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1. Introduction

The real implementation of individualized therapy and gene therapy of diseases, which are
most often multi-gene disorders, is an important goal of modern personalized medicine, but
needs a solid rational foundation. The deluge of complex, high-dimensional biomedical data
is continuously increasing; however, our modeling capacity is much smaller and increasing
only slowly - particularly in fields using high-throughput techniques such as genomics,
transcriptomics, proteomics, and pharmacogenomics. Knowing which genes are expressed,
when, where, and to what extent is important for understanding organisms, as well as for
controlling genes through adequate drugs and dosage regimens development. The
regulation of gene expression is achieved through complex regulatory systems—gene
regulatory networks (GRNs) - which are networks of interactions among DNA, RNA,
proteins, and small molecules.

Let us remark that not only a key ingredient but a whole dimension is missing from this
view. A large variety of external molecular species interfere with gene networks, but we will
focus only on drugs, drug discovery being one of the important routes to personalized
medicine. A more general concept of drug gene regulatory networks (DGRN), or simply
drug gene networks (DGN), first introduced in (Floares, 2007b), is presented together with
some mathematically definitions.

Besides the high-throughput experimental approaches, allowing to simultaneously monitor
thousands of genes or other molecular species, mathematical modeling is essential for
understanding and controlling gene networks by drugs or gene replacements. Various
formalisms, such as Bayesian networks, Boolean networks, differential equation models,
qualitative differential equations, stochastic equations, and rule-based systems, have been
used (see (Jong, 2002); (Gardner & Faith, 2005); (Bansal, 2007) for reviews).

The ordinary differential equations (ODE) approach tries to elucidate a deeper understanding
of the exact nature of the regulatory circuits and their regulation mechanisms. In a
pharmacogenomic context, it allows the design of controls that are optimal, individualized
drug dosage regimens (Floares, 2005); (Floares, 2006). Unfortunately, this is also the most
difficult, tedious, expensive, and time-consuming approach. The models are high-dimensional
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systems of nonlinear-coupled stiff ODEs. The number of parameters is extremely large, and
many of them have unknown values. Although in principle one can find the best set of
parameter values by sampling the whole parameter space, many degenerate solutions may be
expected. These are due to the correlations between parameters, and to the fact that biological
systems have built-in regulation mechanisms that make them robust to changes in many of
their parameter values. These facts suggest that it is the network structure rather than the
precise value of the parameters that confers stability to the system.

There is a need for algorithms to automatically infer such models from high-throughput
time-series data, and artificial intelligence is better suited than conventional modeling. We
proposed a series of reverse engineering algorithms for drug gene networks (Floares, 2007b),
based on artificial intelligence methods - neural networks (NN) for identification and
control, and linear genetic programming (GP) (M. Brameier & W. Banzhaf, 2007) for
symbolic regression. The algorithms take as inputs high-throughput (e.g., microarray) time-
series data and automatically infer an accurate ordinary differential equations model,
revealing the networks structure and parameter and giving insights into the molecular
mechanisms involved.

RODES algorithms, from reversing ordinary differential equations systems, decouple the
systems of differential equations, reducing the problem to that of revere engineering
individual algebraic equations. Using GP involve evaluating the fitness of hundreds of
models (computer programs) every generation, in the simulated evolution. Our approach
drastically reduces the complexity of the problem and the execution time, because for
evaluating the fitness function is not necessary to integrate the ODE system. In addition, the
possibility of incorporating common domain knowledge in RODES reduces the structure
search space and further speeds up the algorithms.

Other studies, proposing GRN reverse-engineering algorithms based on evolutionary
computation, require integration of the ODE systems hundreds or thousands of times for
each generation ((Sakamoto & Iba, 2001); (Kikuchi et al., 2003); (Noman & Iba, 2005); (Cho et
al., 2006)). Similar methods have been proposed in the past, but most of them require a
predefined model structure, however, and are limited to parameter estimation. For example,
the S-system model refers to a particular type of ODE system in which the component
processes are power-law functions (Savageau, 1976) (Voit, 2000). Despite the elegance and
computational simplicity of the S-system model, this formalism has its limitations for
biochemical networks (e.g., (Beard, 2004)).

