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1. Introduction

Brain-computer interface (BCI) technology is an assistive and augmentative technology that
has the potential to significantly enhance the quality of the lives of those who require an
alternative means of communicating and interacting with people and their environment.
BCI research is growing at a significant pace (Vaughan and Wolpaw, 2006; Wolpaw et al.,
2002; Mason et al., 2007; Lecuyer at al., 2008; McFarland and Wolpaw, 2008; Coyle et al.,
2005a, 2006a) with many advances in signal processing and a range of BCI applications
being investigated in the past few years. The depth and breadth of BCI research in progress
today is indicative of its application potential - this is exemplified by the year-on-year
exponential increase in peer review journal publications, regular news items in the media,
formation of BCI related companies and substantial investment in BCl-specific projects.
Being able to offer people with limited neuromuscular control, due to disease, spinal cord
injury or brain damage (Wolpaw et al., 2002) an alternative means of communication
through BCI will have an obvious impact on their quality of life. A range of studies have
shown that head trauma victims diagnosed as being in a persistent vegetative state (PVS)
and locked-in patients due to motor neuron disease or brainstem stroke may specifically
benefit from BCI systems (Wolpaw et al., 2002; Mason et al., 2007; Owen and Coleman, 2008;
Silvoni et al., 2009; Birbaumir et al., 1999; Kaiser et al., 2001) although, as BCIs improve and
surpass existing assistive technologies, they will be beneficial to those with less severe
disabilities (Pfurtscheller et al., 2007) and applications such as neurofeedback for stroke
rehabilitation (Prasad et al., 2009), epileptic seizure prediction (lasemidis, 2003), driver
awareness/alertness detection and cognitive load monitoring. BCI is also emerging as an
augmentative technology in computer games (Lecuyer at al., 2008), virtual reality (Leeb et
al., 2007) and robotics (McFarland and Wolpaw, 2008).

Even though BCI technology has been under investigation concertedly for the past ten years
(Vaughan and Wolpaw, 2006; Mason et al., 2007), there remain many challenges and barriers
to providing this technology easily and effectively to the intended beneficiaries. These
challenges include i) identification of the most appropriate mental tasks and EEG signals; ii)
enhancing training through better feedback and reduced training durations; iii) developing
hardware for ambulatory EEG - unobtrusive, practical, low power consumption and cost
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effective; iv) developing better biosignal processing algorithms (preprocessing, feature
extraction/selection/translation, classification and post-processing) to improve performance
(classification accuracy (CA), information transfer (IT) rates and reliability; v) enabling long-
term and short-term autonomous system adaptability; vi) developing BCI-specific intelligent
applications; and vii) assessing user acceptance and the service and care required at the
initial stages (Wolpaw et al., 2002).

There have been significant advances in addressing these issues, but often, whilst one issue
is addressed another arises. For example, it is often the case that using more electrode
channels in a motor imagery based BCI provides better performance than a BCI with less
channels - due to a better spatial resolution and the identification of subject-specific cortical
activity topography. However increased electrodes significantly reduce the practicality of
the BCI and increase the obtrusiveness of the montage. Other issues arise with large
montages because the best currently available electrodes require electrolyte gels which can
be messy and time consuming to apply, although dry electrodes are available but not widely
used as yet (Popsecu et al., 2007). Another example of how improvements in one aspect of a
BCI can have implications for other aspects is the subject-specific hyperparameter tuning
problem. Almost all signal processing methods can be improved by tuning hyperparameters
and tailoring signal processing methods specifically to each subject, sometimes referred to as
calibrating the system. In many cases this is done offline manually or semi-automatically
with heuristic approaches using data obtained via a training session. This is an effective
approach and often considered essential however it does pose challenges for offering BCI
widely to multiple individuals where minimal parameter tuning and operator interaction is
required. BClIs require signal processing algorithm that can be applied and adapted easily
and online automatically to accommodate user adaptation and drifts in attention, mood and
fatigue levels. A BCI which does not require extensive parameter tuning and tightly
bounded parameters but a more general set of parameters may be able to accommodate
better accuracies and robustness in the face of such changes and may be more conducive to
autonomous adaptation where only generalized changes to a minimal number of
parameters are necessary.

A range of studies have been undertaken to address these issues but the main emphasis in
BClI is on enhancing the separability of features extracted from EEG signals associated with
various brain states and using advanced classification techniques to maximize the accuracy
in classifying those brain states. For example, the neural-time-series-predication-
preprocessing (NTSPP) framework increases data separability by predictive filtering and
mapping the original EEG signals to a higher dimensional space using
predictive/regression models which have been individually specialised (trained) on EEG
signals associated with specific brain states (Coyle et al., 2004; 2005a; 2006a; 2006b; 2008a;
2009). Features extracted from the mapped space are more separable than those produced
by the original EEG signals, in terms of increased Euclidean distance between class means
and reduced inter-class correlation and intra-class variance. Preliminary results from recent
work (Coyle et al., 2008a) show that NTSPP compares well to the spatial filtering approach
known as common spatial patterns (CSP) (Blankertz et al., 2008; Dornhege et al., 2006;
Ramouser et al., 2000) which is used extensively in BCI research. The results also indicate
that CSP can complement NTSPP using a reduced electrode montage with no subject-
specific parameters; producing a 3-channel BCI that achieves performance which is
comparable to a 60 channel BCI in certain cases when no subject-specific parameter tuning is
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carried out (Coyle et al., 2008a). CSP constructs linear spatial filters that maximize the ratio
of class-conditional variances of EEG sources (Ramouser et al., 2000) and can also be used to
reduce the dimensionality of the feature vector by providing a surrogate data space with
less data. When NTSPP is employed in a 2-class, multichannel system the data
dimensionality can increase significantly whereas CSP can reduce the dimensionality of a
multidimensional signal space, and both can improve separability, therefore the NTSPP-CSP
combination offers significant potential for improved and stable performance in BCI
systems. Additionally, it has been shown that using subject-specific discriminable frequency
bands or spectral filtering (SF) improves overall BCI performance. Spectral features of the
EEG are widely used in MlI-based BCIs because lateralized neuronal activity in motor
cortical areas is usually distinguishable in mu (8-12Hz) and central beta (18-25Hz) frequency
bands (Blankertz et al., 2008; Pfurtscheller et al., 1998; Pfurtscheller, 1998; Coyle et al, 2005b;
Herman et al., 2008). In addition to NTSPP and CSP, subject-specific SF can be employed,
resulting in a temporal-spectral-spatio preprocessing framework (NTSPP-SF-CSP).
Developing approaches which can address all signal processing related issues is a challenge
however the hypothesis of this work is that the neural-time-series-prediction-preprocessing
(NTSPP) framework offers the potential of making BCI simpler (negating the need for
subject-specific hyperparameters and minimizing the number of electrode channels
required) whilst maintaining or enhancing performance of existing BCI methods. The aim of
this chapter is to present a comprehensive analysis of NTSPP and its capacity to address a
number of the issues in BCI, as outlined above, and to determine the advantages of
employing multiple EEG channels in a 2 class motor imagery BCI (22 channels) compared to
2 and 3 channel montages. To achieve these aims data from twenty-three BCI subjects are
used and the analysis carried out has the following objectives.

