are
computationally intensive.

One key development in image segmentation has been the developing interest in operating
at the region level of images rather than at the pixel level. Some of the earliest work in
region-based analysis is by Belongie et al, in their ‘Blob world’ system, where images were
grouped into regions based on color and texture and then the user defined regions of
interest based on these parameters for that to search databases (Belongie et al., 1997).
Unfortunately, this approach still relies on regions being of understandable interest to the
user . Li et al. have relaxed the limitation of identifiable sub-regions, by using properties
such as color and texture of all of the regions in the image to attempt to allow image
retrieval systems to bypass the segmentation process (Li et al., 2000). One drawback of this
approach is that it compares not only the foreground, but also the background regions in the
two images to derive the similarity, which can be particularly limiting if the object of interest
is considerably smaller than the field of view of the image, or if the object of interest may be
present in a wide variety of backgrounds. Jing, et al. have also recognized that region
analysis is essential for effective retrieval, but their approach uses region color rather than
shape for the retrieval feature (Jing et al., 2004). More recently Athanasiadis, et al. have
proposed a region-based simultanous segmentation and detection scheme which relies on
two low-level features defined by MPEG-7, namely homogenous texture and dominant
color to perform low-level segmentaiton. Based on semantic models of objects of interest,
these low-level regions are then merged together based on fuzzy relations associated with
semantic information regarding the objects of interest (Athanasiadis et al., 2007).

The research highlighted to this point were based on low-level image attributes, such as
color, grayscale, or texture, and clearly these failed to provide adequate semantic content for
strong segmentation. Clearly, additional features are required for successful segmentation,
and these can be found by refering to the body of research from content-based image
retrieval where the spectrum of features available for retrieval have been defined and
highlighted in Fig. 1 (Safar et al., 2000). Based on this taxonomy integrated segmentation-
classification methods have been recently directed at developing structural models of the
desired object and using either tree or graph theory-based techniques to assemble detected
regions in the image that may correspond to sub-structures in the object of interest (Yu, et
al., 2002) (Borenstein & Ullman, 2002) (Lee & Cohen, 2004) and most recently by Cours and
Shi (Cour & Shi, 2007). For example, Borenstein and Ullman have developed an approach
which searches for object ‘fragments” within the image, where these fragments correspond
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to key identifiable regions of the object of interest but not necessarily semantically
meaningful structures (Borenstein & Ullman, 2002). The fragments are found using a
correlation detector approach. Borenstein and Malik developed a top-down mechanism to
augment the traditional bottom-up segmentation algorithms similar to how the proposed
wrapper framework operates. Their top-down approach first integrates the low-level
regions into semantically meaningful parts using shape templates, and then further
integrates these components to form the desired object of interest (Borenstein & Makik,
2006). Good results are possible with these approaches when applied to relatively well-
formed images with relatively simple backgrounds, however, there are two underlying
assumptions of these methods that can limit their broader applicability, namely: (i) they
define a particular form for the classification problem, namely using tree or graph distances,
and (ii) they build the segmentation using specific identifiable sub-regions in the images
(e.g., head, arms, torso, etc. for human segmentation), and then rely on the known syntactic
structure of the object of interest to assemble these components. One key drawback to these
approaches is that syntactic methods can be sensitive to errors in the low-level segmentation
which was concisely state by Datta: “extracting semantically meaningful coherent regions
is... very challenging” (Datta et al. 2008). This was also demonstrated by Lee, et al. where
the algorithm had problems recognizing human poses if the subjects wore gloves thereby
hiding the skin color (Lee & Cohen, 2004).

Content Retrieval
Methods
Shape Texture Color/ Spatial
Description | | Description || Grayscale | | Location
Description
Boundary | |Region-based Structural

Methods Methods

Fig. 1. Taxonomy of feature-based description techniques for image classification.

The approach taken by the wrapepr framework is to use shape rather than structure to
provide context to the image segmentation problem. Other researchers such as Ko and Byun
have added shape rather than structure to their region-based search by adding a small set of
shape features to each region (Ko & Byun, 2005). The user then selects from a sample image
a number of regions they consider important for query, and the system then computes a
combined search distance based on the collection of regions found in the database of images.
Like Ko and Byun, the proposed wrapper approach computes shape featues for each region
in the image, however rather than relying on region-to-region comparisons, our wrapper
approach uses the image classification in a more global scheme. The image classification is
used to assemble regions derived from the traditional segmentation algorithms rather than
simply searching for instances of individual regions. The wrapper approach has numerous
advantages over the various methodes described above. One advantage is that by using
shape over structure we do not require identifiable sub-structures to be segmented from the
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background image. Additionally, since we do not rely on particular constructs to represent
the problem, such as trees and graphs, it can incorporate any classification algorithm. Also,
unlike the fragment approach of Borenstien and Ullman and Borenstien and Malik the
wrapper approach is a more organic approach where it builds the desired object from the
regions provided in the image rather than a priori defined representative sub-images that are
searched for in the image. This has an important consequence in that the wrapper approach
can utilize any existing image segmentation algorithm to create the regions with which it
then operates. Thus rather than being considered another segmentation algorithm, the
wrapper approach is actually a framework within which any segmenter and classifier can be
considered for integration to address the particular problem being addressed.

