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Abstract

Typically, Super Resolution Reconstruction (SRR) is the process by which additional
information is incorporated to enhance a noisy low resolution image hence producing a high
resolution image. Although many such SRR algorithms have been proposed in the last two
decades, almost SRR estimations are based on L1 or L2 statistical norm estimation therefore
these SRR algorithms are usually very sensitive to their assumed model of data and noise
that limits their utility. Unfortunately, the real noise models that corrupt the measure
sequence are unknown; consequently, SRR algorithm using L1 or L2 norm may degrade the
image sequence rather than enhance it. This paper proposes a novel SRR algorithm based on
the stochastic regularization technique of Bayesian MAP estimation by minimizing a cost
function. The Hampel norm is used for measuring the difference between the projected
estimate of the high-resolution image and each low resolution image in order to remove
outliers in the data. Moreover, Tikhonov regularization and Hampel-Tikhonov
regularization are used to remove artifacts from the final answer and improve the rate of
convergence. Finally, the efficiency of the proposed algorithm is demonstrated here in the
experimental results using the Lena (Standard Image) and the Susie (40th Frame: Standard
Sequence) in both subjective and objective measurement. The numbers of experimental
results confirm the effectiveness of our method and demonstrate its superiority to other
super-resolution algorithms based on L1 and L2 norm for a several noise models (such as
noiseless, AWGN, Poisson, Salt & Pepper Noise and Speckle Noise) and several noise
power.

1. Introduction

Super Resolution Reconstruction (SRR) traditionally allows the recovery of a high-resolution
(HR) image from several low-resolution (LR) images that are noisy, blurred, and down
sampled. Thus, SRR have a variety of applications in remote sensing, video frame freezing,
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100 Pattern Recognition

medical diagnostics and military information acquisition. Consequently, SRR has emerged
as an alternative for producing one or a set of HR images from a sequence of LR images.

In the section, we will concentrate on the regularized reconstruction point of view therefore
the estimation is one of the most important parts of the SRR algorithms and directly affect to
the SRR performance. R. R. Schultz et al. (Schultz, R. R. and Stevenson R. L. 1994; Schultz, R.
R. and Stevenson R. L. 1996) proposed the SRR algorithm using ML estimator (L2 Norm)
with HMRF Regularization in 1996. In 1997, M. Elad et al. (Elad, M. and Feuer, A. 1997)
proposed the SRR algorithm using the ML estimator (L2 Norm) with nonellipsoid
constraints. Next, M. Elad et al. (Elad, M. and Feuer, A. 1999a; Elad, M. and Feuer, A. 1999¢)
proposed the SRR algorithm using R-SD and R-LMS (L2 Norm) in 1999. M. Elad et al. (Elad,
M. and Hecov Hel-Or, Y. 2001) proposed the fast SRR algorithm ML estimator (L2 Norm)
for restoration the warps are pure translations, the blur is space invariant and the same for
all the images, and the noise is i.i.d. Gaussian in 2001. A. ]J. Patti et al. proposed (Patti, A. J.
and Altunbasak, Y. 2001) a SRR algorithm using ML (L2 Norm) estimator with POCS-based
regularization in 2001 and Y. Altunbasak et al. (Altunbasak, Y., Patti, A. ]J. and Mersereau, R.
M. 2002) proposed a SRR algorithm using ML (L2 Norm) estimator for the MPEG sequences
in 2002. D. Rajan et al. (Rajan, D., Chaudhuri, S. and Joshi, M. V. 2003, Rajan, D. and
Chaudhuri, S. 2003) proposed SRR using ML (L2 Norm) with MRF regularization to
simultaneously estimate the depth map and the focused image of a scene in 2003. S. Farsiu
et al. (Farsiu, S., Robinson, M. D., Elad, M., Milanfar, P. 2004; Farsiu, S., Robinson, M. D.,
Elad, M. and Milanfar, P. 2004) proposed SRR algorithm ML estimator (L1 Norm) with BTV
Regularization in 2004. Next, they propose a fast SRR of color images (Farsiu, S., Elad, M.
and Milanfar, P. 2006) using ML estimator (L1 Norm) with BTV and Tikhonov
Regularization in 2006. Y. He et at. (He, Y., Yap, K., Chen, L. and Lap-Pui 2007) proposed
SRR algorithm to integrate image registration into SRR estimation (L2 Norm) in 2007. For
the data fidelity cost function, all the above SRR methods are based on the simple estimation
techniques such as L1 Norm or L2 Norm Minimization. For normally distributed data, the
L1 norm produces estimates with higher variance than the optimal L2 (quadratic) norm but
the L2 norm is very sensitive to outliers because the influence function increases linearly
and without bound. From the robust statistical estimation (Black, M. J. and Rangarajan, A.
1996), Hampel Norm is designed to be more robust than L1 and L2. Hampel norm is
designed to be robustness and reject outliers, the norm must be more forgiving about
outliers; that is, it should increase less rapidly than L2. This paper proposes a robust
iterative SRR algorithm using Hampel norm for the data fidelity cost function with
Tikhonov Regularization and Hampel-Tikhonov Regularization. While the former is
responsible for robustness and edge preservation, the latter seeks robustness with respect to
blur, outliers, and other kinds of errors not explicitly modeled in the fused images. This
experimental results demonstrate that our method’s performance is superior to what was
proposed earlier in this previous reviews.