Usually, due to various experimental constraints, essential information is missing from data,
and even the most powerful artificial intelligence techniques are not creating information,
but just extracting it from data. Missing information from data is an important data mining
and artificial intelligence problem, by no means restricted to the problem investigated here.
To our knowledge, the problem of missing information from data, in the form of variables
or features missing, does not have adequate technical solutions in the data mining and
computational intelligence literature. In the present context, not all variables or time-series
are simultaneously measured, as it is required to reconstruct the drug gene networks, as
systems of ordinary differential equations. RODES algorithms can reveal if some
information from the input set is either missing or not related to the output. This is possible
because the genetic programming version of RODES (GP RODES) requires the temporal
series of all variables of the system to infer an accurate mechanistic model. It also means that
it does not discover false input-output relations.
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One of the unique features of RODES is its ability to deal with the common but challenging
situations of information as variables missing from data. Thinking in a systemic way one
can conjecture that, due to the interactions in these networks, information must be implicitly
present in the data. Therefore we used some ideas and techniques from control theory,
mainly feedback linearization. To automate the algorithm the neural networks counterpart
of the conventional feedback linearization (Garces, 2003) was used. Applied to drug gene
networks the neural networks version of RODES algorithm (NN RODES) enable and
automate the reconstruction of the time-series of the transcription factors, microRNAs, or
drug related compounds which are usually missing in microarray experiments.

The tricky solution consists of transforming the modeling problem in a tracking control
problem. The measured mRNA temporal series become the desired or reference trajectories.

The problem is to find the control(s) such that the plant output - the solution of the mRNA
ODE - tracks the desired trajectory with an acceptable accuracy level. These controls are the
missing variables of the (D)GRNSs that are identified in this way. To the best of our
knowledge, this are the first realistic reverse-engineering algorithm, based on linear GP and
NN FBL, for large gene networks including pharmacogenomic variables and interactions,
capable to deal with missing information as variables from data.

2. Methods

2.1 (D)GRN Fundamental ODE Patterns and Building Blocks
The rate at which the concentration of a protein changes inside a cell depends mainly on the
following:

1. the rate at which its mRNA is produced and degraded;

2. the rates at which the mRNA molecules are translated,;

3. the rate at which the protein itself degrades.
Because these are (bio)chemical reactions the corresponding rates are described by
(bio)chemical kinetic equations. There are two main frameworks for modeling and
simulations (bio)chemical reactions, a deterministic and a stochastic one.
The deterministic modeling is based on the construction of a set of rate equations to describe the
biochemical reactions. These rate equations are non-linear ordinary differential equations with
concentrations of chemical species as variables. Deterministic simulation produces
concentrations by integrating the ODEs. The stochastic modeling involves the formation of a set
of chemical master equations with probabilities as variables (van Kampen, 1992) [17]. Stochastic
simulation produces counts of molecules of the chemical species as realizations of random
variables drawn from the probability distribution described by the chemical master equations.
Which framework is appropriate for a given biological system depends on the investigated
biological phenomena, and is influenced by the simplifying assumptions of the analysis
(Wolkenhauer et al., 2004). The present report is focused on the deterministic approach.
Usually, these rates have the same mathematical form as the pharmacokinetic (PK) blocks
describing the drug movement into, within, and out of the body:

1. Zero order: dX/dt = k, where k is a zero-order rate constant and X is the

concentration of the drug;
2. First order: dX/dt = k - X, where k is a first-order rate constant and X is as above; and
3. Michaelis-Menten: dX/dt = V,, - X/ (K, + X), where V,, is a maximum rate, K,, is
the Michaelis constant, and X is as above.
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Some of the rates of mRNA production, degradation, and translation are regulated by TFs
and microRNAs (miRNA) respectively, in GRN.
In a pharmacogenomic context, new regulatory interactions, or exogenous control factors
represented by drugs, are added. We introduced the more general concept of drug gene
regulatory networks or drug gene networks in (Floares, 2007b). If the regulation is restricted to
transcription factors and microRNAs, the network is a GRN. If the regulation is exerted by
transcription factors, microRNAs and by drugs or drugs related compounds, e.g., drug-receptor
complexes, the network is a DGRN. Thus, GRN could be considered a subset of DGRN.
The mathematical descriptions of the mechanisms of regulation, by TFs, microRNAs, and
drug-related compounds, are the same. They have the form of the most common
pharmacodynamic (PD) blocks, describing the relationship between drug doses or
concentration and effects:
1) Linear (stimulation [+] or inhibition [-]) model: E=Eo£ S - C,
2) Log-linear (stimulation [+] or inhibition [-]) model: E=Ey+ S -log (C,)
3) Ordinary (y = 1) or sigmoid (y > 1) Emax (stimulation [+] or inhibition [-]) model:
E=E,+E__ -C /(C/ +EC)

max

where E is the effect variable; Ey is the baseline effect; E, is the maximum drug-induced
effect, also called capacity; ECsp (sometimes ICso [50% inhibitory concentration] is used instead
of ECs for inhibitory effect) are the plasma concentration at 50% of maximal effect, also called
sensitivity; S is the slope of the line relating the effect to the concentration; C. is the
concentration to which the effect is related, and y is the sigmoidicity factor (Hill exponent).
GRN ODE systems models have one ODE for each mRNA, microRNA and protein,
corresponding to transcription and translation, respectively. The protein can be a
transcription factor too. DGRN ODE systems have some additional equations for the drug
related compounds, which can act as transcription factors, e.g., a drug-receptor complex in
the cellular nucleus. The corresponding ODE describes the translocation of the drug-
receptor complex from cytoplasm to nucleus and its degradation. The ODE systems for
DGRN and GRN results from the following;:

1. summing up the pharmacokinetic blocks and

2.  multiplying the rate constants of the regulated processes by pharmacodynamic

blocks.

