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Dynamic behavior of biological systems is often governed by complex physiological processes
that are inherently stochastic. Therefore most physiological signals belong to the group of
stochastic signals for which it is impossible to predict an exact future value even if we know
its entire past history. That is there is always an aspect of a signal that is inherently random
i.e. unknown. Commonly used biomedical signal processing techniques often assume that ob-
served parameters and variables are deterministic in nature and model randomness through
so called observation errors which do not influence the stochastic nature of underlying pro-
cesses (e.g., metabolism, molecular kinetics, etc.). An alternative approach would be based
on the assumption that the governing mechanisms are subject to instantaneous changes on a
certain time scale. As an example fluctuations in the respiratory rate and/or concentration of
oxygen (or equivalently partial pressures) in various compartments is strongly affected by a
metabolic rate, which is inherently stochastic and therefore is not a smooth process.

As a consequence one of the mathematical techniques that is quickly assuming an impor-
tant role in modeling of biological signals is stochastic differential equations (SDE) modeling.
These models are natural extensions of classic deterministic models and corresponding ordi-
nary differential equations. In this chapter we will present computational framework neces-
sary for successful application of SDE models to actual biomedical signals. To accomplish this
task we will first start with mathematical theory behind SDE models. These models are used
extensively in various fields such as financial engineering, population dynamics, hydrology,
etc.

Unfortunately, most of the literature about stochastic differential equations seems to place a
large emphasis on rigor and completeness using strict mathematical formalism that may look
intimidating to non-experts. In this chapter we will attempt to present answer to the following
questions: in what situations the stochastic differential models may be applicable, what are the
essential characteristics of these models, and what are some possible tools that can be used in
solving them. We will first introduce mathematical theory necessary for understanding SDEs.

Next, we will discuss both univariate and multivariate SDEs and discuss the corresponding
computational issues. We will start with introducing the concept of stochastic integrals and
illustrate the solution process using one univariate and one multivariate example. To address
the computational complexity in realistic biomedical signal models we will further discuss
the aforementioned biochemical transport model and derive the stochastic integral solution
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for demonstration purposes. We will also present analytical solution based on Fokker-Planck
equation, which establishes link between partial differential equation (PDE) and stochastic
processes. Our most recent work includes results for realistic boundaries and will be pre-
sented in the context of drug delivery modeling i.e. biochemical transport and respiratory
signal analysis and prediction in neonates.

Since in many clinical and academic applications researchers are interested in obtaining better
estimates of physiological parameters using experimental data we will illustrate the inverse
approach based on SDEs in which the unknown parameters are estimated. To address this
issue we will present maximum likelihood estimator of the unknown parameters in our SDE
models. Finally, in the last subsection of the chapter we will present SDE models for mon-
itoring and predicting respiratory signals (oxygen partial pressures) using a data set of 200
patients obtained in Neonatal ICU, McMaster Hospital. We will illustrate the application of
SDEs through the following steps: identification of physiological parameters, proposition of
a suitable SDE model, solution of the corresponding SDE, and finally estimation of unknown
parameters and respiratory signal prediction and tracking.

In many cases biomedical engineers are exposed to real-world problems while signal proces-
sors have abundance of signal processing techniques that are often not utilized in the most
optimal way. In this chapter we hope to merge these two worlds and provide average reader
from the biomedical engineering field with skills that will enable him to identify if the SDE
models are truly applicable to real-world problems they are encountering.

�� ��	
�  ������
��� !��
��	

In most cases stochastic differential equations can be viewed as a generalization of ordinary
differential equations in which some coefficients of a differential equation are random in na-
ture. Ordinary differential equations are commonly used tool for modeling biological systems
as a relationship between a function of interest, say bacterial population size N(t) and its
derivatives and a forcing, controlling function F(T) (drift, reaction, etc.). In that sense an or-
dinary differential equations can be viewed as model which relates the current value of N(t)
by adding and/or subtracting current and past values of F(t) and current values of N(t). In
the simplest form the above statement can be represented mathematically as

dN(t)

dt
≈ N(t)− N(t − ∆t)

∆t
= α(t)N(t) + β(t)F(t) N(0) = N0 (1)

where N(t) is the size of population, α(t) is the relative rate of growth, β(t) is the damping
coefficient, and F(t) is the reaction force.