1. to compare the performance differences between BCIs employing spectral filtering
(SF) only, SF and CSP combined (SF-CSP), NTSPP-SF combined, and NTSPP-SF-CSP
combined.

2. to show that NTSPP can complement CSP using a reduced electrode montage with
minimal subject-specific parameters.

3. to compare performances with 2 electrodes, 3 electrodes and 22 electrodes all with
standard positioning.

Also, to conduct a fairer Compeurison1 of all methods, a range of different classifiers have
been investigated including various statistical classifiers such as Linear Discriminant
Analysis (LDA), Support Vector Machines (SVM) and other distance based classifiers all of
which are available in the Biosig tool box (Schlogl, 2007). A probabilistic Bayes based
classification method with evidence accumulation is also tested in addition to a committee
based approach involving all classifiers are also tested.

The chapter is structured as follows. Section 2 provides information on the datasets used
and the data acquisition process. Section 3 describes the methods employed including
NTSPP and the self-organizing fuzzy neural network (SOFNN) which is used in the NTSPP
framework. CSP and feature extraction methods and a brief description of the classifier and

1 Certain classifiers can work better depending on the number of dimensionality of the feature space
and the number of data samples (feature vectors) available (Tebbens and Schlesinger, 2006).

www.intechopen.com



126 New Developments in Biomedical Engineering

analysis are presented. Section 4 contains results, including a signals and separability
analysis, individual subject analysis and a statistical analysis of the methods presented. A
discussion of results is presented in Section 6 which also concludes the chapter.

2. Data Acquisition and Datasets

Data from 23 subjects is used in this work. All datasets were obtained from the third and
fourth international BCI competitions, BCI-III (Blankertz et al., 2005) and BCI-IV (Blankertz
et al., 2008), which include datasets 2A and 2B from BCI-IV (Schlogl et al., 2008a; 2008b) and
dataset IIla from BCI-III (Schlogl et al., 2005a; 2005b). Table 1 below provides a summary of
the data.

Dataset 2B - This data set consists of EEG data from 9 subjects (S1-59). Three bipolar
recordings (C3, Cz, and C4) were recorded with a sampling frequency of 250 Hz
(downsampled to 125Hz in this work). The placement of the three bipolar recordings (large
or small distances, more anterior or posterior) were slightly different for each subject (for
more details see (Schlogl et al., 2008b; Leeb et al., 2007). The electrode position Fz served as
EEG ground. The cue-based screening paradigm (cf. Fig. 1(a).1) consisted of two classes,
namely the motor imagery (MI) of the left hand (class 1) and the right hand (class2). Each
subject participated in two screening sessions without feedback recorded on two different
days within two weeks. Each session consisted of six runs with ten trials each and two
classes of imagery. This resulted in 20 trials per run and 120 trials per session. Data of 120
repetitions of each MI class were available for each person in total. Prior to the first motor
imagery training the subject executed and imagined different movements for each body part
and selected the one which they could imagine best (e. g., squeezing a ball or pulling a
brake). For the three online feedback sessions four runs with smiley feedback were recorded
whereby each run consisted of twenty trials for each type of motor imagery (cf. Fig. 1(a).2
for details of the timing paradigm for each trial). Depending on the cue, the subjects were
required to move the smiley towards the left or right side by imagining left or right hand
movements, respectively. During the feedback period the smiley changed to green when
moved in the correct direction, otherwise it became red. The distance of the smiley from the
origin was set according to the integrated classification output over the past two seconds
(more details can be found in (Leeb et al., 2007)). The classifier output was also mapped to
the curvature of the mouth causing the smiley to be happy (corners of the mouth upwards)
or sad (corners of the mouth downwards). The subject was instructed to keep the smiley on
the correct side for as long as possible and therefore to perform the MI as long as possible. A
more detailed explanation of the dataset and recording paradigm is available (Schlogl et al.,
2008a). In addition to the EEG channels, the electrooculogram (EOG) was recorded with
three monopolar electrodes and this additional data can be used for EOG artifact removal
(Schlogl et al., 2007b) but was not used in this study.
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Fig. 1. (a) Timing scheme of the paradigm for recording dataset 2B; 1) the first two sessions
provided training data without feedback, and 2) the last three sessions with smiley
feedback. (b) Timing scheme of the paradigm for recording dataset Illa; (c) Timing scheme
of recording for dataset 2A; (d) electrode montage for recording dataset 2A; (e) electrode
montage for recording dataset Illa with the chosen subset of 22 electrodes shown (red) and
electrodes used to derive bipolar channels around ¢3, cz and c4. For dataset 2B electrodes
positions were fine tuned around positions ¢3, cz and c4 for each subject0 (Leeb et al., 2007)

Competition | Dataset Subjects  Labels  Trials Classes Channels
BCI-IV 2B 9 S1-S9 1140 2 3

BCI-IV 2A 9 S10-S518 576 4 22
BCI-III Ila 3(+2)=5  S519-523 240-360 4 60

Table 1. Summary of datasets used from the International BCI competitions 2003 and
2008 plus additional provided datasets.

Dataset 2A - This dataset consists of EEG data from 9 subjects (S10-S18). The cue-based BCI
paradigm consisted of four different motor imagery tasks, namely the imagination of
movement of the left hand (class 1), right hand (class 2), both feet (class 3), and tongue (class
4) (only left and right hand trials are used in this investigation). Two sessions were recorded
on different days for each subject. Each session is comprised of 6 runs separated by short
breaks. One run consists of 48 trials (12 for each of the four possible classes), yielding a total
of 288 trials per session. The timing scheme of one trial is illustrated in Fig. 1(c). The subjects
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sat in a comfortable armchair in front of a computer screen. No feedback was provided but a
cue arrow indicated which motor imagery to perform. The subjects were asked to carry out
the motor imagery task according to the cue and timing presented in Fig. 1(c). For each
subject twenty-two Ag/AgCl electrodes (with inter-electrode distances of 3.5 cm) were used
to record the EEG; the montage is shown in Fig. 1(d) left. All signals were recorded
monopolarly with the left mastoid serving as reference and the right mastoid as ground. The
signals were sampled with 250 Hz (downsampled to 125Hz in this work) and bandpass
tiltered between 0.5 Hz and 100 Hz. EOG channels were also recorded for the subsequent
application of artifact processing although this data was not used in this work. A visual
inspection of all data sets was carried out by an expert and trials containing artifacts were
marked. For a full description of the recording procedure see (Schlogl et al., 2008b).