The organization of this paper is as follows. Section 2 briefly introduces the main concepts of
estimation technique in SRR frameworks based on L1 and L2 norm minimization. Section 3
presents the proposed SRR based on Hampel norm minimization with Tikhonov
Regularization and Hampel-Tikhonov Regularization. Section 4 outlines the proposed
solution and presents the comparative experimental results obtained by using the proposed
Hampel norm method and by using the L1 and L2 norm method. Finally, Section 5 provides
the summary and conclusion.
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2. Introduction of SRR algorithms
For SRR framework (Elad, M. and Feuer, A. 1999b, Elad, M. and Hecov Hel-Or, Y. 2001),

Assume that low-resolution frames of images are {Y(;)} as our measured data and each
frame contains N,x N, pixels. A high-resolution frame X( t) is to be estimated from the N
low-resolution images and each frame contains gN, xgN, pixels, where ¢ is an integer-

valued interpolation factor in both the horizontal and vertical directions. To reduce the
computational complexity, each frame is separated into overlapping blocks. For convenience
of notation, all overlapping blocked frames will be presented as vector, ordered column-

wise lexicographically. Namely, the overlapping blocked LR frame is Y e R" " (M*x1)and

the overlapping blocked HR frame is X e RY™" (> x1 or g>M?* x1). We assume that the two
images are related via the following equation

Y,=DHFEX+V, k=12,..N (11)
X{‘\\} gN, } X

X

ofodede

ofodede

(b) Low-Resolution Image Sequence

Degradation Process

i

Wrap Process Blur Process Decimation Noise

Blocked HR Image  (Translation Tranform ) Process Blocked LR Image

(c) The Relation between Overlapping Blocked HR Image
and Overlapping Blocked LR Image Sequence
(SRR Observation Model)

Fig. 1. The Classical SRR Observation Model
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where
®* X (vector format) is the original high-resolution blocked image.

* Y (;) (vector format) is the blurred, decimated, down sampled and noisy blocked
image

e F (F e RV and matrix format) stands for the geometric warp (Typically,
Translational Motion) between the images X and Y, .

e H (H, e RYM>¢'M and matrix format)is the blur matrix which is a space and time

invariant.
2 2142 . . . . .
° D, ( D, e RY>M" and matrix format) is the decimation matrix assumed constant.

V, (V, eRY * and vector format) is a system noise.

A popular family of estimators is the ML-type estimators (M estimators) (Elad, M. and
Feuer, A. 1999c). We rewrite the definition of these estimators in the super resolution
reconstruction framework as the following minimization problem:

X= ArgMin{ﬁ]p(DkaFkX —Xk)} .