3. Wrapper Approach to Integrating Segmentation & Classification

We derive the motivation for our approach from the domain of feature selection in pattern
recognition, where there are two common mechanisms for selection, namely the filter
method and the wrapper method (Dash & Liu, 1997). Filter methods analyze features
independently of the classifier and use some ‘goodness” metric to decide which features
should be kept. Wrapper methods, on the other hand, use a specific classifier, and its
resultant probability of error, to select the features. Hence in the wrapper method, the
feature selection algorithm is wrapped inside the classifier. Based on this, we propose a new
paradigm for image segmentation that follows the wrapper methods of feature selection,
where we wrap the segmentation and the classification together, and use the classifier as the
metric for selecting the best segmentation. Fig. 2 compares the traditional image
segmentation approaches with our proposed wrapper-based segmentation approach. The
classification algorithm provides both the semantic context for the segmentation, as well as a
figure of merit for the resultant segmentation, based on the classification accuracy for the
pattern class under consideration.

Incoming Incoming
Image Wrapper Image
Framework
Segmentation Segmentation
Algorithm Algorithm
“Best” mentation ;
Segmentation Seg Evaluation
Classification Classification
Algorithm Algorithm
I I
| l l
Classification Classification  “Best”
Result Result  Segmentation

(@) (b)
Fig. 2. Approaches to image segmentation, (a) conventional methods and (b) proposed
wrapper method.
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The general processing flow for the entire wrapper framework can be seen in Fig. 3. The
processing is divided two distinct phases, (i) conventional (context-free) segmentation, and
(ii) wrapper-based (semantic) segmentation. In the conventional segmentation phase no
contextual or semantic information is used and the image is segmented based on traditional
low-level homogeneity metrics, typically greyscale or color depending on the application.
The second phase is the wrapper segmentation phase where the critical semantic
information is integrated via the classifier.

Conventional (Context-free) Segmentation

|
. Pixel Background I
1
1:;2“; I\;ﬁ;:f- Labeling — Removal & Region {
g & Grouping Clustering T‘
Lmmmmmm oo
S — T
L] Fegon [[ Regon || Caescaton 1~ cees
' : Combiner €gion L., Best
Extraction Combinations | | segmen-
1 J tation

I

- |
Iterate on region I
combinations |

Wrapper-based (Semantic) Segmentation

Fig. 3. Processing flow for wrapper-based image segmentation.

3.1 Conventional Segmentation Processing

The conventional segmentation processing flow begins with a low-level order statistic filter
such as a median filter for removing high frequency image speckle. Order statistic filters are
most attractive since they are edge preserving which prevents degradation of subsequent
region labeling due to edge blurring. This step is optional and depends on the quality of the
images being processed by the system. The Pixel Labeling and Grouping task in Figure 3
performs conventional low-level weak segmentation. It converts the pixel values into labels,
and then groups these labeled pixels into contiguous regions. The series of sub-tasks that
comprise the processing of this stage are provided in Fig. 4. The first sub-task is Compute
Pixel Data Parameters which is responsible for determining the parameters to be used to
determine the low-level pixel labeling based on some common characteristic of the pixel
values such as color, grayscale, or texture. There are many mechanisms proposed for
defining the ‘common characteristics’, such as Expectation Maximization (EM), normalized
cuts, relaxation methods, region growing methods, and split-and-merge methods, and
finally DDMCMC which provides a framework for unifying many of these approaches
(Belongie et al., 1997) (Tu et al., 2003). The output of all of these methods is a labeling of the
incoming image into a small number of regions. We selected the EM algorithm for the
region labeling algorithm was based on its relative ease of use, its flexibility, and its
suitability for real-time operation. It fits a mixture of Gaussians that best matches the
histogram of the grayscale values. The EM algorithm is attractive because it can easily be
extended to use multiple features, such as texture depending on the application.
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The Label Pixels task then uses the mixtures defined by EM to label each pixel with its
appropriate mixture membership, with typical results being shown in Fig. 5 (b). This labeled
image is then mode filtered to further remove isolated pixels. Other regularization
algorithms such as the Markov Random Fields methods discussed in Section 2 may be used
rather than the mode filter, however, the mode filter is easy to implement, imposes a

relatively low processing burden, and has previously been shown to be effective (Farmer &
Jain, 2005) (Rabiei et al., 2007).

Compute . Build )
Pixel Data :;.ab?l - I‘;I%de - IT_eggoln -+ Adjacency [ Regions
Parameters IXes fiter abe Graph

Fig. 4. Processing flow for Pixel Labeling and Grouping.

The third sub-task of the Pixel Labeling and Region Grouping Task is Region Label in which
the pixels are grouped together into regions of common labeling based on an 8-way
connected components algorithm. The Region Label sub-task then removes regions that fall
below a user-defined threshold in order to minimize the total number of regions, with the
particular threshold value being dependent on the application and the particular input
image size. At this point the image has been completely divided into regions of low-level
homogeneity (grayscale or color for the applications shown in this chapter). The final sub-
task of the Pixel Labeling and Grouping is Build Adjacency Graph. In this sub-task an
adjacency graph is constructed to define the relative adjacency of all of the regions in the
image. This adjacency graph will play a critical role in subsequent processing for cluster
detection and to limit the combinatorial complexity of the region combining algorithm
within the wrapper portion of the segmentation process.