In a general case it might happen that α(t) is not completely known but subject to some ran-
dom environmental effects (as well as β(t)) in which case α(t) is not completely known but is
given by

α(t) = r(t) + noise (2)

where we do not know the exact value of the noise norm nor we can predict it using its prob-
ability distribution function (which is in general assumed to be either known or known up a
to a set of unknown parameters). The main question is then how do we solve 1?

Before answering that question we first assert that the above equation can be applied in variety
of applications. As an example an ordinary differential equation corresponding to RLC circuit
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is given by

L ∗ Q′′(t) + RQ′(t) +
1
C

Q(t) = U(t) (3)

where L is the inductance, R is resistance, C is capacitance, Q is the charge on capacitor, and
U(t) is the voltage source connected in a circuit. In some cases the circuit elements may have
both deterministic and random part, i.e., noise (.e.g. due to temperature variations).

Finally, the most famous example of a stochastic process is Brownian motion observed for the
first time by Scottish botanist Robert Brown in 1828. He observed that particles of pollen grain
suspend in liquid performed an irregular motion consisting of somewhat "random" jumps i.e.
suddenly changing positions. This motion was later explained by the random collisions of
pollen with particles of liquid. The mathematical description of such process can be derived
starting from

dX

dt
= b(t, Xt)dt + σ(t, Xt)dΩt (4)

where X(t) is the stochastic process corresponding to the location of the particle, b is a drift
and σ is the "variance" of the jumps. The locNote that (4) is completely equivalent to (1) except
that in this case the stochastic process corresponds to the location and not to the population
count. Based on many situations in engineering the desirable properties of random process
Ωt are

• at different times ti and tj the random variables Ωi and Ωj are independent

• Stochastic process Ωt is stationary i.e., the joint probability density function of
(Ωi, Ωi+1, . . . , Ωi+k) does not depend on ti.

However it turns out that there does not exist reasonable stochastic process satisfying all the
requirements (25). As a consequence the above model is often rewritten in a different form
which allows proper construction. First we start with a finite difference version of (4) at times
t1, . . . , tk1

, tk, tk+1, . . . yielding

Xk+1 − Xk = bk ∗ ∆t + σkΩk ∗ ∆t (5)

where

bk = b(tk, Xk)

σk = σ(tk, Xk) (6)

We replace Ωk with ∆Wk = Ωk∆tk = Wk+1 − Wk where Wk is a stochastic process with sta-
tionary independent increments with zero mean. It turns out that the only such process with
continuous paths is Brownian motion in which the increments at arbitrary time t are zero-
mean and independent (1). Using (2) we obtain the following solution

Xk = X0 +
k−1

∑
j=0

bj∆tj +
k−1

∑
j=0

σj∆Wj (7)

When ∆tj → 0 it can be shown (25) that the expression on the right hand side of (7) exists and
thus the above equation can be written in its integral form as

Xt = X0 +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs (8)
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Obviously the questionable part of such definition is existence of integral
∫ t

0 σ(s, Xs)dWs

which involves integration of a stochastic process. If the diffusion function is continuous
and non-anticipative, i.e., does not depend on future, the above integral exists in a sense that
finite sums

n−1

∑
l=0

σi [Wi+1 − Wi] (9)

converge in a mean square to "some" random variable that we call the Ito integral. For more
detailed analysis of the properties a reader is referred to (25).

Now let us illustrate some possible solution of the stochastic differential equations using uni-
variate and multivariate examples.

Case 1 - Population Growth: Consider again a population growth problem in which N0 sub-
jects of interests are entered into an environment in which the growth of population occurs
with rate α(t) and let us assume that the rate can be modeled as

α(t) = r(t) + aWt (10)

where Wt is zero-mean white noise and a is a constant. For illustrational purposes we will
assume that the deterministic part of the growth rate is fixed i.e., r(t) = r = const. The
stochastic differential equation than becomes

dN(t) = rN(t) + aN(t)dW(t) (11)

or
dN(t)

N(t)
= rdt + adW(t) (12)

Hence
∫ t

0

dN(s)

N(s)
= rt + aWt (assuming B0 = 0) (13)