X k=1

where p() is a norm estimation. To minimize (1.2), the intensity at each pixel of the

expected image must be close to those of the original image.

SRR (Super-Resolution Reconstruction) is an ill-posed problem (Elad, M. and Feuer, A. 1997;
Elad, M. and Feuer, A. 1999a; Elad, M. and Feuer, A. 1999b; Elad, M. and Hecov Hel-Or, Y.
2001; Elad, M. and Feuer, A. 1999c). For the under-determined cases (i.e., when fewer than
required frames are available), there exist an infinite number of solutions which satisfy (1.2).
The solution for squared and over-determined cases is not stable, which means small
amounts of noise in measurements will result in large perturbations in the final solution.
Therefore, considering regularization in SRR algorithm as a mean for picking a stable
solution is very useful, if not necessary. Also, regularization can help the algorithm to
remove artifacts from the final answer and improve the rate of convergence. A
regularization term compensates the missing measurement information with some general
prior information about the desirable HR solution, and is usually implemented as a penalty
factor in the generalized minimization cost function. Unfortunately, certain types of
regularization cost functions work efficiently for some special types of images but are not
suitable for general images.

2.1 L1 Norm with Tikhonov Regularization

A popular family of estimators is the L1 Norm estimators that are used in SRR problem
(Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004; Farsiu, S., Elad, M. and Milanfar,
P. 2006). Due to ill-posed problem of SRR, a regularization term compensates the missing
measurement information with some general prior information about the desirable HR
solution, and is usually implemented as a penalty factor in the generalized minimization
cost function. The most classical and simplest Tikhonov regularization cost functions is the
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Laplacian regularization (Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004)
therefore we rewrite the definition of these estimators in the SRR context as the following
minimization problem:

2
X = ArgMin{ﬁlleHkﬂx—zk ||+z-(r1)2} @
X k=1

where the Laplacian kernel (Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004) is
defined as

r=1/8[1 11 ;1 -8 135111 ®)

By the steepest descent method, the solution is:

i , (4)
A A ZE(THZDZ Sign(DkaF;( Kﬂ _Zk)
ln#—l :Kn +ﬂ k=1

{x (),
where } is the step size in the gradient direction.

2.2 L2 Norm with Tikhonov Regularization

Another popular family of estimators is the L2 Norm estimators that are used in SRR
problem (Schultz, R. R. and Stevenson R. L. 1994; Schultz, R. R. and Stevenson R. L. 1997).
We rewrite the definition of these estimators in the SRR context that is combined the
Laplacian regularization as the following minimization problem:

5
= anghin 3ot x 1, 20 | ’
X k=1

By the steepest descent method, the solution is:

i ks S HID] (Y.~ D,H,FX,)
_n+l:_n+ 9 k=l

(1))

3. The Proposed Robust SRR Algorithm

The success of SRR algorithm is highly dependent on the accuracy of the imaging process
model. Unfortunately, these models are not supposed to be exactly true, as they are merely
mathematically convenient formulations of some general prior information. When the data
or noise model assumptions do not faithfully describe the measure data, the estimator
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performance degrades. Furthermore, existence of outliers defined as data points with
different distributional characteristics than the assumed model will produce erroneous
estimates. Almost all noise models used in SRR algorithms are based on Additive White
Gaussian Noise (AWGN) model; therefore, SRR algorithms can effectively apply only on the
image sequence that is corrupted by AWGN. Due to this noise model, L1 norm or L2 norm
error are effectively used in SRR algorithm. Unfortunately, the real noise models that
corrupt the measure sequence are unknown therefore SRR algorithm using L1 norm or L2
norm may degrade the image sequence rather than enhance it. The robust norm error is
necessary for SRR algorithm applicable to several noise models. For normally distributed
data, the L1 norm produces estimates with higher variance than the optimal L2 (quadratic)
norm but the L2 norm is very sensitive to outliers because the influence function increases
linearly and without bound. From the robust statistical estimation (Black, M. J. and
Rangarajan, A. 1996), Hampel Norm is designed to be more robust than L1 and L2. While
these robust norms are designed to reject outliers, these norms must be more forgiving
about the remaining outliers; that is, it should increase less rapidly than L2.