Dataset Illa - This dataset was recorded from three subjects, S19-521 using a 64-channel
Neuroscan amplifier (datasets with the same recording procedure obtained from 2
additional subjects were provided by the organizers after the competition (522-523)). Sixty
EEG channels were recorded using a 250Hz sampling rate (down-sampled to 125Hz in this
work). The electrode positioning is illustrated in Fig. 1 (e). The training involved the
sequential repetition of a cue based trial according to the paradigm and timing illustrated in
Fig. 1(b) for each of the 5 subjects. The subjects were seated in a comfortable chair and
instructed to imagine left hand, right hand, foot, or tongue movement according to the
direction of the cue arrow on the screen (only left and right hand trials are used in this
investigation). Each of the four motor imagery tasks was performed 10 times within each
run in a randomized order. In this experiment no feedback was provided to the subject.
Subjects 1 performed 360 and subjects 2-5 performed 240 trials (cf. Schlogl et al., 2005a;
2005b for further details).

To summarize, in this work only twenty of the sixty available channels for dataset Illa are
used as shown in Fig. 1(e). For all datasets 2 channel and 3 channel montages were also
tested using the electrodes positioned anteriorly and posteriorly to c3, cz and c4 positions to
derive 2-3 bipolar channels (i.e., the 2 channel montage involves c3 and c4, whereas the 3
channel montage also included cz). These channels are located over left, right hemisphere
and central sensorimotor areas - areas which are predominantly the most active during
motor imagery. As outlined all data was downsampled to 125 Hz in this work also.

3. Methods

3.1 Neural-Time-Series-Prediction-Preprocessing

NTSPP, introduced in (Coyle et al.,, 2005a), is a framework specifically developed for
preprocessing EEG signals. NTSPP increases data separability by predictive mapping and
filtering the original EEG signals to a higher dimensional space using predictive/regression
models specialized (trained) on different EEG signals. The basic concept behind NTSPP is
focused around exploiting the differences in prediction outputs produced by different
predictor networks specialized on predicting different types of EEG signals to help improve
the separability of EEG data and enhance overall BCI performance.

Consider two EEG times-series, x;, i € {1,2} drawn from two different signal classes c;, i €
{1,2}, respectively, assuming, in general, that the time series have different dynamics in
terms of spectral content and signal amplitude but have some similarities. Consider also two
prediction neural networks, fi and f,, where f; is trained to predict the values of x; at time
t+m given values of x; up to time ¢ (likewise, f; is trained on time series x;), where i is the
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number of samples in the prediction horizon. If each network is sufficiently trained to
specialize on its respective training data, either x; or x; using a standard error-based
objective function and a standard training algorithm, then each network could be
considered an ideal predictor for the data type on which it was trained” i.e., specialized on a
particular data type.

In such cases the expected value of the mean error residual given predictor f; for signal x; is
E[x1-f1(x1)]=0 and the expected power of the error residual, E[x;-fi(x)]2 would be low
whereas, if x; is predicted by fi then E[(x2-fi(x2)] # 0 and E[(x2-f1(x2)]> would be high. The
opposite would be observed when x;, i € {1,2} data are predicted by predictor f,. Based on
the above assumptions, a simple set of rules could be used to determine which signal class
an unknown signal type, u, belongs too. To classify u one, or both, of the following rules
could be used

1.If E[u- fi(u)] = 0 & E[u- fo(u)] #0thenu € Cj, otherwise u € Co.
2.If E[u- fi(u)]2< E[u- fo(u)]? then u € C;, otherwise u € C.

These rules are simple rules and may only work successfully in cases where the predictors
are ideal. Due to the complexity of EEG data and its non-stationary characteristics, and the
necessity to specify an NN architecture which approximates universally, predictors trained
on EEG data will not consistently be ideal however; when trained on EEG with different
dynamics e.g., left and right movement imagination (left or right motor imagery), predictor
networks can introduce desirable characteristics in the predicted outputs which render them
more separable than the original signals and thus aid in determining which class an
unknown signal belongs to. As is shown in Section 3 this predictive filtering alters levels of
variance in the predicted signals for data types and most importantly manipulates the
variances differently for different classes. Instead of using only one signal channel, the
hypothesis underlying the NTSPP framework is that if two or more channels are used for
each signal class and more advanced feature extraction techniques and classifiers are used
instead of the simple rules outlined above, additional useful information relevant to the
differences introduced by the predictors for each class of signal (where the networks have
been trained to specialise on particular data dynamics) can be extracted to improve overall
feature separability and thus produce features that are easier classified than the original
signals.

In general, the number of time-series available and the number of classes governs the
number of predictor networks that must be trained and the resultant number of predicted
time series from which to extract features,

P=MxC (1)

where P is the number of networks (=no. of predicted time-series), M is the no. of EEG
channels and C the is number of classes. For prediction, the recorded EEG time-series data is
structured so that the signal measurements from sample indices t to t-(A-1)r are used to

2 Multilayered feedforward NNs and adaptive neuro fuzzy inference systems (ANFIS) are considered
universal approximators due to having the capacity to approximate any function to any desired degree
of accuracy with as few as one hidden layer that has sufficient neurons (Hornik et al., (1989); Jang et al.,
1997).
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make a prediction of the signal at sample index t+r. Parameter A is the embedding
dimension and
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Fig. 2. Illustration of a generic multiclass or multichannel neural-time-series-prediction-
preprocessing (NTSPP) framework with spectral filtering, feature extraction and
classification.

x,(t+7) = £, (x, () x,(E= (A= 1)7) )

where 1 is the time delay, 7 is the prediction horizon, f,; is the prediction model trained on
the ith EEG channel, i=1,..,.M, for class ¢, ¢=1,..C, x; is the EEG time-series from the ith channel
and x,, is the predicted time series produced for the channel i by the predictor for class c,
channel i. An illustration of the NTSPP framework is presented in Fig. 2.

Many different predictive approaches can be used for prediction in the NTSPP framework
(Coyle, 2006). In this work the self-organizing fuzzy neural network (SOFNN) is employed
(Coyle et al., 2006, 2009; Leng, 2003; Prasad et al., 2008). This is a powerful prediction
algorithm capable of self-organizing its architecture, adding and pruning neurons as
required. New neurons are added to cluster new data that the existing neurons are unable to
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cluster (cf. the following section for further details). Fine tuning parameters such as the A
and T may enhance the predictive performance and/or BCI performance but earlier work
(Coyle et al., 2005a, Coyle 2006) has shown A=6 and t=1 provide good performance in a two
class motor imagery BCI and these values are used in this investigation. The SOFNNs are
easily trained using a 3s window of event-related segments of signals drawn from between
1-10 randomly chosen, artifact free trials. Trials containing artifacts were not used to train
the networks because artifact contaminated trials can prevent the networks from
specializing on a particular motor imagery.