The above integral represents an example of stochastic integral and in order to solve it we
need to introduce the inverse operator i.e., stochastic (or Ito) differential. In order to do this
we first assert that

∆(W2
k ) = W2

k + 1 − W2
k = (Wk+1 − Wk)

2 + 2Wk(Wk+1 − Wk) = (∆Wk)
2 + 2Wk∆Wk (14)

and thus

∑ Bk∆Wk =
1
2

W2
k − 1

2 ∑ (∆Wk)
2 (15)

whici yields under regularity conditions
∫ t

0
WsdWs =

1
2

W2
t − 1

2
t (16)

As a consequence the stochastic integrals do not behave like ordinary integrals and thus a
special care has to be taken when evaluating integrals. Using (16) it can be shown (25) for a
stochastic process Xt given by

dXt = udt + vdWt (17)

and a twice continuously differentiable function g(t, x) a new process

Yt = g(t, Xt) (18)
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is a stochastic process given by

dYt =
∂g

∂t
(t, Xt)dt +

∂g

∂x
(t, Xt)dXt +

1
2

∂2g

∂x2 (t, Xt) · (dXt)
2 (19)

where (dXt)
2 = (dXt) · (dXt) is computed according to the rules

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt (20)

The solution of our problem then simply becomes, using map g(x, t) = lnx

dNt

Nt
= d (lnNt) +

1
2

a2dt (21)

or equivalently

Nt = N0exp
(

(r − 1
2

a2)t + aWt

)

(22)

Case 2 - Multivarate Case Let us consider n-dimensional problem with following stochastic
processes X1, . . . Xn given by

dX1 = u1dt + v11dW1 + . . . + v1mdWm

...
...

...

dXn = undt + vn1dW1 + . . . + vnmdWm (23)

Following the proof for univariate case it can be shown (25) that for a n-dimensional stochastic
process �X(t) and mapping function �g(t,�x) a stochastic process �Y(t) = �g(t, �X(t)) such that

d�Yk =
∂gk

∂t
(t, �X)dt + ∑

i

∂gk

∂xi
(t, �X)dXi +

1
2 ∑

i,j

∂2gk

∂xi∂xj
(t, �X)dXidXj (24)

In order to obtain the solution for the above process we first rewrite it in a matrix form

d�Xt =�rtdt + Vd�Bt (25)

Following the same approach as in Case 1 it can be shown that

�Xt − �X0 =
∫ t

0
�r(s)ds +

∫ t

0
Vd�Bs (26)

Consequently the sollution is given by

�X(t) = �X(0) + V�Bt +
∫ t

0
[�r(s) + V�B(s)]ds (27)

Case 3 - Solving SDEs Using Fokker-Planck Equation: Let X(t) be an on-dimensional
stochastic process and let . . . > ti−1 > ti > ti+1 > . . .. Let P(Xi, ti; Xi+1, ti+1) denote
a joint probability density function and let P(Xi, ti|Xi+1, ti+1) denote conditional (or transi-
tional) probability density function. Furthermore for a given SDE the process X(t) will be
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Markov if the jumps are uncorrelated i.e., Wi and Wi+k are uncorrelated. In this case the tran-
sitional density function depends only on the previous value i.e.

P(Xi, ti|Xi−1, ti−1; Xi−2, ti−2; , . . . , X1, t1) = P(Xi, ti|Xi−1, ti−1) (28)

For a given stochastic differential equation

dXt = btdt + σtdWt (29)

the transitional probabilities are given by stochastic integrals

P(Xt+∆t, t + ∆t|X(t), t) = Pr
[

∫ t+∆t

t
dXs = X(t + ∆t)− X(t)

]

(30)

In (3) the authors derived the Fokker-Planck equation, a partial differential equation for the
time evolution of the transition probability density function and showed that the time evolu-
tion of the probability density function is given by

"�  ���
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In this section we illustrate an SDE model that can deal with arbitrary boundaries using
stochastic models for diffusion of particles. Such models are becoming subject of consider-
able research interest in drug delivery applications (4). As a preminalary attempt, we focus on
the nature of the boundaries (i.e. their reflective and absorbing properties). The extension to
realistic geometry is straight forward since it can be dealt with using Finite Element Method.
Absorbing and reflecting boundaries are often encountered in realistic problems such as drug
delivery where the organ surfaces represent reflecting/absorbing boundaries for the disper-
sion of drug particles (11).