Recall from Fig. 3, the next stage in the conventional segmentation processing is the
Background Removal and Blob Clustering task. Obviously, the goal of this stage is not to
remove then entire background but rather to remove as much background as possible based
on simple structural knowledge of images. There will still most likely be significant amounts
of background connected to the object of interest, and this remaining background will be
removed during region combining. The background in an image is defined as the larger
regions and regions along the periphery of the image that typically are not of interest. The
size of the background regions is independently defined by two characteristics, the area and
the length. Thus regions of large area or large regional extent (such as roads and rivers in
surveillance applications) can be ignored. Removing of the background, as shown in Fig. 5
(c), allows the algorithm to now focus on more interesting regions, in a similar manner to
human perception where known background regions are ignored while more interesting or
ambiguous regions are analyzed further. Once the background is removed, of clusters of
regions can readily be detected using the adjacency graph. Clusters are defined by
collections of regions that are adjacent to each other, as can be seen in Fig. 5 (d). The
wrapper segmentation processing then analyzes each of these region clusters to determine if
any objects if interest may be present. The ability of the wrapper framework to process
clusters of regions, rather than all the regions in an image, is critical for performance, since
the number of possible region region combinations rapidly suffers combinatorial explosion .
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)
Fig. 5. Conventional segmentation processing results: (a) example incoming surveillance
image, (b) labeled image after mode filter and small region removal, (c) labeled image after
background removal, and (d) cluster from lower left region in (c).

(d)

3.2 Wrapper Segmentation Processing

Up to this point the input image has been over-segmented to try to maximize the likelihood
that the object of interest is not connected to a background region. In order maximize this
likiehood, the image is intentionally over-segmented which means the object of interest is
most likely sub-divided into multiple regions. The wrapper framework processes each
cluster of regions independently and only tests combinations of the regions within each of
these clusters, thereby significantly reducing the combinatorial explosion. Clusters
consisting of individual region are tested first against a training database to see if any of
them may match an object of interest since they require no combining. Then the remaining
more complex clusters are processed, where a variety of combinations of region are
attempted to see if any of these combinations may match any objects in the training
database.

3.2.1 Region Feature Extraction

Recall from Fig. 3, the first task in the wrapper processing is the feature extraction for each
region. Fig. 1 demonstrated there are four possible feature spaces for image retrival and
classification. The wrapper framework incorporates shape as its semantically rich feature.
Shape may be defined by either region or boundary descriptions (Veltkamp & Hagedorn,
2001). While either method can be used to capture the shape of the regions that have been
defined as comprising our image, the research to date with the wrapper framework has
employed moments to describe these shapes. The geometric moments of an image are
defined by (Teague, 1980):

N M
M, =3 SIGHi'" (1)
j=0 i=0

where I(i,j) is the value of the image at pixel (i,j) and N and M are the numbers of rows and
columns in the image, respectively.

Computing the moments features on every region combination would be computationally
prohibitive since many combinations will be generated for every region as will be shown in
Section 3.2.2. Fortunately, due to the non-overlapping nature of the regions that comprise
the image labeling, the basic geometric moment features can be calculated for each region
prior to the subsequent region combining and classification stages of processing. Then
during the region combining processing, the moments of the combined regions is simply the
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sum of the moments of the individual regions, which implies all pixel-level processing need
only be performed once, and all subsequent processing is performed at the region level.

This speedup mechanism is related to the concept of Borel sets and the calculation of
measures on these sets. A value ;, is a measure if it assigns a non-negative number to each

subset, which can be seen to be true from Equation (1) since I(i,j), i, and j are never negative.
One important property of these measures is: “if a set is decomposed into a countable
number of disjoint Borel sets then the total measure of the pieces equals the measure of the
whole”, which can be mathematically stated as (Falconer, 2004):

ﬂ[ OLj Al.}= § u(Al.) 2)
i=0 i=0

4

where /4 is the ithsubset and 4 is the measure. This fact was originally exploited by Spiliotis
i

and Mertzios, where the computation is decomposed into a summation over a set of non-
overlapping rectangular homogenous blocks (Spiliotis & Mertzios, 1998). We abstract this
approach and, rather than decomposing the image into non-overlapping rectangles, we
propose a more natural decomposition of the image into the collection of regions defined by
the image labeling. Using the notion of disjoint Borel sets allows representing the image as:

K
16,9 0106y ©)
k=0
where 7®) (i, j) is the portion of the image corresponding to region k. From this we can now

rewrite the geometric moment equation as:

K
My =551 ur® )| @
J=0=0 1 —

From Equation (2) we can now replace the measure over the union of subsets as a
summation over the individual measures of each of the subsets and obtain:

K | Nrows Ncols . 5
My, = % [ >y l(k)(i,j)-il-j'"] ©)
k=0 j=1 i=1

The term in the square brackets, Nriws Ngls 1! k)(l- j)- il M is the moment calculation for

j=1 =l
the moment of order (I+m) for the k' region of the image, / (k)(i, j) and we define this

moment to be Mlk . We can then rewrite Equation (5) according to:
m

K k <
My = > My, ©)

where we have reversed the order of the summations, and s r’fm is the moment of order

(m+n) corresponding to the kth region. Thus, the geometric moments for the entire image are
merely a sum of the geometric moments computed for each region.