3.2 The Architecture of the SOFNN

MF;
(13,81

[

-G

(C1j,8.,1j)

Input Layer EBF Layer Normalised Layer Weighted Layer Output Layer
(@) (b)
Fig. 3. (a) The architecture of the self-organising fuzzy neural network (b) Structure of the
jth neuron R; within the EBF layer

The SOFNN is a five-layer fuzzy NN and has the ability to self-organize its neurons in the
learning process for implementing TS fuzzy models (Takagi and Sugeno., 1985) (cf. Fig.
3(a)). In the EBF layer, each neuron is a T-norm of Gaussian fuzzy MFs belonging to the
inputs of the network. Every MF thus has a distinct centre and width, therefore every
neuron has a centre and a width vector. Fig. 3(b) illustrates the internal structure of the jth
neuron, where the input vector is x =[x1 x2... x,], ¢j=[c1jcyj ... ¢j] is the vector of centers in the
jth neuron, and oj =[01; 02 ... 05] is the vector of widths in the jth neuron. Layer 1 is the input
layer with r neurons, x; i=1,2,...,r. Layer 2 is the EBF layer. Each neuron in this layer
represents a premise part of a fuzzy rule. The outputs of (EBF) neurons are computed by
products of the grades of MFs. Each MF is in the form of a Gaussian function,

/Jyzexpli—(xi—cij)z/20';] Jj=12,u (3)
where,  u; is the ith MF in the jth neuron;
cij is the centre of the ith MF in the jth neuron;
oijis the width of the ith MF in the jth neuron;
r is the number of input variables;

u is the number of EBF neurons.

For the jth neuron, the output is
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é; :exp[—é((xi—cij)z/Zazi)} j=1,2,,u. 4)

Layer 3 is the normalized layer. The number of neurons in this layer is equal to that of layer
2. The output of the jth neuron in this layer is

V/j=¢j i(bk j=1/2""/u' (5)
k=1

Layer 4 is the weighted layer. Each neuron in this layer has two inputs and the product of
these inputs as its output. One of the inputs is the output of the related neuron in layer 3
and the other is the weighted bias w;;. For the TS model (Takagi and Sugeno., 1985), the bias
B=[1,x1, x2,..., x]T and Aj=[ajo,aj1,ap,...,a;:] represent the set of parameters corresponding to
the consequent of the fuzzy rule j which are obtained using the least square estimator or
recursive LSE (RLSE). The weighted bias wy; is

wy; = Ay B=a +ajx +-+a,x, i=12,---,u. (6)

This is the consequent part of the jth fuzzy rule of the fuzzy model. The output of each
neuron is fi= wyy;. Layer 5 is the output layer where the incoming signals from layer 4 are
summed, as shown in (7)

yx) =2 f; )

where, y is the value of an output variable. If u neurons are generated from n training
exemplars then the output of the network can be written as

Y=W,¥. 8)
where for the TS model
Y=[y; ¥o = Y.l )
_'//11 Yin ]
YuXn Y1in¥in
YuXm Y1uXm
v = : : ’ (10)
Vi Yun
Vi1X11 VunXin
_l//ulxrl l//l/mxrn _
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and

Wy =lay ay - @ o ay ay 0 al (11)
W, is the parameter matrix and yj; is the output of the jth neuron in the normalized layer for
the tth training exemplar.

3.3 The SOFNN Learning Algorithm

The learning process of the SOFNN includes structure learning and parameter learning. The
structure learning process attempts to achieve an economical network size by dynamically
modifying, adding and/or pruning neurons. There are two criteria to judge whether or not
to generate a new EBF neuron - the system error criterion and the if-part criterion. The error
criterion considers the generalization performance of the overall network. The if-part
criterion evaluates whether existing fuzzy rules or EBF neurons can cluster the current input
vector suitably. The SOFNN pruning strategy is based on the optimal brain surgeon (OBS)
approach (Hassibi and Stork, 1993). Basically, the idea is to use second derivative
information to find the least important neuron. If the performance of the entire network is
accepted when the least important neuron is pruned, the new structure of the network is
maintained.

This section provides only a basic outline of the structure learning process, the complete
structure and weight learning algorithm for the SOFNN is detailed in (Leng, 2003; Prasad et
al., 2008). It must be noted that the neuron modifying, adding and pruning procedures are
fully dependent upon determining the network error as the structure changes therefore a
significant amount of network testing is necessary - to either update the structure based on
finalized neuron changes or simply to check if a temporarily deleted neuron is significant.
This can be computationally demanding and therefore an alternative approach which
minimizes the computational cost of error checking during the learning process is described
in (Coyle et al., 2009). A comparison of the SOFNN to the well known DENFIS is outlined in
(Kasobov and Song, 2002) and it is shown that the SOFNN compares favorably to other
evolving fuzzy systems in terms of structural compactness and accuracy in a range of
standard benchmark tests and EEG prediction. The advantage of using the SOFNN in a BCI
involving the NTSPP framework is that it has a self organizing structure and can therefore
adapt autonomously to each of the time series for each class and for each subject without
any parameter tuning. There are 5 standard predefined parameters of the SOFNN which
govern the accuracy and complexity. The investigation presented in (Coyle et al., 2009)
shows that parameters chosen via a sensitivity analysis generalize well for all subjects and
all signals and these parameter values have been used in this work to apply the SOFNN
autonomously.

3.4 Common Spatial Patterns(CSPs)

The CSP method, first applied for detection of abnormalities (Ramouser et al., 2000) has
been used to tackle the problem of extracting the most relevant information from multiple
electrode (multichannel) montages. The goal of the study in (Ramouser et al., 2000) was to
design spatial filters that produce new (surrogate) time-series of which the variances are
optimal for the discrimination of two classes of EEG related to left and right motor imagery.
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Many advances in the CSP methods have been proposed over the past few years and this
approach has shown significant potential for two-class BCIs ((Blankertz et al., 2008; Coyle et
al., 2008a; Dornhege et al., 2006; Ramouser et al., 2000; Satti at al., 2008; 2009).

To utilise CSP, let Z; and X, be the pooled estimates of the covariance matrices for two
classes, as follows:

Yo=1> XX (ce{1,2)) (12)

C

where I, is the number of trials for class c and X; is the MxN matrices containing the it
windowed segment of trial I; V is the window length and M is the number EEG channels -
when CSP is used in conjunction with NTSPP, M=P as per (1). The two covariance matrices,
21 and X, are simultaneously diagonalized such that the eigenvalues sum to 1. This is
achieved by calculating the generalised eigenvectors IV:

Z1 44 :(21 +Zz )I/VD (13)

where the diagonal matrix D contains the eigenvalues of Z; and the column vectors of W are
the filters for the CSP projections (Blankertz et al., 2008). With this projection matrix the
decomposition mapping of the windowed trials X is given as

E=WX (14)

Prior to the calculation of the spatial filters, X can be processed with NTSPP and/or
spectrally filtered in specific frequency bands. Many studies have shown that subject-
specific frequency bands are most appropriate (Blankertz et al., 2008; Pfurtscheller et al.,
1998; Pturtscheller, 1998; Coyle et al, 2005b; Herman et al., 2008) and are normally tuned by
heuristic search with a 1 Hz resolution however; in this work, to minimize the effort and
time required in performing an extensive search for the best subject-specific frequency
bands, only 4 bands between 8-24Hz were tested (i.e., 8-12; 8-16; 8-20, 8-24). These bands
encompass the p and B bands which are altered during sensorimotor processing
(Pfurtscheller et al., 1998; Pfurtscheller, 1998). Attenuation of the spectral power in these
bands indicates an event related desynchronization (ERD) whilst an increase in power
indicates event-related synchronization (ERS). ERD of the mu band or ERS of the beta band
is associated with activated sensorimotor areas and ERS in the mu band is associated with
idle or resting sensorimotor areas. ERD/ERS has been studied widely for many cognitive
studies and provides very distinctive lateralized EEG pattern differences which form the
basis of left/right motor imagery based BCIs (Pfurtscheller, 1998).