Let us assume that at arbitrary time t0 we introduce n0 (or equivalently concentration c0)
particles in an open domain environment at location r0. When the number of particles is large
macroscopic approach corresponding to the Fick’s law of diffusion is adequate for modeling
the transport phenomena. However, to model the motion of the particles when their number
is small a microscopic approach corresponding to stochastic differential equations (SDE) is
required.

As before, the SDE process for the transport of particle in an open environment is given by

dXt =�b(Xt , t)dt + σ(Xt , t)dWt (31)

where Xt is the location and Wt is a standard Wiener process. The function µ(Xt, t) is referred
to as the drift coefficient while σ() is called the diffusion coefficient such that in a small time
interval of length dt the stochastic process Xt changes its value by an amount that is normally
distributed with expectation µ(Xt , t)dt and variance σ2(Xt , t)dt and is independent of the
past behavior of the process. In the presence of boundaries (absorbing and/or reflecting), the
particle will be absorbed when hitting the absorbing boundary and its displacement remains
constant (i.e. dXt = 0). On the other hand, when hitting a reflecting boundary the new
displacement over a small time step τ, assuming elastic collision, is given by

dXt = dXt1 + |dXt2| · ˆrR (32)
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dXt1

dXt2
r̂ˆrR

n̂

t̂

Fig. 1. Behavior of dXt near a reflecting boundary.

where ˆrR = −(r̂ · n̂)n̂ + (r̂ · t̂)t̂ , dXt1 and dXt2 are shown in Fig. (1).

Assuming three-dimensional environment r = (x1, x2, x3), the probability density function
of one particle occupying space around r at time t is given by solution to the Fokker-Planck
equation (10)

∂ f (r, t)

∂t
=

[

−
3

∑
i=1

∂

∂xi
D1

i (r)+

+
3

∑
i=1

3

∑
j=1

∂2

∂xi∂xj
D2

ij(r)

⎤

⎦ f (r, t) (33)

where partial derivatives apply the multiplication of D and f (r, t), D1 is the drift vector and
D2 is the diffusion tensor given by

D1
i = µ

D2
ij =

1
2 ∑

l

σilσ
T
lj (34)

In the case of homogeneous and isotropic infinite two-dimensional (2D) space (i.e, the domain
of interest is much larger than the diffusion velocity) with the absence of the drift, the solution
of Eq. (33) along with the initial condition at t = t0 is given by

f (r, t0) = δ(r − r0) (35)

f (r, t) =
1

4πD(t − t0)
e−‖r−r0‖2/4D(t−t0) (36)

where D is the coefficient of diffusivity.

For the bounded domain, Eq. (33) can be easily solved numerically using a Finite Element
Method with the initial condition in Eq. (35) and following boundary conditions (12)

f (r, t) = 0 for absorbing boundaries (37)

∂ f (r, t)

∂n
= 0 for reflecting boundaries (38)
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where n̂ is the normal vector to the boundary.

To illustrate the time evolution of f (r, t) in the presence of absorbing/reflecting boundaries,
we solve Eq. (33), using a FE package for a closed circular domain consists of a reflecting
boundary (black segment) and an absorbing boundary (red segment of length l) as in Fig. (2).
As in Figs. (3 and 4), the effect of the absorbing boundary is idle since the flux of f (r, t) did
not reach the boundary by then. In Fig. (5), a region of lower probability (density) appears
around the absorbing boundary, since the probability of the particle to exist in this region is
less than that for the other regions.

� � � � � � �

�

�

�

�

�

�

�

R

l

r0

Fig. 2. Closed circular domain with reflecting and absorbing boundaries.