A robust estimation is estimated technique that is resistance to such outliers. In SRR
framework, outliers are measured images or corrupted images that are highly inconsistent
with the high resolution original image. Outliers may arise from several reasons such as
procedural measurement error, noise or inaccurate mathematical model. Outliers should be
investigated carefully; therefore, we need to analyze the outlier in a way which minimizes
their effect on the estimated model. L2 norm estimation is highly susceptible to even a small
number of discordant observations or outliers. For L2 norm estimation, the influence of the
outlier is much larger than the other measured data because L2 norm estimation weights the
error quadraticly. Consequently, the robustness of L2 norm estimation is poor.

Hampel’s norm (Black, M. J. and Rangarajan, A. 1996) is one of error norm from the robust
statistic literature. It is equivalent to the L1 norm for large value. But, for normally
distributed data, the L1 norm produces estimates with higher variance than the optimal L2
(quadratic) norm, so Hampel’s norm is designed to be quadratic for small values and its
influence does not descend all the way to zero. The Hampel norm function ( p(.)) and its

influence function ( p’ (-)) are shown in Figure 2.1 (a) and Figure 2.1 (b), respectively

We rewrite the definition of these estimators in the super resolution context as the following
minimization problem:

& )
X = Arg)l(\/hn ZfHAMPEL (DkaF}c X-Y, )
X k=1
By the steepest descent method, the solution is:
x ; x| <T 8)
2T |x|-T? ;T <|x|<2T

Srvawre (X) = 47>~ (37 -|x])" ;2T <|x|<37T

4T? s|x|> 37

where T is Hampel constant parameter.
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Output
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Fig. 2(b). The Influence function of Hampel Norm

3.1 Hampel Norm with Tikhonov Regularization

The most classical and simplest Tikhonov regularization cost functions is the Laplacian
regularization (Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004) therefore we
rewrite the definition of these estimators in the SRR context as the following minimization
problem:
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l:ArgMin{ZN:fHAMPEL (DkaE(K—Xk)+ﬂ-(FX)2} o

k=1

By the steepest descent method, the solution is:

N
- N ZEcTHkTDkT ‘W hampeL (Xk -D,HF, Xn) 10
£, =%,+p115
(L)
2x X< T (11)
' 2T sign (x) ;T <|x|<2r
Visarer (¥) = Siauper (¥) = 2(3T—‘x‘)sign(x) 2T < ‘x‘ <3T
0 slx| > 3T

3.2 Hampel Norm with Hampel-Tikhonov Regularization

This paper proposes an alternative robust regularization function, so called Hampel-
Tikhonov regularization, for incorporating in the SRR algorithm. Consequently, we rewrite
the definition of these estimators in the SRR context combining with the Hampel-Laplacian
regularization as the following minimization problem:

(& 12
X= Arg)l(\/[m {ZfHAMPEL (Dk HFEX-Y, )+ A ramprs (FK)} ( )
4 k=1
x’ ; x| < 7;, (13)
2 .
) T Tkl
HAMPEL = 2
AT? - (3T, —|x|)” 127, <|x|<3T,
AT? s[> 3T,
By the steepest descent method, the solution is:
x : (14)
R R ZEcTHkTDkT "W hampEL (Xk -D.H.F, in)
£n+l = K}'I +ﬂ' =1
_(A'FT 'gHAMPEL (an ))
2x X[ <T, (15)
, 2T, sign(x) ;T, <|x|<2T,
Cramprr (x) = 8namrer (x) = 2(37;, —‘x‘)sign(x) 2T, < ‘x‘ <37,
0 i > 37,

www.intechopen.com



A Robust Iterative Multiframe SRR based on Hampel
Stochastic Estimation with Hampel-Tikhonov Regularization 107