Usually, it is assumed that other processes, such as diffusion and transport, are fast with
respect to transcription and translation and may thus be ignored.
In words, the structure of these equations, for any molecular specie, is simple:
Rate of Change =
Production Rate x Production Regulation - Degradation Rate x Degradation Regulation
Thus, the rates of change in a specific mRNA concentration (mRNA), and in the translated
product concentration (e.g., a transcription factor, TF, in our case) are

dmRNA = kcm ' Rc - kdm ' Rd ’ mRNA (1)
dt S S
dTF
dt = ksTF -mRNA - RsTF _deF 'RdTF -TF (2)

where kg, is the rate at which mRNA is produced and ks, is the mRNA degradation rate
constant; ksrr is the TF degradation rate constant, and k,rr is the average TF translation rate
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constant. Rs and Ry are generic notations for different regulatory factors of mRNA synthesis and
degradation, respectively. Usually, R represents TFs regulating mRNA synthesis and Rsrr
represents microRNAs regulating translation and probably drugs related compounds; R; and
Rarr could represent drug-related compounds, e.g., a drug-receptor complex. A regulatory factor
Ry, 4 =1 indicates no regulation, and an R;, 4 having the form of one of the pharmacodynamic
blocks indicates the action and the mechanism of action of a regulatory factor.
Equation (1) is a simple description for both mRNA and miRNA rates and their regulation.
Equation (2) is a simple description of translation rate and its regulation for any protein,
including the special case of transcription factors, were the protein also regulates transcription.
It is worth mentioning that, while many molecular species could act as transcription or
translation regulators, embedding all these regulatory interactions in a single variable or
function is just a highly accurate but first approximation, as our results will show.
Equations (1) and (2) together with the above PK and PD blocks form a fundamental ODE
patterns or building blocks of the (D)GRN models. This common domain knowledge,
together with the information obtained via the data and knowledge mining approach, can
be simply used to reduce the structure search space of the algorithm, and to identify the
biochemical mechanisms involved, in the resultant model. As we will show bellow, the
information concerning the direction, sign and mechanisms of such interactions can be at
least partially extracted from data by RODES algorithms, in a data mining and network
discovery from data approach. It possible and very useful to integrate the data mining
approach using numbers, with a knowledge mining approach, extracting information from
processed published literature databases, using dedicated systems biology software (e.g.,
IPA™ from Ingenuity, or GeneGo™ from GeneGo).
Three cases, of increasing complexity, are possible for both equation (1) and equation (2),
and for simplicity, they will be presented only for equation (1), and for mRNA:

1. unregulated mRNA transcription and unregulated mRNA degradation,

2. regulated mRNA transcription and unregulated mRNA degradation, and

3. regulated mRNA transcription and regulated mRNA degradation.
For unregulated transcription and degradation (Rs = 1, Ry = 1), all variables (mRNAs) are
available and one can use GP RODES, the RODES algorithm based on Genetic Programming
(see (Floares, 2008) for details) to automatically infer the corresponding ODE.
For regulated transcription and missing information about the TFs or drug related
compounds (variable missing), RODES was extended in (Floares, 2008), using neural
networks and simulated data. The application of this NN RODES version to real
experimental microarray data is a central theme of this contribution. Usually, while the
equations’ structure is known - it should be a version of equation (1)), and the parameters’
values can be found in the literature or in public databases - only the temporal series of the
mRNAs are available from microarray experiments, but not those of the TFs.
It is important to emphasize that this is an important and difficult data mining or
knowledge discovery in data problem. Remember that even the most sophisticate artificial
(computational) intelligence methods are just extracting information from data and not
producing information. Information could be missing from data in two major distinct ways:

1. some variables from data have missing values, or
2. some variables are missing from data.