3.5 Feature Extraction

Features are extracted using a 1 second window through which the data for each trial is
passed either via NTSPP or the raw EEG signals and classified at rate of the sampling
interval. These signals X are decomposed according to (14) and each feature vector, v, is
obtained using (15).

v =log(var(E)) (15)
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The dimensionality of v depends on the number of surrogate signals used from E. The
common practice is to use several (between 2 and 6) eigenvectors from both ends of the
eigenvector spectrum, i.e., the columns of W. As can be seen from Fig. 2, if NTSPP is
performed the dimensionality of X can increase as shown in (1) and becomes NxP.
Depending on the number of classes and the number of signals available, the dimensionality
increase can be significant. NTSPP maps the original data to a higher dimensional signal
space which is more separable but also susceptible to containing redundant information in
addition to increasing the dimensionality of the feature vector after features are extracted
from the NTSPP (i.e., predicted) signals. Large feature vectors can result in sparse matrices
for training certain classifiers when the number of exemplars is low. This can significantly
impact on the performance of certain classifiers (Tebbens & Schlesinger, 2006). CSP on the
other hand can be used to reduce the dimensionality of the available data and also perform
a further mapping of the data to increase separability. Therefore the benefits of combining
NTSPP with CSP are two fold:- 1) increasing separability and 2) maintaining a tractable
dimensionality.

To quantify these benefits and the benefits of employing CSP in BCI with a low number of
channels, which is not normally done in BCI, the following tests have been carried using a 2
channel montage, a 3 channel montage and a 22 channel montage as shown in Fig. 1.

e  SF - spectral filtering only as a benchmark (2 and 3 channel montages only)

e  SF-CSP - spectral filtering and common spatial patterns which is a normal BCI setup

e NTSPP-SF - NTSPP and spectral filtering to show the performance of NTSPP
compared to CSP as a standalone preprocessing tool (2 and 3 channel montages only)

e  NTSPP-SF-CSP - a combination of all preprocessing methods

Tests are not performed for the SF and NTSPP-SF tests using a 22 channel montage because
without CSP the dimensionality of the feature vectors is 22 for SF (22 channels) and 44 for
NTSPP-SF (22 channels x 2 classes as shown in (1)). As outlined, without employing CSP,
the dimensionality of such feature vectors and the redundancy and/or noise in some
channels could impact on the overall performance and therefore some method of feature
selection/channel reduction is necessary. When CSP is employed tests are carried out using
up to a maximum of 4 eigenvectors from either end of W. Depending on the number of EEG
channels available and whether or not NTSPP is employed there are different amounts of
eigenvectors to choose from and choosing the optimum number can often impact on
performance therefore; when the option to have less or more eigenvectors was available,
tests were performed with each number. For example, when a 2 channel montage is
employed the maximum number of available eigenvectors is 1 from either end of W for SF-
CSP and 2 for NTSPP-SF-CSP therefore tests are performed once with SF-CSP and 2 times
with NTSPP-SF-CSP and so on.

3.6 Classification

Four different classifiers obtained from the Biosig toolbox (Schlogl, 2009) are used with all
methods described. These include linear discriminant analysis (LDA), support vectors
machines (SVMs), Mahalanobis distance classifier (MDA) and a generalized distance based
classifier (GDBC) (cf. (Schlogl, 2009) for further details). In addition, a probabilistic Bayes
based classifier involving the accumulation of evidence was employed (cf. (Duda et al., 2001;

www.intechopen.com



136 New Developments in Biomedical Engineering

Lemm et al., 2004) for further details). By using each of these classifiers a better general view
of each methods performance was attained.

The datasets for each subject were split into two sets where half the data is used for training
and validation and the other half used for testing. These tests are referred to as 5-fold and
single trial test sets. Using each of the 6 classification methods, a 5-fold cross-validation was
carried out on the 5-fold set for each subject, where the data was partitioned into a training
set (80%) and a validation set (20%). Tests were performed five times using a different
validation partition each time. The mean-CA (mCA) rates on the 5-folds of validation data
and 95% confidence intervals (ci) were estimated using a t-statistic. The purpose of the 5-
fold cross validations was to tune any parameters and identify the point at which each
subject maximized the separability between the two classes. Subsequently, all 5-fold data
was utilized to train the system and the classifier was set up on the features which produced
the highest mCA rate in the cross-validation on SP1. The system’s generalization abilities
were then tested on a one-pass single trial test on the test set - this final test corresponds to
the requirement of labeling the data in online single trials test for a practically useful BCI
system.

4. Results

4.1 Signals and separability analysis

To illustrate how each method enhances separability in the data for each subject a range of
separability measures and visualization methods were applied to the data of each subject.
Using the mean CA (mCA) on the 5-fold train and validation sets to identify the point of
maximum separability, features were extracted at this time point using signals preprocessed
by each of the methods from all available data (this analysis was carried out after BCI tests
were performed). Using the features extracted from each signal® boxplots were estimated to
attain a quick impression of the features’ variability within and across classes, as shown in
Fig. 4.

As can be seen from Fig. 4 there is substantially more interclass variability when NTSPP is
employed and the NTSPP process does result in producing different median values for each
of six features. The scales are different when CSP is employed so if the medians of the
features obtained using the SF-CSP methods are compared with those obtained using
NTSPP-SF-CSP, it can be observed that NTSPP has changed the median values of the
features (i.e., features are derived using the variance calculation) and it is clear that there is
more opportunity to enhance interclass variability when using NTSPP as opposed to no
NTSPP. Notches display the variability of the median between samples. The width of a
notch is computed so that box plots whose notches do not overlap have different medians at
the 5% significance level. The significance level is based on a normal distribution
assumption. Comparing box plot medians is like a visual hypothesis test, analogous to the t-
test used for means and therefore it can be seen that the differences in the features produced
by different NTSPP signals are significant in many cases (MATLAB®, 2009).

To quantify the separability enhancement for this subject a range of separability indices
were estimated (as shown in Table 2), including the Euclidean distance (edist) between class

3 Signals are ¢3, cz and ¢4 when no NTSPP is employed or signals are prefixed by the first letter of the
data class that each predictor is trained on when NTSPP is employed i.e., 13, 14, and 1z for the data
processed by the left predictors and r3, r4, and rz for data processed by the right predictors.
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means for which the objective is to maximize, the Davies-Bouldin index (dbi) which is a
cluster separability index (Davies and Bouldin, 1979) for which the objective is to minimize,
dtc is a statistical measure of the multivariate distance of each observation (feature vector).
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Fig. 4. Boxplots of the features extracted from each signal, for each class and for each
methodology from the center of the dataset (both classes) and the class separability index
(csi) is a measure of the average distance between each observation within class 1 to the
centre of class 2 and vice versa.