Now we can pre-compute the moments for each region, which allows us to add the feature
vectors from each region together to compute the moments for any region combination. The
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ability to pre-compute features can provide a considerable benefit, since, as Yoshitaka and
Ichikawa state: “[feature extraction]| processing is one of the most time consuming parts in
content-based retrieval. Improving the [feature extraction] processing therefore improves
the overall performance... (Yoshitake & Ichikawa, 1998).” We will see in Section 3.2.3 that
from this point in the processing all operations will be performed on regions rather than
pixels which greatly reduces the overall processing complexity of the wrapper framework.
There are many forms of image moments that can be used for image classifcation, including
central, scale invariant, rotationally invariant, legendre, zernicke, et cetera (Teague, 1980).
For most image object detection, classification, and retrieval applications central moments
are always required since they provide translational invariance within the image.

3.2.2 Region Combining

For Region Combining processing an algorithm is required which will combine subsets of
the regions in the image together while assuming a particular object class is present in the
image. The wrapper framework operates by assuming a pattern class C to be the true class,
and computes the classification distance of candidate segmentations to that class. The
specifics of the classification algorithm upon which the wrapper relies are provided in
Section 3.3. The region combining task is performed for every class, C, and at the completion
of the processing of all the candidate classes, the class C that provides the highest
membership probability, p( X }HC) is selected, where the set { Xk} defines the subset of

regions that comprise the best segmentation for iteration k of the algorithm. Likewise, the set
of regions (x 1 that produces this best classification probability corresponds the the best
k

strong segmentation of the image.

It is this conditioning of the probability on a particular object class that provides the
semantic content to direct the segmentation processs. The classification distance is then used
as a quality metric for the segmentation that corresponds to that region combination. If the
probabilities of membership, p(g X }C) for every class, C are too low, then the image is

‘rejected’, which implies the object of interest is not in the image.

The selection of these regions which will be combined into the final segmentation is
analogous to feature selection in pattern recognition. There are a number of feature selection
methods that can be adapted for region selection. The taxonomy for feature selection
methods, shown in Fig. 6, divides these methods into three primary categories: (i) complete,
(ii) heuristic, and (iii) random (Dash & Liu, 1997). These methods are the results of an
extraordinary amount of research in the pattern recognition community, and are backed by
both considerable empirical results as well as strong theoretical underpinnings. There is still
no consensus as to which method is the best, since there is such a strong dependence of the
performance of the algorithm on the data sets being analyzed (Dash & Liu, 1997). We have
developed an approach in each of the major categories: an exhaustive search in the complete
category, a Genetic Algorithm in the random category, and a forward sequential search in
the heuristic category.
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Feature Selection
Methods

Complete Random Heuristic
Type | Type Il
| Exhaustive | Non- (SA, GA,
Exhaustive RMHC)
All Breadth
First Forward || Backward | Instance
Selection | | Selection | Based
Branch Best Beam (HECEE)
& First | | Search
Bound

Fig. 6. Taxonomy of available feature selection methods.

The simplest algorithm is an exhaustive search through which all the possible region
combinations are created and tested to find the best combination, which is feasible only
when there are a limited number of regions in a cluster. For an exhaustive search, if there are
N regions then the number of region combinations can rapidly become intractable since we
must test the following number of combinations:

N (N N n! 7)
N combinations = = ( J ) K-k}
combinations —, =\ k _ where k.(n— )

The summation over the number of regions is due to the fact that we do not know how
many regions will be required to produce the best combination of blobs, and therefore every
combination of every possible number of regions must be tested. For each of these possible
number of regions, k, there are N choose k possible ways to select these regions from the
complete set of N regions.

For all of the search methods, particlarly for the exhaustive search, the number of possible
region combinations can quickly become intractible, where for clusters consisting of as few
as twenty regions a brute force search of every possible combination would require roughly
one million combinations, and if the number of regions only increased modestly to twenty-
five, the number of combinations would exceed 33 million. Fortunately, the total number of
possible region combinations that must be explored is considerably less than this value
which is actually an upper limit based on complete connectivity of all regions in the image.
In reality the regions in an image are only locally connected which can easily be visualized
using an adjacency graph. For region combiniing, only region combinations which satisfy an
adjacency constraint must be tested. Fig. 7 (b) shows the adjacency graph for the cluster on
Fig. 7 (a), and originally shown in Fig. 5. Here there are 22 regions in the cluster which for
an exhasutive search of all possible combinations of all regions would result in 4.2 million
combinations, however, the relatively sparse connectivity of the adjacency graph allows the
sequential search algorithm to complete the analysis of this cluster with testing only 200
region combinations and correctly extracting the building of interest.
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(@) (b)
Fig. 7. Graph representation of cluster from Fig. 5 (d): (a) image of cluster, and (b) graph
representation of adjacency of cluster regions.