Both missing values and missing variables from data are encountered very frequently in
practice. The first one is very easy to indentify just by carefully examining the data. The
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second one is not so evident, because in the most interesting data mining experiments one
does not know exactly the number of relevant variables. Heuristically, missing variables
manifests itself by a relatively low accuracy, which is very similar for different algorithms.
Without entering into details, a typical situation could be for example a medical data mining
problem -one has a dataset of say 150 patients, 10 input variables, and a binary diagnosis
output variable, and (almost) no missing values; despite that, the prerequisites for a high
accuracy are present, one only obtains say 80% accuracy. More than this, the accuracy is
almost the same +/- 3% for all the algorithms tried - neural networks, support vector
machines and decision trees - with the best settings for the algorithms. In addition, from the
10 input variables, only 7 proved relevant for the diagnosis problem. In such a situation, it is
clear that information is missing from data and this is related to variables missing. To our
knowledge, this is the first time a solution based on artificial intelligence is proposed, for the
important problem of information missing, in the form of variables missing from data. Our
solution allows the reconstruction of missing variables, is accurate, and is by no means
limited to the biomedical problems reported here.

2.2 RODES Algorithm: No Missing Information, All variables measured
The goal of the proposed algorithm for reverse engineering is threefold:
1. to automatically identify the structure of accurate ODE systems models of GRN
and DGRN,
2. to automatically estimate their parameters, and
3. toidentify the biochemical and pharmacological mechanisms involved.
The RODES algorithm starts from complex time-series data. The name of the algorithm is
related to its results, not to the biological systems investigated. This is because we
successfully applied it to various biological networks: the subthalamopallidal neural
network of the basal ganglia (Floares, 2008) and the vascular networks of tumors (work in
progress). The result is an ODE system, dX/dt = f(X).
In the time-series data, at any given discrete time point, ¢, where t =1, 2,..., T, dX/dt is equal
to f(x) at the same time point t. Equivalently, for any individual ODE of the system, dX;=dt
(at t) = fi(X) (at t), where i =1, 2,..., n is the number of variables. Thus, each equations of the
ODE system can be reconstructed one by one, via a simple data mining approach, as
algebraic relations f; between the inputs X and output dXy/dt. The algorithm can be used for
experimental or simulated data. For simulated data, the true structure of the (D)GRN
models is known, and this allows a faithful evaluation of the predicted models. We therefore
used simulated time-series data to illustrate our algorithm; the accuracy for experimental
data is similar, as will be shown for the more difficult problem of missing information
(variables) from data (see next section). The RODES version with no missing information
from data is based on genetic programming, as a machine learning method, and consists of
the following steps:
1. Compute the time derivative of each variable, dXi=dt, at all discrete time points ¢:
(a) differentiate each variable with respect to time for simulated data;
(b) fit first a function to smooth the data, and then differentiate it, for noisy
experimental data.
2. Build input-output pairs, (X;; dX;=dt), at the corresponding discrete time points t:
(@) use all variables supposed to belong to the right hand side of the
reconstructed ODE as inputs,
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(b) use the time derivative of one of the variables as output, if the GP
implementation accepts many inputs but only one output, or
(c) use the time derivatives of all the variables as output, if the GP
implementation accepts many inputs and many outputs.
3. Build training, validation (optional, to avoid overfitting), and testing sets from the
input-output pairs.
4. Initialize a population of randomly generated programs, coding mathematical
models relating the inputs X; to the output(s) dX;=dt.
5. Perform a tournament contest:
(@) Randomly select four programs and evaluate their fitness (mean squared
error) - how well they map the input data X; to the output data dX;=dt.
(b) Select two programs as winners and the other two as losers.
(c) Copy the two winner programs and transform them probabilistically by:
i. exchanging parts of the winner programs with each other to
create two new programs (crossover) and/or
ii. randomly changing each tournament winner to create two new
programs (mutation).
(d) Replace the loser programs with the transformed winner programs. The
winners of the tournament remain in the population unchanged.
6. Repeat steps 5(a) - 5(d) until a program is developed that predicts the behavior
sufficiently.
7.  Extract the ODE model from the resultant program or directly use it.
Steps 1 - 3 reduce the problem of reversing a system of coupled ODEs, dX/dt = f(X), in that of
reversing individual, decoupled, algebraic equations, dX/dt = fi(X). Even though the output
is in reality a time derivative, dX;=dt, the algorithm is simply searching for an algebraic
equation relating the inputs to the output, at each discrete time point ¢. The corresponding

relation is the predicted function, ]A‘Z(X) , for the right-hand side of each differential

equation of the system.