NTSPP-  NTSPP-
SF SE-CSP SF SE-CSP
mCA 76.43 76.43 78.57 80.00
edist 0.67 0.75 0.86 0.96
dbi 33.25 28.99 38.57 27.44
dtc 3.27 3.54 4.94 3.71
csi 1.87 2.09 2.19 2.10

Table 2. A range of separability indices for 1 subject for each of the methods (details of
separability indices are presented in the text).
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Fig. 5. Biplots showing the first 2 principle components for each of the 4 methods for 1
subject.

From Table 2 it can be seen that NTSPP produces the highest mCA on the 5 fold cross-
validation. NTSPP also produces the highest separability across the data in terms of
maximizing edist, minimizing dbi, and maximizing dtc and csi. It can be seen that SF alone
is the worst performer on all tests, whilst SE-CSP performs better than NTSPP-SF only in
dbi. Maximization of Euclidean distance with NTSPP-SF-CSP appears to be a significant
benefit of employing this combination of processes which is reflected in the mCA rate which
is ~4% greater than the mCA for SF-CSP with no NTSPP for this subject. With no CSP
employed, NTSPP is shown to be a better preprocessor than CSP for this subject with the
NTSPP-SF approach achieving higher separability than both approaches without NTSPP.
The significance of the mCA results across all subjects is shown in the following section.

To aid in visualizing the multidimensional data a principle component analysis (PCA) was
carried out. The two most important components for classification are shown in Fig. 5 where
biplots showing the first two principle component coefficients are presented. The biplots
helps visualize both the principal component coefficients for each variable and the principal
component scores for each observation in a single plot.
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Each of the features extracted from each signal for each method are represented in these
plots by a vector, and the direction and length of the vector indicates how each variable
contributes to the two principal components in the plot. The first principal component in
each biplot is represented by the horizontal axis and has positive coefficients for all features
for each method corresponding to the 3(6 for NTSPP) vectors directed into the right half of
the plot. The second principal component, represented by the vertical axis, has positive
coefficients for features obtained from ¢4 and cz for SF, ¢3 and c4 for SF-CSP, r4, 14, rz, 1z for
NTSPP-SF and 13, 14, 1z and 13 for NTSPP-SF-CSP and has negative coefficients for the
remaining five variables. This corresponds to vectors directed into the top and bottom
halves of the plot, respectively. This indicates that this component distinguishes between
classes that produce high values for the first set of features and low for the second, and
classes that have the opposite. Overall it can be seen that the NTSPP-SF-CSP has at least 3
features which are distinguishably providing high variance for one class and two features
which are providing lower variance for the other class whereas the other methods have less
features that are providing this overall difference in variability, which is providing the
superior separability given by NTSPP-SF-CSP in this example. This section has provided a
general overview of the dynamical changes which are introduced by these NTSPP methods
and the advantages produced in terms of improved separability. The following sections
provide further verification of these results by providing a qualitative and statistical analysis
of each of the methods when applied across the data from 23 subjects.

4.2 Classification accuracy analysis

4.2.1 Individual subject results

As per the data description in section 2 and section 3.6, results for 5-fold cross validation
were obtained for all subjects. Parameter information and time point of maximum
separability obtained from the cross validation were used to set up the methods for tests on
the test set (single trial test), results of which provide a good indicator for online BCI
performance. As outlined the objectives of the research was to compare all methods when
employed with 2, 3 or 22 channels. Results for all subjects and all methods are presented in
Fig. 6-Fig. 13. Multichannel datasets were not available for subjects S1-S9 therefore only
results for 2 channel and 3 channel montages are presented in Fig. 6-Fig. 9. Results for
subjects S10-523 are compared for the 22 channel montages also and these results are
presented Fig. 10-Fig. 13. The 22 channel results in Fig. 10 and Fig. 11 are reproduced in Fig.
12 and Fig. 13 for ease of comparison with either the 2 channel or 3 channel results
respectively. Results for the Bayes based classifier and the LDA classifier provided the
maximum performance in the majority of cases in the cross validation tests therefore only
results for these classifiers are presented however support vectors machines (SVMs),
Mahalanobis distance classifier (MDA) and a generalized distance based classifier (GDBC)
did provide similar results for certain subjects (the following section provide further
information on classifier performances). For SVM the regularization parameter was not
tuned.

It can be seen from the results that there is quite a lot variation across subjects but in the
majority of cases the accuracies for NTSPP approaches are higher than the accuracies
obtained when no NTSSP is involved. The differences in accuracies are more prominent for
some subjects than others and in a small number of cases the NTSPP produces lower
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accuracies. A statistical analysis is provided in the following section to verify the
significance of the differences among each of the methods. There is a particularly noticeable
increase in accuracy for the majority of subjects when 22 channels are used indicating that a
22 channel montage is much better than a 2 or 3 channel montage, however, in a number of
cases 3 channel NTSPP methods produce better than or comparable performances to the 22
channel montages and in almost all cases, reduce the difference between the 3 channel
results and the 22 channel results substantially more than when no NTSPP is performed
using the three channel montages. These results are certainly indicative that NTSPP can
improve the performance when a low number of channels are used. Again, the significance
of these results is analyzed in the following section.
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Fig. 6. mCA[%] obtained from cross validation with error bars showing the 95% confidence
interval (subjects S1-S9, 2 channel).
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Fig. 8. mCA[%] obtained from cross validation with error bars showing the 95% confidence
interval (subjects S1-S9, 3 channel)
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Fig. 9. CA[%] obtained from single trial tests (subjects S1-59, 3 channel)
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Fig. 10. mCA[%] obtained from cross validation with error bars showing the 95% confidence
interval (subjects S10-523, 2 versus 22 channel results shown)
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Fig. 11. CA[%] obtained from single trial tests (subjects S10-523, 2 versus 22 channel results)
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4.2.2 Statistical analysis

The results for each subject presented in the previous section show trends that NTSPP can
produce better performances in many cases however there is a need to analyze all results in
terms of their statistical significance, to verify whether one method is better than the other. To
do this, the average accuracies for all methods across all subjects were subjected to repeated
measures single factor analysis of variance (RANOVA) (Zar, 1999; Huck, 2000). This repeated
measures method was preferred over standard ANOVA to account for the between subject
variability which is normally substantive in BCI experiments. In this work the objective was to
determine how each method compares with each other method therefore only pair-wise
comparisons of means were performed which is equivalent to multiple f-tests. For a more
powerful analysis RANOVA could be applied to all methods and a post hoc analysis of the
ANOVA results could be performed. In this analysis it is off interest if there exists differences
between one method and any of the other methods with a significance level a=0.05 however,
to account for the multiple comparisons, the significance level, a, must be corrected. Based on
a Bonferroni correction the corrected a = a /(k.(k-1)/2), where k is the number of methods to
be compared (i.e., k=6) therefore p<0.003 to be significant.

