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1. Introduction

Neural networks are recommended for intelligent control as a part of well known structures
with adaptive critic (Barto, 1983; Lacaze, 1997; Hendzel, 2007). Recently, much research has
been done on applications of neural networks for control of nonlinear dynamic processes
(Narenda & Pathasarathy, 1990; Nguyen & Widrow, 1990). These works are supported by
two of the most important capabilities of neural networks; their ability to learn and their
good performance for the approximation of nonlinear functions (Hornik et al., 1990). At
present, most of the works on system control using neural networks are based on multilayer
feedforward neural networks with backpropogation learning or more efficient variations of
this algorithm (Narenda & Pathasarathy, 1990). It has been shown (Hornik, 1990) that a
neural network with one hidden layer with an arbitrarily large number of neurons in the
hidden layer can be approximate any continuous functions over a compact subnet of 9.

The neural network-based control of mobile robots has recently been the subject of intense
research (Corradini et al., 2003). It is usual to work with kinematic models of mobile robot to
obtain stable motion control laws for trajectory following or goal reaching (Jiang, 2001;
Ramirez & Zeghloul, 2000). The most authors solved the problem of mobile robot motion
control and stability using nonlinear backstepping algorithm (Tanner & Kyriakopoulos,
2003; Velagic et al., 2006). Fierro and Lewis (1998) developed a neural network based model
by combining the backstepping tracking technique and a torque controller, using a multi-
layer feedforward neural network, where the neural network can learn the dynamics of the
mobile robot by its on-line learning. But the control algorithm and the neural network
learning algorithm are very complicated and it is computationally expensive. In (Yang &
Meng, 2001) a single-layer neural network based controller for robot is proposed. This
approach does not include any nonholonomic kinematics therefore it can not be used for
robot with kinematic constraints. However, the problem of control of mobile robots has
attracted the interest of researchers in view of its theoretical challenges. In fact, these
systems are a typical example of nonholonomic mechanisms due to the perfect rolling
constraints (no longitudinal or lateral slipping of the wheels).

In this paper we used a recurrent neural network for controlling the mobile robot with
nonholonomic constraints. This network is trained on-line using the backpropagation
optimization algorithm with an adaptive learning rate (Velagic & Hebibovic, 2004; Velagic
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et al., 2005). The optimization algorithm is performed at each sample time to compute the
optimal control inputs. This is a simple control system and computationally very effective
for real-time requirements.

2. Control System of Mobile Robot

The proposed neural network control system is shown in Fig. 1. The control system consists
of the neural network controller, the kinematic model of mobile robot, a reference trajectory
generator and an encoder which provides odometric information. In this section the
kinematic model of mobile robot with differential drive and convergence conditions of
overall control structures are described. Design of neural network controller will be
presented in the next subsection.

Reference
trajectory

Neural Y | Mobile X
network |  robot

v

Fig. 1. Mobile robot motion control system

2.1. Kinematic model of mobile robot
In this paper the mobile robot with differential drive is used (Fig. 2).

Y 4

b 4

O X

Fig. 2. The representation of a nonholonomic mobile robot.
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The robot has two driving wheels mounted on the same axis and a free front wheel. The two
driving wheels are independently driven by two actuators to achieve both the transition and
orientation. The position of the mobile robot in the global frame {X, O, Y} can be defined by
the position of the mass center of the mobile robot system, denoted by C, or alternatively by
position A, which is the center of mobile robot gear, and the angle between robot local frame
{xm, C, ym} and global frame.

Kinematic equations of the two-wheeled mobile robot are:

X cos(d) O
Z - s1r;(t9) 1o B} 1)

and

r r
v VR )
ol | L L v, |

D D

where x and y are coordinates of the center of mobile robot gear, 0 is the angle that
represents the orientation of the vehicle, v and w are linear and angular velocities of the
vehicle, vr and v are velocities of right and left wheels, r is a wheel diameter and D is the
mobile robot base length.