This approach drastically reduces the CPU time of the algorithm, by orders of magnitude,
because in step 5(a) the fitness evaluation does not require the integration of the ODE
system. More precisely, one can use a fitness function based on (e.g., (Spieth et al., 2006)):

E=Y>(X(0)-X(1) ()

i=1 t=1

where j is the number of programs, n is the number of variables, T is the number of sampling

points, )A(i (t) is the numerically calculated time course of the variable X; at time ¢ from the ODE

system predicted by the program j, and Xi(f) represents the experimentally or simulated time
course of X; at time t. Therefore, for every programs fitness calculation, at each generation, the
ODE system must be numerically integrated. We used a fitness function of the form

E z%i{d&(t) B dXi(t)J n

i1 dt dt
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where j and T are as above, dXi(t) / dt is the time derivative at time point ¢ of the variable X;

predicted by the program j, and dX;(t)/dt represents the time derivative at time t of the
experimental or simulated variable X; calculated in step 1 of the algorithm.
While the time needed to integrate a system of ODE seems negligible, during fitness
evaluation the integration has to be executed hundreds or thousands of times per
generation. These, and the results of our previous studies (Floares, 2005), (Floares, 2006),
(Floares, 2007b), suggest that RODES will scale up well, as required by modern high-
throughput biomedical techniques.
We used a linear version of a steady-state genetic programming proposed by Banzhaf (see
(Brameier & Banzhaf, 2007)) for a detailed introduction, and the literature cited there). In linear
genetic programming the individuals are computer programs represented as a sequence of
instructions from an imperative programming language or machine language. Nordin
introduced the use of machine code in this context (cited in (Brameier & Banzhaf, 2007)). The
major preparatory steps for GP consist of determining
1. the set of terminals (see below),
the set of functions (see below),
the fitness measure (see equation (4)),
the parameters for the run (see below),
the method for designating a result, and
6. the criterion for terminating a run.
The function set, also called instruction set in linear GP, can be composed of standard
arithmetic or programming operations, standard mathematical functions, logical functions,
or domain-specific functions.
We used the following Genetic Programming parameter setting:
e Population size 500
e Mutation frequency 95%
o  Block mutation rate 30%
o Instruction mutation rate 30%
o Instruction data mutation rate 40%
e Crossover frequency 50%
o Homologous crossover 95%
e  Program Size 80-128
e Demes
o  Crossover between demes 0%
o Number of demes 10
o  Migration rate 1%
e  Dynamic Subset Selection
o Target subset size 50
o  Selection by age 50%
o  Selection by difficulty 50%
o  Stochastic selection 0%
o Frequency (in generation equivalents) 1
e  Function set {+, -, *, /}
o  Terminal set 64 =j+k
o Constantsj
o Inputsk

AN
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Using simple and common domain knowledge, such as the set of mathematical functions
that appear in the models, e.g., arithmetic functions but not trigonometric function, is
enough for RODES to find the proper structure of the reconstructed equations, also greatly
increasing execution speed. The terminals are variables and parameters. In microarray
experiments, the number of mRNAs is usually of the order of 102 or 103 after filtering, but
the number of the clusters of genes with similar temporal signatures is small. One needs
only to discover this small number of prototype ODE structures.

All the equations have one of these prototype structures, and the equations in the same
cluster have the same structure but different parameter values. We still do not know which
are the input variables for each mRNA ODE equation. From the fundamental ODE patterns
of DGRN, we know that the equations for each mRNA (see equation (1)) contains a synthetic
and a degradation term.

The inputs variables for these mRNA equations are

1. the mRNA concentration - in a degradation term proportional with mRNA
concentration - for unregulated transcription and degradation,

2. the concentration of a transcription factor (for GRN) and/or of a drug related
compound (for DGRN) - in a PD block (Rs in eqn (1))multiplying a PK block (the
constant mRNA synthesis) - for regulated transcription and unregulated
degradation, and

3. as above but also the concentration of a drug-related compound (for DGRN),
contained in a PD block (Rq in eqn (1)) multiplying a PK block (the linear mRNA
degradation) - for regulated transcription and regulated degradation.

The RODES version described in this section requires all inputs to be available. This
condition is certainly true for the first situation but is usually false for the second and the
third. The next section will extend RODES to cope with the second situation.

Because we know the structure of this ODE (see eqn (1)), this is also the route to automate
the discovery of the biochemical and pharmacological molecular mechanisms involved.
Analyzing the resultant equations, one can easily identify

1. cellular processes such as syntheses and degradations and their mechanisms as PK
blocks,

2. the presence of regulation and

(@) which are the regulated processes - their rate constants are multiplied by
PD blocks,

(b) which are the regulatory factors - transcription factors for GRN, drugs, or
both for DGRN - the corresponding PD blocks can be functions of the TF
concentrations or drug-related compound concentrations, respectively,

3. the regulation mechanisms - by looking at the corresponding PD blocks and at the
rate constants they are multiplying.