The adjacency of the regions creates a local connectivity in the graph, and it is this median
local connectivity of the graph which determines the number of possible region
combinations that must be explored. There are n posible selections for the first region to be
selected, but then rather than (n-1) options for the second region, there are only m which is
equal to the local connectivity of the first region. The number of possible regions for the
third region then varies as (m-1), etc. For the fourth region, the number of possible regions
varies from 2*(m-1) when the first three regions form a chain to (m-2) when they are all in a
tight cluster adjacent to the first region. While the actual number of possible region
selections cannot be calculated in closed form, the average number of region combinations
which must be tested for each pass of the algorithm is:
(m)(m - l)(m - 1)(m - l),
[Nj . (m)(m—l)(m—l)...(m—k—l),
RAG

k

8)

ceey 7

(m)(m - l)(m - 2)(m - k)
Which is clearly significantly smaller than that estimated by N-choose-k.

Genetic Algorithm-based Region Combining

Genetic algorithms are a natural candidate for wrapper-based segmentation, since GAs can
“successfully deal with combinatorial problems” (Kim, et al., 2000). Three key design issues
must be addressed when using GAs: (i) the representation of the problem into a
chromosome, (ii) the definition of a fitness function, and (iii) the the selection of cross-over
and mutation strategies (Goldberg, 1989). Since we are using the GA for region selection,
only the fact that a region is to be used in the segmentation must be encoded, which greatly
simplifies the use of a GA for the wrapper-based segmenter versus other low-level
segmentation approaches such as that described in (Bhandarkar & Zhang, 1999). The
resultant encoding is a simple binary representation where the gene is set to one if the
region is used, and set to zero if the region is not used.
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The output from every iteration i of the GA-based region combiner algorithm is the set of
regions for each member k of the population, | and the associated probability of correct
ik

classification for that member of the population, PUX }|C)conditioned on the given
ik

pattern class, C.

The genetic algorithm uses this probability of correct classification as the fitness function for
evaluating the population members for possible reproduction using a fitness-proportional
selection scheme (Goldberg, 1989). The wrapper uses the fourth or second power of the
probability of correct classification as the fitness proportionality measure, Fitness(k),
according to:

4 > 9)
PUX. }|C P{X. }|C
Fitness(k) = (X 1O or Fitness(k)= N (1O ,
> P(X 3O > P(X, 10
j=t 7 j=r 7

where N is the size of the population. The fourth power is employed if the variance of the
distances is below a threshold, and the second power is employed as the population
becomes more varied, to slightly reduce the dominating effects of a single highly fit parent.
Not raising the classification distances to a higher power resulted in inadequate variation in
the proportionality factors, thus leading to a nearly random selection scheme.

Pairs of parents are selected for mating using the roulette wheel selection mechanism, where

cach set of parents then has a probability p,_ of executing a cross-over to generate the

children; otherwise the parents proceed intact, where we setp =0.85. For the

crossover
applications for which the wrapper has been employed, the region-labeling algorithm
generates on average 20 regions, resulting in the chromosome having only 20 individual
genes. Due to this relatively short sequence, a simple single-point cross-over scheme for the
genetic operator has proven adequate. For each mating pair of parents chosen for cross-over,
the cross-over point is randomly selected.

After the children are produced via the cross-over processing, the children experience
mutation with a probability of any gene mutating beingp, = =0.05. Lastly, an elitist

utate
selection strategy is employed where the fittest 10% of the population prior to mating (this
corresponds to the parents with highest fitness) are retained in the population (Back, 1996).
In order to ensure a diverse population of segmentation candidates is maintained two
additional schemes are used to increase the diversity of the population. In the first scheme, if
the variance of the fitness of the population falls below a threshold (i.e. the members of the
population are becoming too similar), an additional mutation event is applied on the entire

population, where this time Poare =025 In the second scheme, if the fitness of the best

member of the population has not improved in the last N iterations, where N=25, an

additional mutation event is applied on the entire population withp, = 0.25.

Sequential Search-based Region Combining

The sequential feature selection methods can be implemented in either a forward selection
mode or a backward selection mode as can be seen from Fig. 6 under the heuristic methods.
The forward selection mode begins with the empty set (an empty image) and then adds
regions until the classification accuracy is maximized. The backward selection mode, on the
other hand, begins with the complete image and removes regions until the classification
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accuracy is maximized. For the wrapper segmentation framework the forward selection is
employed since the objects of interest are visually a fraction of the entire image. The forward
selection algorithm that has been implemented is called the plus-L-minus-R algorithm, which
has been identified as one of the more powerful heuristic methods for feature selection
(Kudo & Sklansky, 2000). It begins with an initial set of regions, {X } and then adds up to L

regions per iteration and then after adding these L regions, tries region combinations where
it subtracts up to R regions. The complete addition and then removal of regions is one
iteration of the algorithm. The details of the algorithm are shown in Table 1. For the plus-L-
minus-R implementation of the forward sequential search algorithm, the selection of L and R
depends on the specific application and characteristics of the objects of interest within the
images, for the airbag application where there were many regions that comprised the image
we employed L=5 and R=3, while for the tumor and the detection applications we employed
L=3 and R=2. The intitial number of regions to use is also an open parameter, which was
five for the airbag application and two for the other two applications since the objects being
processed were much smaller than the size of the image.