Table 3 and Table 4 shows the results obtained for subjects S10-S23. Only these subjects are
compared as multichannel data was unavailable for Subjects S1-S9. As can be seen, average
accuracies for 22 channel montages are significantly higher than those produced by the
either of the 2 or 3 channel montages (p<0.003 in all cases and in some case p<0.0001).

This is evidence that there is a significant advantage in applying more channels for this two
class classification problem. Although NTSPP-SF-CSP(22) is not shown to be significantly
better that SF-CSP(22) for the multichannel cross-validation data, the NTSPP-SF-CSP(22)
combination is significantly better than SF-CSP(22) for the single trial tests using LDA
(»<0.0001) but not for Bayes. This is a strong indication that NTSPP combined with spectral
filtering and CSP generalize much better to unseen data and is better for cross session single
trial tests with multiple channel montages. For the 2 and 3 channel montage the results are
less consistent.

For the 2 channel montage, even though NTSPP-SF-CSP produces a higher average accuracy
it is not significantly better than SF-CSP for the 5-fold data and there is only a marginal
difference in performance for the single trial tests using LDA. NTSPP-SF-CSP(2) has higher
mean accuracy than SF alone for cross-validation tests using the LDA classifier but the
results for the single trial tests have only marginal differences. There is indication from the
trends in these results that NTSPP can improve performance with 2 channel systems and in
many cases the difference between NTSPP methods are significantly better than the SF
methods whilst the SF-CSP methods are not significantly better than SF methods. It can also
be observed from Table 3 that using a 22 channel montage the difference between SF-CSP
(22) and NTSPP-SF(2) or NTSPP-SF-CSP(2) is not significant using the LDA classifier on the
single trial tests whereas NTSPP-SF-CSP (22 channel) produces significant differences
between all the 2 channel results using LDA and the Bayes classifiers (p<0.003 in all cases).
These results indicate that the 2 channel system when employed with NTSPP-SF-CSP or
NTSPP-SF and LDA can produce performances which are comparable with a 22 channel
system, at least in single trial tests although the 5 fold results do not show the same trends in
significance levels. Overall, even though NTSPP-SF-CSP (22 channel) produce the best
results, the results do confirm that NTSPP has the potential to provide better results than SF
or SF-CSP using a smaller montage also.
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5-fold Test Significance
Bayes Mean  std |Mean  std SF(2) SF-CSP(2)  MTSPP-SF(2) Ng,;‘;"‘ SF-CSP (22) NEPIPZ‘;F{SP
SF (2) 724 134 | 720 13.2 0.725 0.310 0.736 0.020 0.001
SF-CSP (2) 725 128 | 723 135 0.882 0.599 0.005 0028 0.001
NTSPP-SF (2) 74.0 129 | 729 143 0.144 0.234 0522 0043 0.003
NTSPP-SF-CSP (2) 76.1 118 | 723 13.7 0.045 0.986 0.216 0.008 *
SF-CSP (22) 82.5 113 | 771 13.3 i = = i 0.006
NTSPP-SF-CSP (22) 84.6 106 | 809 117 o ** ** * 0.089
LDA Mean  std |Mean  std SH2) SF-CSP(2) | NTSPP-SF(2) NI:S;?Z?F SFLsP(22) NEPIP E-ZF-CSP
SF (2) 729 9.9 | 741 110 0.185 0.065 0.093 0.002 =
SF-CSP (2) 739 103 | 750 11.2 0.191 0.620 0.009 0.006 =
NTSPP-SF (2) 75.5 9.9 | 754 115 0.009 0.099 0.861 0.070 =
NTSPP-SF-CSP (2) 76.9 9.3 75.3 11.3 0.003 0.625 0.154 0031 *
SF-CSP (22) 83.1 9.4 | 783 109 * #* =+ * <
NTSPP-SF-CSP (22) 839 8.5 | 825 104 = ** w* i 0.383

*p<0.001 **p<0.0001

Table 3. Results showing the average CA rates and the standard deviation across subjects
S10-523 for the cross validation (white columns) and single trial tests (grey columns) for 2
channels and 22 channels. The significance of the differences between one method and each
other method is shown in white for 5-fold cross validation and in grey for single trial tests.
Only results for Bayes and LDA classifiers are presented. The significance of the difference
in mean for multichannel data is also presented.

5-fold Test Significance
Bayes Mean std |Mean  std SH3) SE-CSP(3)  NTSPP-SF(3) N?s:?;?r- SFLsk (22) " P[Pz.::{sp
SF (3) 708 138 | 717 134 0.084 0.875 0.292 0024 0.001
SF-CSP (3) 724 135 | 736 135 0.166 0.178 0.009 0.053 0.001
NTSPP-SF (3) 71.8 141 | 745 137 0.378 0.704 0.195 0.018 0.001
NTSPP-SF-CSP (3) 764 110 | 728 145 0.004 0.605 0.009 0041 0.001
SF-CSP (22) 825 113 | 771 133 ** ** ** ** 0.006
NTSPP-SF-CSP (22) 846 106 | 805 117 ** ** * 0.0002 0.089
LDA Mean std |Mean  std SH3) SF-CSPL3) | NTSPR-SF3) N;S;?;?F- staspiz2) " P[pz.::{sp
SF (3) 726 102 | 748 113 0.218 0.152 0.222 0.002 *=
SF-CSP (3) 734 110 | 754 118 0.201 0.600 0.002 0.009 *
NTSPP-SF (3) 75.2 9.6 | 758 115 0.007 0.108 0.777 0126 0.001
NTSPP-SF-CSP (3) 77.1 9.8 [ 761 114 0.001 0.527 0.051 0.166 0.001
SF-CSP (22) 83.1 5.4 [ 783 105 = ** ** * *
NTSPP-SF-CSP (22) 83.9 8.5 | 825 104 ** ** ** ** 0.383

*p<0.001  **p<0.0001

Table 4. Results showing the average CA rates and the standard deviation across subjects
S10-523 for the cross validation (white columns) and single trial tests (grey columns) for 3
channels and 22 channels. The significance of the differences between one method and each
other method is shown in white for 5-fold cross validation and in grey for single trial tests.
Only results for Bayes and LDA classifiers are presented. The significance of the difference
in mean for multichannel data is also presented.