There are situations in which the PK/PD mechanisms in the resultant mathematical model
need to be clarified. When we have the product of two or more constants, in the symbolic
form of the model, the algorithm will find only one numerical value. Using elementary
domain knowledge, one can easily and clearly identify the PK/PD mechanisms (see
(Floares, 2006) for details).
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2.3 NN RODES - Neural Network Feedback Linearization
for Missing Variable Identification
We focused only on the genes which expression is affected by the synthetic glucorticoid
methylprednisolone treatment, the goal being to reverse engineer this drug gene regulatory
network. The genes response to glucorticoid treatment can be classified into three categories:

1) genes stimulated by methylprednisolone,

2) genes inhibited by methylprednisolone,

3) genes with biphasic behavior - stimulation followed by inhibition or inverse.
While these three categories can be discriminated even by simple visual inspection of the
temporal series of the microarray data, this approach does not entail objective criteria for
selection of probes for further consideration. To screen for the probe sets objectively, the
entire dataset was filtered with various filters (Almon, et al., 2007). We selected only the
genes belonging to the first two aforementioned categories, stimulated and inhibited. For
the categories of stimulated/inhibited genes, we tested two mechanisms - linear
stimulation/inhibition and ordinary and sigmoid Emax stimulation/inhibition (see the
pharmacodynamic blocks in section 2.1).
From the point of view of our theory of drug gene regulatory networks, we investigated the
case of regulated mRNA transcription and unregulated mRNA degradation (see equation
(1)), where the missing variable is either the temporal series of the regulatory transcription
factor (in GRN and DGRN) or those of the drug-receptor complex (in DGRN).
This requires the neural networks feedback linearization version of RODES (NN RODES)
which can cope with missing information. NN RODES was first introduced in (Floares,
2008) and applied to simulated data in order to test it on equations with known structure
and parameters. The tricky solution we proposed in (Floares, 2008) consists in transforming
the modeling problem in a tracking control problem:

1. The measured mRNA temporal series becomes the desired or reference trajectory.

2. The ODE with known structure (see equation (1)) and missing variable(s) becomes

the plant to be controlled.
3. The missing variables become the control inputs; they are PD blocks incorporated
in the position of the regulatory factor R; of the transcription in equation (1).

The problem is to find the control(s) such that the plant output - the solution of the mRNA
ODE - tracks the desired trajectory with an acceptable accuracy, while all the states and the
control remain bounded in a physiological range.
It is tempting to speculate that this might be similar to the problem faced by the real living
systems during evolution. This idea is corroborated by the fact that regulation appears to
evolve on a faster time scale than the coding regions of the genes. For example, related
animals, such as mice and humans, have similar genes, but the transcription regulation of
these genes is quite different.
Also, an approach like this could offer a rational foundation for gene therapy, based on
understanding and controlling (D)GRN, which are complex networks of interactions,
instead of the pedestrian prevailing approach based on a ”“one gene - one disease” rule.
Feedback linearization can be considered one of the most important nonlinear control
design strategies developed in the last few decades (Garces et al., 2003). This approach
algebraically transforms a nonlinear dynamic system into a linear dynamic system, by using
a static-state feedback and a nonlinear coordinate transformation, based on differential
geometric analysis of the system.
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Because our goal is to automate the modeling process, we intended to use a computational
intelligence version of feedback linearization. The massive parallelism, natural fault
tolerance, and implicit programming of neural networks suggest that they may be good
candidates. We successfully applied neural network feedback linearization, based on
multilayer perceptrons (MLPs), to complex pharmacogenomic systems to find adequate
drug dosage regimens (Floares, 2005); (Floares, 2006).

Owing to the reformulation of the modeling problem as a control problem, a NN FBL
approach seems adequate and feasible. We used the NARMA-L2 version of input-output
feedback linearization (Narendra, cited in (Garces et al., 2003); see also the literature cited in
(Gareces, et al., 2003), in which the output becomes a linear function of a new control input.
Fortunately, the prerequisites of the approach, represented by the equations” structure and
parameters, are usually known. In the particular situation investigated here the following
domain knowledge and features of the experimental design are taking into account:

1. The equations structure - there is a strong theoretical foundations for building
kinetic equations like equations (1) and (2).

2.  The equations parameter - for the control untreated subjects there is no drug
regulation (R) in equation 1, supposed at steady state; at time t = 0 the
concentration of mRNA is mRNAo = 1, because all expression profiles are
normalized to that of the control subjects, and thus ks, and ks, are easily estimated.