Combining equations (1) and (2) yields:

x| |rcos(d) rcos(d) |-
7 |=| rsing)  rsin() UR] 3)
0 r r e

D D

Inputs of kinematic model of mobile robot are velocities of right and left wheels vg and v;.
The constraint that the wheel cannot slip in the lateral direction is:

xsin@+1cosd—do=0. 4)

The stability conditions of mobile robot system with PI controller will be investigated in the
next subsection.
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2.2. Convergence condition of control system
The feedback control system of mobile robot is shown in Fig. 3.

S G FE

Yr

4>©—> Controller ———»| Mobile >
robot

Fig. 3. Mobile robot control system
The time derivation of mobile robot output yields:

dx 5

a1 [100].
= , 5
dy {0 1 0} Y ©)
dt o
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The equation (6) can be rewritten in compact form as:
dx
dt UR
=v=J 7
4y ' LL} )
dt

where [ is Jacobian matrix.
It is required that the position error vector go exponentially to a zero as a function of time:

£+Ke=0, 8)

dt

where ei=e; pexp(-kt).
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This requirement is satisfied with the following control law:

v=K(x, —x)+x,

, ©)

where matrix K need to be positive definitive. On the other words the following relation
hold:

ki, k, >0, (10)

where ki and k; are elements of the matrix K, respectivelly:

k=1 0 11
- 0 k2 . ( )
Using equation (8) velocities of the right and left wheels:

{ZR} — T Y= K(x, —x)+ %, . (12)

The Jacobian matrix J is a non-singular one so as to assure that a control law based on the
inversion of J is possible.

Various controller parameters were tested by using lamniscate desired motion trajectories.
The controller parameters, which ensure the good tracking performance is found to be:

k1=102.9822, k> = 1.3536. (13)

On the basis of this velocity controller, the neural network controller will be designed in the
next section.

3. Neural Network Control Design
In design of velocity mobile robot controller the following simplifications are assumed:

» Kinematic model is captured by first order differential equation.
» Assume that an arbitrary commanded speed can be achieved (instantaneously).

Under these simplifications, results are expected:

* Exponential convergence of trajectory to desired trajectory.
* Speed of convergence can be tuned.

3.1. Design of neural network controller

A neural network (NN) performs the system model identification that will be used to design
the appropriate intelligent mobile robot controller. The usage of NN for controlling a mobile
robot is justified from the following reasons: the operational conditions considered raises
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complex nonholonomic mobile robot kinematics and NN has universal approximation and
supervised learning capabilities.

The neural network controller in Fig. 4, based on the recurrent network architecture, has a
time-variant feature: once a trajectory is learned, the following learning takes a shorter time.
The dynamic neural network is composed of two layered static neural network with
feedbacks (one hidden and one output layers) (Fig. 5). The hidden layer contains ten
tansigmoidal neurons and the output layer has one neuron with a linear activation function.
It is important to note that rather then learning explicit trajectories, the neural network
controller learns the relationship between linear velocities and position errors of the mobile
robot. This network is trained using the backpropagation algorithm through time with an
adaptive learning rate (Velagic & Hebibovic, 2004; Velagic et al., 2005). In the training phase
the network is presented with a series of input-answer pairs.

IEI - Time delay Learning

Algorithm
> Neuro
D ¢ ontroller -
L@F

X, e +
—+>O »  Controller

» Robot

v

Encoder

Fig. 4. Neural network learning architecture

The network’s current output vy is compared with the desired input e;, and the errors are
used to correct the weights in order to reduce the network’s error on this input:

2
en(¥) = 2 (e~ i)’ (14)
k
Synaptic weights are updated as

where 7 is the learning rate, 6; is the error gradient at unit j, 6 is the error at unit k and v; and
vj are the outputs of unit i and j, respectively.
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Fig. 5. Dynamical neural network.