4. Experimental Result

This section presents the experiments and results obtained by the proposed robust SRR
methods using Hampel norm with Tikhonov regularization and with Hampel- Tikhonov
regularization that are calculated by (10-11) and (14-15) respectively. To demonstrate the
proposed robust SRR performance, the results of L1 norm SRR (Farsiu, S., Robinson, M. D.,
Elad, M. and Milanfar, P. 2004; Farsiu, S., Elad, M. and Milanfar, P. 2006) with Laplacian
regularization that is calculated by (4) and the results of L2 norm SRR (Schultz, R. R. and
Stevenson R. L. 1994; Schultz, R. R. and Stevenson R. L. 1997) with Laplacian regularization
that is calculated by (6) are presented in order to compare the performance.

These experiments are implemented in MATLAB and the block size is fixed at 8x8 (16x16 for
overlapping block). In this experiment, we create a sequence of LR frames by using the Lena
(Standard Image) and Susie (40th Frame: Standard Sequence). First, we shifted this HR
image by a pixel in the vertical direction. Then, to simulate the effect of camera PSF, this
shifted image was convolved with a symmetric Gaussian low-pass filter of size 3x3 with
standard deviation equal to one. The resulting image was subsampled by the factor of 2 in
each direction. The same approach with different motion vectors (shifts) in vertical and
horizontal directions was used to produce 4 LR images from the original scene. We added
difference noise model to the resulting LR frames. Next, we use 4 LR frames to generate the
high resolution image by the different SRR methods.

The criterion for parameter selection in this paper was to choose parameters which produce
both most visually appealing results and highest PSNR. Therefore, to ensure fairness, each
experiment was repeated several times with different parameters and the best result of each
experiment was chosen (Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004; Farsiu,
S., Elad, M. and Milanfar, P. 2006).

For objective or PSNR measurement of the Lena (Standard image) and Susie (40th Frame)
are shown in Table I and Table II respectively. For subjective or virtual measurement of the
Lena (Standard image) and Susie (40th Frame) are shown in figure 3 and figure 4
respectively.

4.1 Noiseless

For objective or PSNR measurement, the result of the Lena (Standard image) and Susie (40th
Frame) are shown in Table I and II respectively. The result of SRR based on Hampel
estimator with Laplacian and Hampel-Laplacian Regularization gives outstandingly higher
PSNR than L1 and L2 norm estimator about 1-3 dB.

For subjective or virtual measurement of Lena (Standard image), the original HR image is
shown in Fig. 3 (a-1) and one of corrupted LR images is shown in Fig. 3 (a-2). Next, the
result of implementing the SRR algorithm using L1 estimator with Laplacian Regularization,
L2 estimator with Laplacian Regularization, Hampel estimator with Laplacian
Regularization and Hampel estimator with Hampel-Laplacian Regularization are shown in
Figs. 3 (a-3) - 3 (a-6) respectively.

For subjective or virtual measurement of Susie (40th Frame), the original HR image is shown
in Fig. 4 (a-1) and one of corrupted LR images is shown in Fig. 4 (a-2). Next, the result of
implementing the SRR algorithm using L1 estimator with Laplacian Regularization, L2
estimator with Laplacian Regularization, Hampel estimator with Laplacian Regularization
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and Hampel estimator with Hampel-Laplacian Regularization are shown in Figs. 4 (a-3) - 4
(a-6) respectively.