3. The regulation and its mechanisms

a. with the proper filters only genes regulated by the drug are supposed to
be selected,
b. filters can discriminate between three category of regulation: stimulation,
inhibition, or both,
c. the number of possible regulation mechanisms is small and their
equations are known (see section 2.1).
The control input is the unknown regulator: a pharmacodynamic block (see section 2.1)
containing the TF concentration in GRN, a drug-related compound, or both in DGRN. In this
approach a neural network model of the ”plant” is first identified, even if, as in our situation, the
mathematical model of the “plant” is known. The mathematical model of the “plant” is simply
the equation 1, where only the mRNA synthesis is regulated, and the degradation is not:

AmRNA _ kR ~k,, mRNA. ©)
dt

As we previously stated, the values of ks, and ks, are usually known. For example, for the
ornithine decarboxylase gene we have ks, = kg = 0.30. It is known from the experiments that
the drug stimulates this gene, but we do not know exactly the mechanism and the
corresponding formula for Rs. One can try a linear stimulation mechanism, followed by an
Emax one if the first failed, these being the most common mechanisms in the order of
increasing complexity. Thus, the Rs for these two simulation experiments are:

R, =E,+SDR(N) (6)
and
R, =E,+DR(N)/ (EC50 + DR(N)) (7)

respectively; the so called basal effect of the drug, Eo = 1, and DR(N) is the drug-receptor
complex in the nucleus, the control input which we are trying to find.
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A random input control, between zero and the estimated maximal value, is injected into the
model at random intervals. The NN model structure is the standard nonlinear
autoregressive moving average (NARMA) model, adapted to the feedback linearization of
affine systems - the controller input is not contained in the nonlinearity.
We want the system output represented by the mRNA to track a reference trajectory. This
reference trajectory could be related to the measured level of genes expression, as it will be
shown bellow, or to a therapeutic objective in a gene therapy context, for example. In the last
situation, the idea is that we can in a similar way constrain the genes expression, via the drug
inputs to follow some desired or normal trajectories, when they are pathologically perturbed.
We need the time-series data of the mRNA of the investigated genes. Usually, the
expression levels in microarray experiments are measured at a couple of specific time
points, on a small number of subjects for each time point (see (Almon et al., 2005); (Almon et
al. 2007) for the particular datasets used in this investigation).
In order to apply the approach previously described, we first calculated the mean expression
level for each time point, and then interpolated using a cubic spline interpolant. Because taking
the derivative of noisy data can increase the noise, the result of the interpolation is
differentiated instead, with respect to time. The number of hidden layers is one for all neural
networks. The number of neurons in the hidden layer, of the two MLPs, is between 5 and 9,
depending on the complexity of the problem and the results of the simulation experiments.
The activation functions are tangent hyperbolic for the hidden layer and linear in the output
layer for all NNs. The parameters and their values are the following;:
e Network Architecture

o  Number of hidden layers 1

o  Size of hidden layer 5-9

o Sampling time 0.01

o  Number of delayed plant inputs 3

o  Number of delayed plant outputs 2

e Training Data

o Training samples 4320
Minimum plant input 0
Maximum plant input maximum DR(N)
Minimum time interval value 0.1
Minimum time interval value 1
Minimum plant output 0
Maximum plant output maximum mRNA

o  Training epochs 150
We investigate the prediction errors by cross-validation on a test set. We used Bayesian
regularization (MacKay, 1992), a training function that updates the weight and bias values
according to Levenberg-Marquardt optimization. It minimizes a combination of squared
errors and weights and then determines the correct combination to produce a network that
generalizes well. We start with different random initial conditions to avoid ending in “bad”
local minima. In NN FBL the controller is simply a rearrangement of the neural network
plant model. The time-series of the missing variables are identified as the control inputs, and
the complete equation is thus reconstructed.

O O 0O O O O
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Three important problems can be approached by the proposed methods:
1) finding the unknown transcription factor profile in a drug-gene regulatory
network, using the measured mRNA profile as a reference trajectory;
2) finding the unknown drug-receptor complex profile in a drug-gene regulatory
network, using again the measured mRNA profile as a reference trajectory; and
3) finding the optimal/individualized drug-receptor complex profile, corresponding
to the optimal drug dosage regimen, capable of constraining the mRNA profile to
track a desired therapeutic objective, in a pharmacogenomic context.
Because of the mechanistic and mathematical similarities between transcription regulation
by TFs and by drug-receptor complexes, the example is illustrative for both situations.