Fig. 3. Probability density function at time 5s after particle injection

Note that each of the above two solutions represents the probability density function of one
particle occupying space around r at time t assuming it was released from location r0 at time
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Fig. 4. Probability density function at time 10s after particle injection

Fig. 5. Probability density function at time 15s after particle injection

t0. These results can potentially be incorporated in variety of biomedical signal processing
applications: source localization, diffusivity estimation, transport prediction, etc.
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Newborn intensive care is one of the great medical success of the last 20 years. Current empha-
sis is upon allowing infants to survive with the expectation of normal life without handicap.
Clinical data from follow up studies of infants who received neonatal intensive care show high
rates of long-term respiratory and neurodevelopmental morbidity. As a consequence, current
research efforts are being focused on refinement of ventilated respiratory support given to
infants during intensive care. The main task of the ventilated support is to maintain the con-
centration level of oxygen (O2) and carbon-dioxide (CO2) in the blood within the physiological
range until the maturation of lungs occur. Failure to meet this objective can lead to various
pathophysiological conditions. Most of the previous studies concentrated on the modeling
of blood gases in adults (e.g., (14)). The forward mathematical modeling of the respiratory
system has been addressed in (16) and (17). In (16) the authors developed a respiratory model
with large number of unknown nonlinear parameters which therefore cannot be efficiently
used for inverse models and signal prediction. In (17) the authors presented a simplified for-
ward model which accounted for circulatory delays and shunting. However, the development
of an adequate signal processing respiratory model has not been addressed in these studies.
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So far most of the existing research (18) focused on developing a deterministic forward math-
ematical model of the CO2 partial pressure variations in the arterial blood of a ventilated
neonate. We evaluated the applicability of the forward model using clinical data sets obtained
from novel sensing technology, neonatal multi-parameter intra-arterial sensor which enables
intra-arterial measurements of partial pressures. The respiratory physiological parameters
were assumed to be known. However, to develop automated procedures for ventilator mon-
itoring we need algorithms for estimating unknown respiratory parameters since infants have
different respiratory parameters.

In this section we present a new stochastic differential model for the dynamics of the partial
pressures of oxygen and carbon-dioxide. We focus on the stochastic differential equations
(SDE) since deterministic models do not account for random variations of metabolism. In fact
most deterministic models assume that the variation of partial pressures is due to measure-
ment noise and that exchange of gasses is a smooth function. An alternative approach would
result from the assumption that the underlying process is not smooth at feasible sampling
rates (e.g., one minute). Physiologically, this would be equivalent to postulating, e.g., that
the rate of glucose uptake by tissues varies randomly over time around some average level
resulting in SDE models. Appropriate parameter values in these SDE models are crucial for
description and prediction of respiratory processes. Unfortunately these parameters are often
unknown and need to be estimated from resulting SDE models. In most case computationally
expensive Monte-Carlo simulations are needed in order to calculate the corresponding prob-
ability density functions (pdfs) needed for parameter estimation. In Section 2 we propose two
models: classical in which the gas exchange is modeled using ordinary differential equations,
and stochastic in which the increments in gas numbers are modeled as stochastic processes
resulting in stochastic differential equations. In Section 3 we present measurements model
for both classical and stochastic techniques and discuss parameter estimation algorithms. In
Section 4 we present experimental results obtained by applying our algorithms to real data
set.

The schematic representation of an infant respiratory system is illustrated in Figure 1. The
model consists of five compartments: the alveolar space, arterial blood, pulmonary blood, tis-
sue, and venous blood respectively. The circulation of O2 and CO2 depends on two factors:
diffusion of gas molecules in alveolar compartment and blood flow – arterial flow takes oxy-
gen rich blood from pulmonary compartment to tissue and similarly, venous flow takes blood
containing high levels of carbon-dioxide back to the pulmonary compartment. Furthermore,
in infants there exists additional flow from right to left atria. In our model this shunting is
accounted for in that a fraction α, of the venous blood is assumed to bypass the pulmonary
compartment and go directly in the arteries (illustrated by two horizontal lines in Figure 1).

Classical Model

Let cw denote the concentration of a gas (O2 or CO2) in a compartment w where w ∈
{p, A, a, ts, v} denotes pulmonary, alveolar, arterial, tissue, and venous compartments respec-
tively. Using the conservation of mass principle the concentrations are given by the following
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Alveolar

Pulmonary

Venous Arterial

Tissue

O2

CO2

Fig. 6. Graphical layout of the model.

set of equations (18)

VA
dcA

dt
= D

(

cp − cA

)

− ecA

Vp
dcp

dt
= −D(cp − cA) + Q(1 − α)cv − Q(1 − α)cp

Va
dca

dt
= Q(1 − α)cp + αQcv − Qca

Vts
dcts

dt
= Qca − Qcts + r

Vv
dcv

dt
= Qcts − Qcv (39)

where e is the expiratory flow rate, D is the corresponding diffusion coefficient, Q is the blood
flow rate, and r is the metabolic consumption term (determining the amount of oxygen con-
sumed by the tissue).