Noise The PSNR of SRR Image (dB)
Model LR L1with | L2with | Hamp. | Hamp.
Image Reg Reg with with
Reg H-Reg
Noiseless 28.8634 | 28.8634 | 30.8553 | 31.4877 | 31.4877
T=19 T=19
Teg=19
AWGN (dB):
SNR=25 27.8884 27.949 29.6579 | 29.7453 29.7453
T=19 T=19
Tg=5
SNR=22.5 27.2417 | 274918 | 29.1611 29.1916 29.1923
T=19 T=19
Tg=9
SNR=20 26.2188 | 26.7854 | 28.6024 | 28.6089 28.6095
T=19 T=19
Tg=15
SNR=17.5 249598 | 26.0348 | 27.8153 | 27.8186 27.8186
T=19 T=19
Tg=19
SNR=15 23.3549 | 25.1488 | 26.6406 | 26.6117 | 26.6117
T=19 T=19
Tg=19
Poisson 26.5116 | 26.9604 28.719 28.713 28.7142
T=19 T=19
Tg=9
Salt&Pepper:
D=0.005 26.8577 | 27.1149 | 28.8495 | 30.9745 30.9745
T=9 T=9
Tg=5
D=0.010 25.2677 | 26.0569 | 28.0346 | 30.9721 30.9721
T=9 T=15
Tg=19
D=0.015 24.219 253534 | 27.3188 | 30.9652 30.9652
T=9 T=15
Tg=19
Speckle:
V=0.03 23.5294 | 253133 | 26.6956 | 26.1051 26.1051
T=19 T=19
Tg=19
V=0.05 21.7994 | 244215 | 25.3165 | 25.2729 25.3542
T=1 T=1
Teg=19

Table 1. The experimental Result of Proposed Method (Lena Image)
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4.2 AWGN (Additive White Gaussian Noise)

For objective or PSNR measurement, the result of the Lena (Standard image) and Susie (40th
Frame) are shown in Table I and II respectively. For the Lena image, the result of SRR based
on Hampel estimator with Laplacian and Hampel-Laplacian Regularization gives the higher
PSNR than L1 and L2 norm estimator. For the Susie image, the result of SRR based on
Hampel estimator with Laplacian and Hampel-Laplacian Regularization and L2 estimator
gives the higher PSNR than L1 norm estimator.

For subjective or virtual measurement of Lena (Standard image) at 5 AWGN cases, the
original HR image is shown in Fig. 3 (b-1) - 3 (f-1) respectively and one of corrupted LR
images is shown in Fig. 3 (b-2) - 3 (f-2) respectively. Next, the result of implementing the
SRR algorithm using L1 estimator with Laplacian Regularization, L2 estimator with
Laplacian Regularization, Hampel estimator with Laplacian Regularization and Hampel
estimator with Hampel-Laplacian Regularization are shown in Figs. 3 (b-3) - 3 (b-6), Figs.
3(c-3) - 3 (c-6), Figs. 3 (d-3) - 3 (d-6), Figs. 3 (e-3) - 3 (e-6) and Figs. 3 (f-3) - 3 (f-6)
respectively.

For subjective or virtual measurement of Susie (40th Frame) at 3 AWGN cases, the original
HR image is shown in Fig. 4 (b-1) - 4 (f-1) respectively and one of corrupted LR images is
shown in Fig. 4 (b-2) - 4 (f-2) respectively. Next, the result of implementing the SRR
algorithm using L1 estimator with Laplacian Regularization, L2 estimator with Laplacian
Regularization, Hampel estimator with Laplacian Regularization and Hampel estimator
with Hampel-Laplacian Regularization are shown in Figs. 4 (b-3) - 4 (b-6), Figs. 4 (c-3) - 4
(c-6), Figs. 4 (d-3) - 4 (d-6), Figs. 4 (e-3) - 4 (e-6) and Figs. 4 (f-3) - 4 (f-6) respectively.