A unifying framework for neural networks that encompasses process identification concept
is to view neural network training as a nonlinear optimization problem:

min J(w)- (17)

w

That is, we need to find values for neural network parameters w (weight vector) for which
some cost function J(w) is minimized.
Let us assume that the controller is described by the following time difference equation:

o(t) = f(v(t —1),...,v(t —n)e(t),...e(t —m)), (18)

where v(t) is the process output at time f depends on the past n output values and on the
past m values of the input e. For identification plant model the neural network is used in the
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following form:
v,(W,t) = f,(v(t=1),...,0(t —n);e(t),....e(t —m)), (19)

where n >m for physically realizable systems.

Here f,(-) represents the nonlinear input-output map of the neural network which
approximates the controller mapping f (). The input to the neural network includes the past
values of the controller output.

The training process for neural network modeling can be expressed as the minimization of
an error measure. If the sampled process data are collected over a period [0, T], the cost
function J(w) is defined as:

Jw,H)= > [o(t) -0, (w, ) (20)

In our algorithm (Velagic & Hebibovic, 2004; Velagic et al., 2005) we define relationship
between AJ(w,t) and J(w,t) by the relative factor x():

_AIw, ) _ J(w, t)J(w, t-1) (21)

O=T0wn T Jw

Then, we determine how to adjust learning rate term according to the relative factor x. The
adjustment of the learning rate is given as follows:

n(t+1)=n(t)[1-sgn(x(t)v-e V], ve(01). (22)

The learning rate is adjusted at each iteration according to equations (21) and (22). The
algorithm proceeds as follows. First, we select the number of neurons in hidden and output
layers, initial value of learning rate and the parameter o. Then, the training process in the
closed control loop is performed for various values of parameter v, v€[0,1]. We adopt the
value of v for which a satisfactory identification performance is achieved. Our neural
network has 10 sigmoid neurons in hidden layer and 2 linear neurons in its output layer.
The proposed algorithm starts with the same initial learning rate #=0.02 for both layers. The
good results were obtained with v=0.71.

The trajectory tracking performance obtained by adopted neural controller will be shown in
the following section.

4. Simulation Results

The effectiveness of the neural network controller is demonstrated in the case of tracking of
a lamniscate curve. The trajectory tracking problem for a mobile robot is based on a virtual
reference robot (Egerstedt et al., 2001) (Fig. 6) that has to be tracked.
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The tracking position error between the reference robot and the actual robot can be
expressed in the robot frame as:

e cos@ sind O ||x, —x
e,=|e |=T,e, =|—-sind cosd 0|y, -y|, (23)
e3 0 0 1 |6-6

where ¢, =[e, ¢, e,]" .

The position error dynamics can be obtained from the time derivative of the (23) as:
ey =wey,+U,, €,=—we;+0,sine;, é;=1Uu,, (24)
where v=v, cose; —u,and o =w, —u,.

A
Y virtual robot

Yy

v

X Xy X

Fig. 6. The concept of tracking of a virtual reference robot.

The overall system is designed and implemented within Matlab/Simulink environment. We
consider the following profiles: position, orientation, linear and angular velocities.

The simulation results obtained by neural network controller are shown in Figs. 7-14.
Results achieved in Figs. 7-11 demonstrate the good position tracking performance. Also, a
desired orientation during robot motion is following in satisfactory manner, which is
depicted in Fig. 12. The proposed neural controller ensures small values of the control input
velocities (linear) for obtaining the reference position trajectories (Figs. 13 and 14). This
mean that smaller power of DC motors is requested.
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Fig. 7. Tracking the lamniscate trajectory
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Fig. 8. Time history of x coordinate
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Fig. 9. X coordinate error
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Fig. 10. Time history of y coordinate
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Fig. 11. Y coordinate error
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Fig. 12. Time response of robot orientation
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Fig. 14. Linear velocity of left wheel.

5. Conclusions

This paper presented a design of the neural network-based velocity controller for the
kinematic model of mobile robot with differential drive. The proposed neural controller has
two inputs (position errors of wheels) and two outputs (velocities of wheels). It is trained
on-line through controlling of the mobile robot by PD controller. For this purpose the
backpropagation algorithm with adaptive learning rate is applied. Simulation results
demonstrate the effectiveness of the proposed neural network-based control system.
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