Stochastic Model

In the above classical model we assumed that the metabolic rate r is known function of time.
In general, the metabolic rate is unknown and time-dependent and thus needs to be estimated
at every time instance. In order to make the parameters identifiable we propose the constrain
the solution by assuming that the metabolic rate is a Gaussian random process with known
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mean. In that case the gas exchange can be modeled using

dnA

dt
= D

(

np

Vp
− nA

VA

)

− e
nA

VA

dnp

dt
= −D

(

np

Vp
− nA

VA

)

+ Q(1 − α)
nv

Vv
− Q(1 − α)

np

Vp

dna

dt
= Q(1 − α)

np

Vp
+ αQ

nv

Vv
− Q

na

Va

dnts

dt
= Q

na

Va
− Q

nts

Vts
+ r

dnv

dt
= Q

nts

Vv
− Q

np

Vp
(40)

where we use n to denote number of molecules in a particular compartment. Note that we
deliberately omit the time dependence in order to simplify notation.
Let us introduce n = [nA, np, na, nts, nv]

T and

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− D+e
VA

D
Vp

0 0 0

D
VA

− D+Q(1−α)
Vp

0 0 Q(1−α)
Vv

0 Q(1−α)
Vp

− Q
Va

0 αQ
Vv

0 0 Q
Va

− Q
Vts

0

0 − Q
Vp

0 Q
Vts

0

⎤































⎦

Using the above substitutions the above the SDE model becomes

dn = Andt + σdr (41)

where σ = [0, 0, 0, 1, 0]T.

In this section we derive signal processing algorithms for estimating the unknown parameters
for both classical and stochastic models.

Classical Model

Using recent technology advancement we were able to obtain intra-arterial pressure measure-
ments of partially dissolved O2 and CO2 in ten ventilated neonates. It has been shown (15)
that intra-arterial partial pressures are linearly related to the O2 and CO2 concentrations in
arteries i.e., can be modeled as

cCO2
a (t) = γpCO2

p (t)

cO2
a (t) = γpO2

p (t) + ch

where γ = 0.016mmHg and ch is the concentration of hemoglobin. Since the concentration of
the hemoglobin and blood flow were measured, in the remainder of the section we will treat
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ch and Q as known constants. Let np be the total number of ventilated neonates and ns the
total number of samples obtained for each patient

yw
ij = [cw

A,i(tj), cw
p,i, cw

a,i, cw
v,i, cw

t,i]
T

yij = [yCO2
(t), yO2

(t)]T

i = 1, . . . , np; j = 1, . . . , ns; w = O2, CO2.

Note that we use superscript w to distinguish between different vapors. Using the transient
model (1) the vapor concentration can be written as

yij = f 0eB(θi)tj ia + ei(tj)

where B is the state transition matrix obtained from model (1)

B(θ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−D+e
VA

D
VA

0 0 0

D
Vp

− D+Q(1−α)
Vp

0 0 Q(1−α)
Vp

0 Q(1−α)
Va

−Q 0 αQ
Va

0 0 Q
Vts

− Q
Vts

0

0 − Q
Vv

0 Q
Vv

0

⎤































⎦

and
θ = [VA, Vp, Va, Vt, Vv, r] (42)

is the vector of respiratory parameters for a particular neonate, and e(t) is the measurement
noise. Observe that we use subscript i to denote that parameters are patient dependent. We
also assumed that the metabolic rate is changing slowly with time and thus can be considered
as time invariant, and ia = [0 0 1 0 0 0 0 1 0 0]T is the index vector defined so that the intra-
arterial measurements of both O2 and CO2 are extracted from the state vector containing all
the concentrations. Note that the expiratory rate can be measured and thus will be treated as
known variable.