Noise Model | The PSNR of SRR Image (dB)
LR L1 L2 Hamp. | Hamp. with
Image | with with with H-Reg
Reg Reg Reg
Noiseless 321687 | 32.1687 | 34.2 34.747 | 34.747
T=19 T=19
AWGN (dB):
SNR=20 27.5316 | 28.7003 | 30.6898 | 30.6642 | 30.6655
T=19 T=19
Tg=19
SNR=17.5 25.7322 | 27.5771 | 29.3375 | 29.3112 | 29.3112
T=19 T=19
Tg=19
SNR=15 23.7086 | 26.2641 | 27.6671 | 27.6565 | 27.6565
T=1 T=1
Teg=19
Poisson 27.9071 | 28.9197 | 30.7634 | 30.7853 | 30.7859
T=19 T=19
Teg=19
Salt&Pepper:
D=0.005 29.0649 | 29.5041 | 31.5021 | 34.4785 | 34.4785
T=9 T=9
Teg=19
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D=0.010 26.4446 | 27.7593 | 29.8395 | 34.4803 | 34.4803
T=9 T=9
Tg=19
D=0.015 25276 | 26.9247 | 28.7614 | 34.4483 | 34.4483
T=9 T=9
Teg=19
Speckle:
V=0.01 27.6166 | 28.8289 | 30.6139 | 30.415 | 30.4293
T=19 T=19
Tg=9
V=0.03 24.0403 | 26.8165 | 27.7654 | 27.9409 | 28.0189
T=1 T=1
Tg=9

Table 2. The experimental Result of Proposed Method (Susie 40th Frame)

4.3 Poisson Noise

For objective or PSNR measurement, the result of the Lena (Standard image) and Susie (40th
Frame) are shown in Table I and II respectively. The result of SRR based on Hampel
estimator with Laplacian and Hampel-Laplacian Regularization and L2 estimator gives the
higher PSNR than L1 norm estimator.

For subjective or virtual measurement of Lena (Standard image), the original HR image is
shown in Fig. 3 (g-1) and one of corrupted LR images is shown in Fig. 3 (g-2). Next, the
result of implementing the SRR algorithm using L1 estimator with Laplacian Regularization,
L2 estimator with Laplacian Regularization, Hampel estimator with Laplacian
Regularization and Hampel estimator with Hampel-Laplacian Regularization are shown in
Figs. 3 (g-3) - 3 (g-6) respectively.

For subjective or virtual measurement of Susie (40th Frame), the original HR image is shown
in Fig. 4 (g-1) and one of corrupted LR images is shown in Fig. 4 (g-2). Next, the result of
implementing the SRR algorithm using L1 estimator with Laplacian Regularization, L2
estimator with Laplacian Regularization, Hampel estimator with Laplacian Regularization
and Hampel estimator with Hampel-Laplacian Regularization are shown in Figs. 4 (g-3) - 4
(g-6) respectively

4.4 Salt&Pepper Noise

For objective or PSNR measurement, this experiment is a 3 Salt&Pepper Noise cases at
D=0.005, D=0.010 and D=0.015 respectively (D is the noise density for Salt&Pepper noise
model). The result of the Lena (Standard image) and Susie (40th Frame) are shown in Table I
and II respectively. The result of SRR based on Hampel estimator with Laplacian and
Hampel-Laplacian Regularization gives dramatically higher PSNR than L1 and L2 norm
estimator about 4-5 dB.

For subjective or virtual measurement of Lena (Standard image) at 3 Salt&Pepper Noise
cases, the original HR image is shown in Fig. 3 (h-1) - 3 (j-1) respectively and one of
corrupted LR images is shown in Fig. 3 (h-2) - 3 (j-2) respectively. Next, the result of
implementing the SRR algorithm using L1 estimator with Laplacian Regularization, L2
estimator with Laplacian Regularization, Hampel estimator with Laplacian Regularization
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and Hampel estimator with Hampel-Laplacian Regularization are shown in Figs. 3 (h-3) - 3
(h-6), Figs. 3 (i-3) - 3 (i-6) and Figs. 3 (j-3) - 3 (j-6) respectively.

For subjective or virtual measurement of Susie (40th Frame) at 3 Salt&Pepper Noise cases,
the original HR image is shown in Fig. 4 (h-1) - 4 (j-1) respectively and one of corrupted LR
images is shown in Fig. 4 (h-2) - 4 (j-2) respectively. Next, the result of implementing the
SRR algorithm using L1 estimator with Laplacian Regularization, L2 estimator with
Laplacian Regularization, Hampel estimator with Laplacian Regularization and Hampel
estimator with Hampel-Laplacian Regularization are shown in Figs. 4 (h-3) - 4 (h-6), Figs. 4
(i-3) - 4 (i-6) and Figs. 4 (j-3) - 4 (j-6) respectively.