1) Fora given class C, create an initial set of regions X, = ¢, the empty set.

2) Region Addition: At each stage k in the processing, test each region in the set of
unselected regions and add region X, if P({x 1+ | C)= P{X, )| C)) where
P({X,}|C) is the classification accuracy for the region set { X, }, given class C. The

output of this stage is a new subset of regions { X, } = {{ X, }, x/(¢1+)1 , xl(ci)l x}(if }, where
(i)

k+1

X " is the region with the ith best improvement in classification accuracy up to L

regions.
3) Region Removal: Test each region in the current selected region set, {x, }, and

remove each region x from the set if P({X 141t —x, |C)= P({X,}| C), where
r

P({X,}|C)is the classification accuracy for the region set { X, } given class C.
Continue testing and removing regions until all the regions in the current subset {x, }

are tested, or until R regions have been removed.
4) Record P({x 1 C)s and the corresponding subset of regions { X, }, and return to step

(2) unless the last region has been processed.

Table 1. Plus-L- minus-R forward sequential search algorithm for region combining.

3.2.3 Classification

Every possible combination of regions must be classified based on the class of interest to
determine the goodness of the segmentation, however, prior to each classification, the
features for the region combination must be computed. Recall to this point only the
geometric moments have been employed to allow the features for each region combination
to be quickly computed by adding or subtracting the moments for each region included in
the combination. Recall from Equation (6), the geometric moments feature vector for a
region combination is simply the sum of the feature vectors for every region that comprises
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the combination. This raw geometric moment vector is then converted to the desired
invariant moments prior to classification. As a minimum the central moments must be used
to make the object search translation invariant across the images and are computed by

(Teague, 1980):
U A A , 10
o= 2 2 (rJ(SJ(Z)J AR 1o
r=0 s=0
where
_  Nrows Ncols _  Nrows Ncols
i= zl Z]](i,j)-iandjz Z] le(i,j)-j (11)
J=l = Jj=l i=

Depending on the desires of the user, the features of the object can also be made central
scale invariant, rotation invariant, affine invariant and even projection (perspective)
invariant (Suk & Flusser, 2004). More complex invariances, however, require more complex
processing which impacts the throughput of the system. Also the more invariant the
measures, the less discriminating the moments features can often be (Suk & Flusser, 2004).
For the airbag suppression and the tumor applications, the sizes of the tumors were critical
information so only central (translational invariant) moments were used. However, for the
aerial surveillance application, the range to the objects of interest varied, and hence their
size varied, which required central scale invariant moments. It is also important to note that
not all objects require all invariances, for example when searching for bears, buildings, etc.
as there is not a need to be fully rotationally invariant. Also the author has found that
rotational invariance can be accomplished more cost effectively by adding a rotation
generation function when creating the training database to create rotated examples of the
training samples.

One key decision that must be made when employing moments is to decide the order of the
moments being retained. The applications to be highlighted in Section 4 have varied from
only fifth order for an aerial surviellance application designed to detect buildings to up to
twenty-fifth order for detecting occupants in an automotive airbag application. The tumor
application was in the middle of this range with tenth order.

While it is possible to use any of a number of possible classifiers in our wrapper method that
provides a real-valued measure of the classification accuracy (or inversely classification
distance), the k-nearest neighbor classifier has been used for the following reasons: (i) ease
of implementation, (ii) non-parametric nature, (iii) demonstrated performance over a broad
class of problems, and (iv) asymptotic convergence to the Bayes error rate (Jain et al., 2000)
(Duda et al., 2000). The best results typically occur when the nearest neighbor classifier (k=1)
is used. Additionally all of the moment values are used in the classification process (i.e. no
feature selection is employed), since the complete set of features appears to be required to
provide a good representation of the object shape. One last decision to be made for
classification regards whether the features are normalized or not. The effects of
normalization also varied with application, where we found that for the airbag suppression,
un-normalized moments worked best, while the tumor and surveillance applications
performed best when the features were normalized. This may be due to the fact that for the
airbag suppression, the shapes were more complex and un-normalized features more fully
captured and preserved the shape information that is providing the semantic information to
the segmentation process.
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4. Results

The wrapper framework has been demonstrated on three distinct applications, a vision
system for automotive safety, an MRI analysis tool for automated breast cancer detection,
and an aerial surveillance application. There has been considerable attention paid to
developing ‘smart’ airbags that can determine not only if they should be deployed in a crash
event, but also with what force they should be deployed. In May 2001 the U.S National
Highway Transportation and Safety Administration (NHTSA) defined the Federal Motor
Vehicle Safety Standard (FMVSS) 208 that mandated automatic airbag suppression when an
infant is in the passenger seat. The detection of an infant in the seat defines a 2-class
recognition problem where the classes are: (i) infant, and (ii) adults. An example of an input
adult image, the preliminary segmentation after background removal and the resultant
labeled image are provided in Fig. 8 (Farmer & Jain, 2005). For this particular application
the background removal occured prior to low-level labeling since there was contextual
information available regarding the knowledge of the empty vehicle which facilitated the
removal of significant amounts of background information except the occupant and the seat.
This system was tested using both the heuristic plus-L-minus-R algorithm and the Genetic
Algorithm. For both algorithms, the central moments are converted to central-Legendre

moment of order (n+m) for each region combination using (Teague, 1980):
2m+1)(2n+1) &
Lmn = Gz DeneD Z zC:’mlcvnkzullc’ (12)
4 =0 k=0
where C, = are the coefficients defined by the Legendre polynomial generating function and

u, 1s the central moment of order (I+k). Note for this application, the moments cannot be

scale invariant since the size of the object is a critical factor in determining its class.