3. Results

Most often, the temporal series of the TF or of the drug-receptor complex is not known for
regulated genes. This is also true for the temporal series of the mRNA of the TF in proteomics
experiments, when one wants to reconstruct the TF ODE (see eqn (2)). In these situations,
RODES clearly indicates that information is missing from the input set (see (Floares, 2008)),
and one has to use the extension based on neural network feedback linearization.
For illustration we tested the NN RODES algorithm on reconstructing equation (3) for two genes:
the ornithine decarboxylase gene and the a-2Macroglobulin gene. The parameters for the two
genes are: kg, = kg, = 0.30 for ornithine decarboxylase, and ks, = ka, = 0.038 for a-2Macroglobulin.
There are three temporal series in equation 3:
1) one for the mRNA - obtained by fitting the mean expression level at each time point
of the experiment, using a cubic spline interpolant (see Fig. 1)
2) one for the dmRNA/dt - obtained by differentiating with respect to time the result of
the interpolation (see Fig. 1)
3) one for the regulator - the drug-receptor complex in the cellular nucleus, DR(N),
which we are trying to reconstruct with the aid of NN FBL.
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Fig. 1. Ornithine decarboxylase mRNA - processed mRNA experimental data fitted with a
cubic spline interpolant and the 1st derivative with respect to time (explanation in text).
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The settings of the neural networks feedback linearization experiments are presented at the
end of section 3, above.

In our previous studies (see (Floares, 2008)) the performance of the identification step of NN
FBL was very good, but also somehow expected because the data were simulated. Here,
with real microarray time-series data the performance were very high too, and the order of
magnitude of the error is 10-3 - 10~ for both genes (see Fig. 2 and Fig. 3).

Input Plant Output
1000 —-
| )
800} : 800
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400 ¢ = 400
200t ‘I_J‘ 200
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Error NN Output
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Fig. 2. Neural networks feedback linearization model identification for ornithine
decarboxylase mRNA; the NN model have an almost identical output for the same input as
the plant (mathematical model), the order of magnitude of the error is 10-3 (un-scaled data;
explanation in text).
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Also, the performance of the identification of the drug-receptor complex concentration
profile in the nucleus, DR(N), is very good for both genes; the results are shown just for

50
time (s)
Fig. 3. Neural networks feedback linearization model identification for a2-Macroglobulin

mRNA; the NN model have an almost identical output for the same input as the plant
(mathematical model), the order of magnitude of the error is 10~ (scaled data; explanation
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ornithine decarboxylase, those for the a2-macroglobulin being similar (see Fig. 4).
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Fig. 4. Neural networks feedback linearization control for ornithine decarboxylase mRNA;
the missing temporal-series of drug-receptor complex in the nucleus, DR(N), are
reconstructed such as to constraint the mRNA output of the model to follow the measured
mRNA (processed). The accuracy of the control is very good (explanation in text).

Thus, NN RODES using neural networks feedback linearization is able to reconstruct with
high accuracy a system of ordinary differential equations, modeling (drug) gene regulatory
networks, in the very difficult but common situation of having only the time-series of the
gene expression levels, while the time-series of the regulators - transcription factors and
drug related compounds - are missing.

Because of the very low tracking error, the reference trajectory, which is the measured
mRNA profile (after the processing previously described) the mRNA output of the
controlled system cannot be distinguished.

4. Conclusion

ODE systems are one of the most sophisticated approaches to modeling gene regulatory
networks and drug gene regulatory networks, the superset of GRN we have recently
proposed; it is also one of the most difficult. This contribution showed the applications of
RODES, our algorithm for reverse-engineering gene networks, based on linear genetic
programming and neural networks control by feedback linearization method, to real
microarray time-series data (NN RODES), and simulated data (GP RODES).
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Common to both neural networks and genetic programming component is the proposed
method for decoupling the ordinary differential equations system. This allows reversing the
ordinary differential equations of the system one by one. The neural networks component
enables RODES to deal with the very difficult but common situation in which only the
microarray time-series data are available, but the regulators time-series, transcription factors
and drug related compounds, are missing.

Here we focused on the case of regulated mRNA transcription and unregulated mRNA
degradation, when either the temporal series of the regulatory transcription factor (in GRN)
or those of the drug-receptor complex (in DGRN) are missing. The tricky solution consists
of transforming the modeling problem in a tracking control problem. The measured mRNA
temporal series becomes the desired, or reference, trajectory. The problem is to find the
control(s) such that the plant output - the solution of the mRNA ODE - tracks the desired
trajectory with an acceptable level of accuracy. These control inputs are the missing
variables that can be identified in this way, thus completing the automatic reconstruction of
the ODE equation. To the best of our knowledge, RODES is the only reverse-engineering
algorithm based on neural network feedback linearization, that has been applied to reverse
engineer gene networks, as a highly accurate system of ordinary differential equations, in
the very difficult but common situation of missing information from data, as missing
variables - having only the time-series of the gene expression levels, but not the time-series
of transcription factors and drug related compounds. In addition, the algorithm is by no
means restricted to the biomedical field, automating the ODE modeling of complex time
series, even when information is missing from data in the form of variable missing, in any
scientific and technical field.
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