For the 3 channel results presented in Table 4 it can be seen that accuracies obtained using
NTSPP-SF-CSP and SF-CSP are better than those produced when CSP is not employed when
using the Bayes classifier in the cross validation and single trial tests. NTSPP-SE-CSP is
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significantly better than SF alone for cross validation but not for the single trial tests and SF-
CSP is marginally better than NTSPP-SF-CSP in single trial tests using the Bayes classifier.
Using the LDA classifier NTSPP-SF-CSP is marginally better than SF-CSP but not
significantly better than SF alone for the single trial tests whereas NTSPP approaches are
significantly better than SF alone for the cross-validation test but not better than SF-CSP.
Again for the 22 channel montages, SF-CSP(22) is not significantly better than NTSPP
methods using the LDA classifier but is significantly better than SF and SF-CSP (2 channels)
which indicates the potential for NTSPP to produce better results than other methods on
smaller montages. The NTSPP-SF-CSP(22) methods produce results which are statistically
better than all 3 channel methods which indicates that NTSPP can also enhance results even
with multichannel systems.

In summary, with two and three channels some results indicate that NTSPP methods can
produce similar single trial performances to the 22 channel results obtained using SF-CSP, a
result which indicates that NTSPP can be used to enhance the performance of BCIs with a
minimal number of electrodes, reducing the burden of mounting a multiple electrodes. The
results also clearly indicate that NTSPP-SF-CSP with the 22 channel montage produces
significantly better single trial results than all other methods (including SF-CSP with 22
channels) for both classifiers which are considerable evidence of the NTSPP framework's
capacity to stabilize cross session tests in multiple channel systems also. When all 14 subjects
are taken into consideration there is substantive evidence to suggest that NTSPP
significantly enhances performances when employed with SF-CSP and in many cases also
when only the NTSPP-SF combination is employed. This is indicative that NTSPP can be
used instead of CSP as a preprocessing methodology but, also, that combining NTSPP and
CSP in addition to spectral filtering, can lead to significant performance enhancements,
regardless of the number of channels or the type of classifier used therefore NTSPP and CSP
are complementary approaches. It must be noted that the Bonferroni correction is
conservative correction measure for significance tests. This factor, in addition to the
relatively small sample size and substantive inter subjects performance variability, can have
a significant impact on measuring the statistical significance of results however the results
presented do prove the significance of employing NTSPP.

In term of the classifiers, in general, the Bayes classifier overall does not produce accuracies
that are as high as the LDA classifier and is less stable and this may explain why SF-CSP
produced marginally better single trial results than NTSPP-SF-CSP using the Bayes classifier
in a small number of cases. Although the Bayes classifier may not generalize as well as other
classifiers, with accumulation of evidence overtime within each trial the Bayes approach
offers better within trial stability. This is achieved by using information about the classifier
output from previous time points in the trial when classifying the current time point. In the
majority of cases all other classifiers provide slightly lower performance than LDA. A range
of RANOVA tests were carried out and it was observed that LDA outperformed all other
methods in the single trial tests and that the differences in the performances were
statistically significant (p<0.05). Different overall averages were obtained depending on the
data type being classified however the results do indicate that LDA is most stable for single
trial tests, although both SVM and Bayes could have been improved further by fine tuning a
number of regularization parameters for each subject. In this work parameter tuning was
kept to a minimum and LDA has the advantage of producing the best performance with no
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effort required for parameter tuning. LDA is the state-of the-art for classification in two class
BCI systems and these results provide further evidence of that.

5. Discussion and Conclusions

NTSPP can act as a filter of irregular transients and noise sources, since filtering and
prediction go hand in hand. However NTSPP is different to basic filtering in that different
filters/ predictors are developed for different data types but used to process both data types.
This work has shown the value of employing NTSPP as an alternative preprocessing
method to the well known CSP filtering approach. CSP has been employed in BCI systems
for over ten years and is employed in a range of state-of-the-art BCI systems (Blankertz et
al., 2008; Dornhege et al.,, 2006, Ramouser et al., 2000). It has also been shown that
application of NTSPP in combination with CSP has significantly more potential than either
approach employed individually. For example, as outlined, when the amount of available
channels is large, CSP can be used not only to produce surrogate data which maximizes the
variances for one class whilst minimizing for the other class, it can act as a signal/feature
selector to reduce data dimensionality. NTSPP on the other hand also manipulates the
variances of the data by predictive filtering but results in a dimensionality increase, which
can be significant if the number of available EEG channels and/or classes is large. The can in
some cases lead to redundancy which may have implications for classifier performance if
the number of available training samples is low. By applying both approaches the
manipulation of variances are complementary, in addition to CSP deriving a subset of new
channels from the signals predicted by NTSPP to reduce dimensionality. The results have
demonstrated the advantages in doing this for both small and multichannel montages. In
(Coyle et al., 2008a) NTSPP was employed with simple features in a 4 class BCI where CSP
was not employed and it was noted that there was redundancy and significant
dimensionality increases and thus the results were not so consistent. An analysis is
underway to show the benefits of the NTSPP-CSP combination when employed in a 4 class
BCI, an approach that was employed for the multiple channel dataset in the recent
International BCI competition, results of which are available online (Blankertz et al., 2008b).
NTSPP has also been shown to have the capacity to reduce the latency involved in motor
imagery BCIs involving continuous classification; producing higher signal separability
faster (i.e., earlier in the trial) by predicting the EEG times series multiple steps ahead and
subsequently features are extracted from the predicted signals. This has the potential to
reduce the time required for a subject to exceed a threshold with the continuous classifier
output, as NTSPP predicts characteristics of the data which are more separable multiple
steps ahead in time (Coyle et al., 2004, 2009) and further work will be carried out to verify if
combining CSP with the multiple step ahead prediction NTSPP framework has significant
potential. In terms of improving the NTSPP framework, there is a lot that can be done. For
example, a more intuitive process for selecting the embedding dimension and time lag may
produce predictors which are better or more specialized and thus result in producing better
variability in the outputs for different classes. However simplicity is favored over
complexity in BCI development, to enable easier adaptation to each individual and
continuous adaptation in the long term (Wolpaw, 2004) so the number of signals and subject
specific parameters should be kept to a minimum. NTSPP increases the potentiality of using
simpler feature extraction methods or reducing the necessity to fine tune parameters in
more complex feature extraction methods. Also, the improved autonomy in adaptation and
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performance offered by the self-organizing fuzzy neural network (SOFNN) allows the
NTSPP framework to be applied autonomously (no parameter tuning is necessary) (Coyle et
al., 2006b; 2009).

In terms of improving all methods, the spectral filters could be tuned more precisely. In this
work 4 bands were tested with a wideband 8-24 Hz being most useful in some cases whilst a
narrow band (8-12Hz) being better in other cases. Fine tuning of the frequency filters in
concert with the preprocessing methods, as described in (Satti et al, 2009), would
undoubtedly result in better performance for some subjects if not all. Nevertheless a major
objective of this work is to keep to a minimum the number of subject specific parameters
and the amount of time and expert knowledge required to set up the BCI system. It is
unclear whether spectral filtering prior to network training would provide better results and
this will also be a topic of further investigation.

Overall this work has shown the advantages and performance gain that can be produced
using NTSPP as an easily applied method for preprocessing and that NTSPP, in
combination with spectral filtering and common spatial patterns, can offer superior
performance than any of the approaches used independently. There is lot of potential to
enhance the NTSPP framework and this is part of ongoing investigations.
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