(b)
Fig. 8. Preliminary segmentation results for adult occupant, (a) adult image, (b) preliminary
segmented adult, and (c) region labeled adult image (Farmer & Jain, 2005).

The classification results are provided in the confusion matrix in Table 2 for the plus-L-
minus-R and in Table 3 for the genetic algorithm. The overall accuracy of the system
provided by the plus-L-minus-R algorithm is Peorrect(0verall) is 91% with Peorrect(infant) being
98.8% and Pcorect(adult) being only 53.2% and with examples of correct segmentations
shown in . Notice without shape information, accurate segmentation of these objects from
the images would have been impossible since there is no low-level homogeniety constraint
to differentiatethe object of interest from the background. Unfortunately, for the plus-L-
minus-R algorithm the adult results are disappointing due to the high variability of the test
images, which can be seen from an example incorrect segmentation in , where the occupant
was moving forward and hence was not in the standard seating position. The plus-L-minus-R
had trouble converging to the right answer on these conditions, but the testing of the GA on
similar dataset improved the adult performance at a slight cost to the infant classification
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accuracy, as shown by its performance highlighted in Table 3. In summary Pcorrect(Overall) is
88% with Peorect(infant) being 89.2% and Peorect(adult) being a much improved 83.4%
(Farmer & Shugars, 2006). This performance improvement is due to the fact that the region
selection space is a complicated search space with many local optima, and genetic
algorithms have been shown to be more effective in these spaces (Kudo & Sklansky, 2000).

True Infant True Adult
Classified as Infant 1631 19
Classified as Adult 166 189

Table 2. Confusion matrix for the two-class suppression problem using plus-L-minus-R
(Farmer & Jain, 2005).

True Infant True Adult
Classified as Infant 793 34
Classified as Adult 96 171

Table 3. Confusion matrix for the two-class suppression problem using a Genetic
Algorithm (Farmer & Shugars, 2006).
S

(d) (f)
Fig. 9. Segmentation of an occupant images: (a) infant image, (b) preliminary infant
segmentation, (c) final wrapper-based infant segmentation, (d) adult image, (e)
preliminary adult segmentation, and (f) final wrapper-based adult segmentation (Farmer
& Jain, 2005).

(a) (b) ©)
Fig. 10. Incorrect segmentation of an adult image: (a) adult image, (b) preliminary
segmentation, and (c) final wrapper-based segmentation (Farmer & Jain, 2005).

The wrapper framework has also been applied to breast tumor detection (Rabei et al. 2007).
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been identified as
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a valuable complementary technique for breast imaging. Unfortunately, while these multi-
temporal image sequences provide new information, integrating and evaluating the much
wider range of information is challenging task for human observers. The wrapper
framework was used to direct the segmentation based on the underlying shape and
temporal characteristics of the object of interest (Rabei et al. 2007). Examination of temporal
kinetic patterns as measured for small regions of interest is a common method for
characterizing lesion masses. These dynamic parameters cannot be computed for each pixel
in every breast slice, due to processing complexity. Traditionally, these measures are
computed by sampling pixels within a grid superimposed on the image, which can reduce
sensitivity to detection of small tumors since much of the tissue within the grid cell is
normal. The wrapper approach utilized the regions selected by the region combining and
computed the dynamic parameters for each of these groupings, as can be seen in Fig. 11
(Rabei et al. 2007). These values are then used with the region shape information for tumor
detection. The overall accuracy of the system is roughly 92% with the false positive
diagnoses rate for normal patients as having either malignant or benign tumors of 4.5%, and
a misdiagnosis rate for normal patients as either having malignant, benign, or suspicious

growths of 7.5% as shown in Table 4 (Rabei et al. 2007).
=0
=1
-
Iiir =
)

(b)
Fig. 11. Intermediate breast tumor processing results, (a) input image, (b) labled image with
background removed showing regions for combination, and (c) sequence of region
combined images for dynamic analysis (Rabei et al. 2007).

Thus far, the wrapper has been demonstrated on a two-class problem for the airbag control
system and a four-class problem for the tumor recognition system. The last application for
which the wrapper framework has been applied is an aerial surveillance application
addressing wide-area surveillance of disaster areas such as during hurricane Katrina, with
an example wide-area image shown in Fig. 12. This is an object detection problem, which
can be considered a single-class problem. The goal of the system is to detect manmade
structures in wide-area imagery to ease the workload of image analysts who are searching
for possibly stranded people in very remote rural areas. In this application, due to the
immense sizes of the images, the first step in processing is a mosaicing process that divides
the incoming image into a 4x4 grid, and each mosaic in the grid is then processed in parallel
to reduce the processing time allowing it to benefit from multi-core architectures.
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True True True True
Normal | Benign Suspicious | Malignant
True 925 31 21
Normal
True 4 12 4
Benign
True 7 343 6
Suspicious
True 3 4 91
Malignant

Table 4. Results of wrapper framework applied to breast tumor detection (Rabei et al. 2007).