4.5 Speckle Noise

For objective or PSNR measurement, the result of the Lena (Standard image) and Susie (40th
Frame) are shown in Table I and II respectively. (V is the noise variance for Speckle noise
model) The result of SRR based on Hampel estimator with Laplacian and Hampel-Laplacian
Regularization and L2 estimator gives the higher PSNR than L1 norm estimator.

For subjective or virtual measurement of Lena (Standard image) at 2 Speckle cases, the
original HR image is shown in Fig. 3 (k-1) - 3 (I-1) respectively and one of corrupted LR
images is shown in Fig. 3 (k-2) - 3 (I-2) respectively. Next, the result of implementing the
SRR algorithm using L1 estimator with Laplacian Regularization, L2 estimator with
Laplacian Regularization, Hampel estimator with Laplacian Regularization and Hampel
estimator with Hampel-Laplacian Regularization are shown in Figs. 3 (k-3) - 3 (k-6) and
Figs. 3 (1-3) - 3 (1-6) respectively.

For subjective or virtual measurement of Susie (40th Frame) at 2 Speckle cases, the original
HR image is shown in Fig. 4 (k-1) - 4 (m-1) respectively and one of corrupted LR images is
shown in Fig. 4 (k-2) - 4 (m-2) respectively. Next, the result of implementing the SRR
algorithm using L1 estimator with Laplacian Regularization, L2 estimator with Laplacian
Regularization, Hampel estimator with Laplacian Regularization and Hampel estimator
with Hampel-Laplacian Regularization are shown in Figs. 4 (k-3) - 4 (k-6), Figs. 4 (1-3) - 4 (I-
6) and Figs. 4 (m-3) - 4 (m-6) respectively.

From the number of experimental results, the T parameter is low (like L1 norm) such as T=1
to T=5 for high noise power and is high for low noise power (like L2 norm) such as T=15 to
T=19. Moreover, the Ty parameter is medium (like L1-Tikhonov regularization) for high
noise power and is high for low noise power (like classical Tikhonov regularization).

The computation cost of the proposed algorithm slightly higher than the SRR algorithm
based on L1 and L2.

From all experimental results of both Susie (40th Frame) and Lena (The Standard Image), all
comparatively experimental results are concluded as follow:

1. For AWGN case, the L2 estimator usually gives the best reconstruction because
noise distribution is a quadratic similar to L2.

2. For Salt&Pepper Noise cases, the Hampel estimator gives the far better
reconstruction than L1 and L2 estimator because these robust estimators are
designed to be robust and reject outliers. The norms are more forgiving on outliers;
that is, they should increase less rapidly than L2.

3. The SRR algorithm using L1 norm with the proposed registration gives the lowest
PSRN because the L1 norm is excessively robust against the outliers.
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5. Conclusion

In this paper, we propose an alternate approach using a novel robust estimation norm
function (based on Hampel norm function) for SRR framework with Tikhonov and Hampel-
Tikhonov Regularization. The proposed robust SRR can be effectively applied on the images
that are corrupted by various noise models. Experimental results conducted clearly that the
proposed robust algorithm can well be applied on the any noise models (such as Noiseless,
AWGN, Poisson Noise, Salt&Pepper Noise and Speckle Noise) at different noise power and
the proposed algorithm can obviously improve the result in using both subjective and
objective measurement.
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Fig. 3. The Experimental Result of Proposed SRR Algorithm: Lena
(The bottom image on our experiment result of each subfigure is the absolute difference
between it’s correspond top image to the original HR image. The difference is magnified by
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(The bottom image on our experiment result of each subfigure is the absolute difference

between it’s correspond top image to the original HR image. The difference is magnified by
5.)
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(The bottom image on our experiment result of each subfigure is the absolute difference

between it’s correspond top image to the original HR image. The difference is magnified by
5.)
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