One other difference in processing is that the mode filtering step shown in Fig. 4 is bypassed
since the objects tend to be relatively small in these massive images and the mode filtering
distorted the shape characteristics of the objects of interest. The detection results for the
wrapper on the image shown in Fig. 12 (b) are provided in Table 5, where the detection
results are quite respectable. The quality of the segmentations and detections can be seen
beginning with typical initial clusters and the resultant detections are provided in Fig. 13
and Fig. 14. These figures show the detected clusters in (a), the resultant combinations of
regions that define the segmentations in (b), the region in the color image showing the object
detection in (c), and the training sample that was used for the detection in (d).

(b)
Fig. 12. Surveillance images, (a) original wide-area image with buildings ,(b) zoom of
highlighted region, and (c) image with no buildings.

©)

Containing Object

Combinations Combinations Detected
Detected as Objects as non-Objects
Actual Objects 5 0
Actual Clusters not 2 7

Table 5. Wrapper Results on Image in Fig. 12(b).
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(b) (d)

Fig. 13. Best match for cluster: (a) Original blob cluster, (b) final blob combination, (c) image
region and (d) best training sample.

(b) (©) (d)

Fig. 14. Best match for cluster: (a) Original blob cluster, (b) final blob combination, (c) image
region and (d) best training sample.

We also processed the entire image in Fig. 12 (a) and registered detections of buildings
simply within each mosaic, so for each image there would be a total of sixteen possible
detections. For analysis of this wide-area problem we quantify system performance in terms
of recall and precision which are defined as:

Recall = ( correct detections )

correct detections + missed detections (13)

Precision = ( correct detections )

correct detections + false alarms

Unfortunately, the basic performance was not very impressive, with seven regions falsely
having buildings detected, three with positive detections, and one missed detection,
resulting in a Recall = .75 and Precision = 0.3.

There are two characteristics of the image segments where the wrapper framework had false
detections. The first is where there are manmade entities such as parking lots and
intersections of multiple roadways, which since the goal of the application is to detect
manmade structures can only partially be considered false detections. The second cause of
false detections occurs when the initial segmentation is severely over-segmented (we term
this hyper-segmentation) which occurs when the image of interest has strong texture
characteristics as shown in Fig. 15. For example, in these hyper-segmented regions there
were on the order of 1010 to 10200 possible region combinations which are extraordinary.
This high region count, and hence high number of region combinations explains the high
false detection rate, since Borenstein and Mailk (Borenstein & Malik, 2006) pointed out that
the segmented regions cannot be too small or else any object is possible to create. In this
application, the hyper-segmentation can be avoided by implementing a texture and color-
based low-level segmentation, which is beyond the scope of this paper. These conditions are
easy to detect since they result in significant numbers of regions (typically over 400-600
where the normal number is less than 200). Thus the wrapper framework can also provide
quality feedback regarding the initial segmentation, and redirect either the parameter
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selection or in this case the actual low-level feature set to use for labeling. When the hyper-
segmented regions were removed from the calculation, the results are: Recall = 0.75,
Precision = 0.6. This performance is more reasonable for a system that is designed to reduce
operator workload.

(d)

Fig. 15. Problematic low-level segmentations, (a) hyper-segmentation due to significant
texture from Mosaic (2, 4) from the Fig. 12 (a), showing texture, (b) the resultant color-based
labelling using EM, (c) original image for showing under-segmentation, and (d) under-
segmentation due to similarity in color of objects and the background roadway.

@ )

5. Conclusion

This chapter proposes an alternative paradigm for object segmentation that follows the
wrapper methods of feature selection, where in this case the segmentation and the
classification are wrapped together, and the classifier provides the metric for selecting the
best segmentation. Rather than considering this method as yet another segmentation
algorithm, the wrapper method is actually an alternative image segmentation framework,
within which existing image segmentation algorithms may be executed. Unlike previous
work in image segmentation, the proposed system makes no assumptions regarding the
homogeneity of the object of interest. It attempts to bridge the semantic gap in image
segmentation by considering the shape of the desired object, rather than relying on lower
level features such as color or texture. The approach has been implemented with two
different region selection algorithms, the heuristic Plus-L Minus-R algorithm and a genetic
algorithm, while for small region combinations an exhaustive search is applied. The
wrapper framework has been demonstrated on three very different applications, a vision-
based automotive occupant sensing system, a breast tumor recognition system using MRI,
and an aerial surveillance application for disaster assessment. In all cases, the resultant
segmentations were often of high quality and would have been impossible without the
semantic information provided by the shape of the object of interest. In the surveillance
application, the results were more dependent on the low-level segmentation, caused by
hyper-segmentation due to high texture images. Future work will address integrating more
powerful low-level segmenters other than the EM algorithm. Current research work is
directed at developing a complete content-based image query system using the wrapper
framework to support the search through an image database of user defined shapes of
interest. Shape-based Content-based Image Retrieval (CBIR) is currently a very active area
of research and the wrapper framework may provide an effective means for integrating
shape information into the search process.
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