In the case of deterministic respiratory parameters and time-independent covariance the ML
estimation reduces to a problem of non-linear least squares. To simplify the notation we first
rewrite the model in the following form

yij = f ij + eij

f ij = e{A(θi)tj

The likelihood function is then given by

L(y|θ, σ2) =
1

σ2

n

∑
i=1

n

∑
j=1

(yij − f ij)
T(yij − f ij)
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The ML estimate can then be computed from the following set of nonlinear equations

θ̂ML = arg min
θ

n

∑
i=1

n

∑
j=1

(yij − f (θi))
T(yij − f (θi))

σ̂2
ML =

1
npns

n

∑
i=1

n

∑
j=1

(yij − f̂ ij)
T
(yij − f̂ ij)

f̂ ij = f 0eB(θ̂i)tj

The above estimates can be computed using an iterative procedure (19). Observe that we im-
plicitly assume that the initial model predicted measurement vector f 0 is known. In principle
our estimation algorithm is applied at an arbitrary time t0 and thus we assume f 0 = yi0.

Stochastic Model

In their most general form SDEs need to be solved using Monte-Carlo simulations since the
corresponding probability density functions (PDFs) cannot be obtained analytically. However
if the corresponding generator of Ito diffusion corresponding to an SDE can be constructed
then the problem can be written in a form of partial differential equation (PDE) whose solution
then is the probability density function corresponding to the random process. In our case, the
generator function for our model 41 is given by

Apn(n, t) = (n − µr)
T · ∂pn(n, t)

∂n
+

1
2

∂pn(n, t)TσσT∂pn(n, t) (43)

where
µr = [0, 0, 0, µr, 0]T (44)

where µr is the mean of metabolic rate.

Then according to Kolmogorov forward equation (25) the PDF is given as a solution to the
following PDE

∂pn(n, t)

∂t
= Apn(n, t) (45)

In our previous work (26) we have shown that the solution to the above equation is given by

pn(n, t) =
1

(2
√

π)
5
(t − t0)

5
2

e
− 1

2
√

t−t0
zT(σσT)

−
z

z = n − µrt − n(t0) (46)

where − denotes Moore-Penrose matrix inverse.
Note that the above solution represents the joint probability density of number of oxygen
molecules in five compartments of our compartmental model assuming that the initial num-
ber of molecules (at time t0) is n(t0). Since in our case we can measure only intra-arterial
concentration (number of particles) we need to compute the marginal density pna (na) given
by

pna (na, t) =
∫

· · ·
∫

pn(n, t)dnAdnvdnpdnts. (47)
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Once the marginal density is computed we can apply the maximum likelihood in order to
estimate the unknown parameters

θ̂i = arg max
θ

m

∏
j=1

pna (na, tj) (48)

where we use tj to denote time samples used for estimation and m is the number of time sam-
ples (window size). These estimates can then be used in order to construct the desired confi-
dence intervals as will be discussed in the following section. To examine the applicability of
the proposed algorithms we apply them to the data set obtained in the Neonatal Unit at St.
James’s University Hospital. The data set consists of intra-arterial partial pressure measure-
ments obtained from twenty ventilated neonates. The sampling time was set to 10s and the
expiratory rate was set to 1 breathe per second. In order to compare the classical and stochas-
tic approach we first estimate the unknown parameters using both methods. In all examples
we set the size of estimation window to m = 100 samples. Since the actual parameters are not
know we evaluate the performance by calculating the 95% confidence interval for one-step
prediction for both methods. In classical method, we use the parameter estimates to calculate
the distribution of the measurement vector at the next time step, and in stochastic estimation
we numerically evaluate the confidence intervals by substituting the parameter estimates into
(36).
In Figures (7 – 11) we illustrate the confidence intervals for five randomly chosen patients.
Observe that in the case of classical estimation we estimate the metabolic rate and assume
that it is time-independent i.e., does not change during m samples. On the other hand for
stochastic estimation, we use the estimation history to build pdf corresponding to r(t) and
approximate it with Gaussian distribution. Note that for the first several windows we can use
density estimation obtained from the patient population which can be viewed as a training
set. As expected the MLE estimates obtained using classical method provide larger confi-
dence interval i.e., larger uncertainty mainly because the classical method assumes that the
measurement noise is uncorrelated. However due to modeling error there may exist large
correlation between the samples resulting in larger variance estimate.
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Fig. 7. Partial pressure measurements.
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Fig. 8. Partial pressure measurements.
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Fig. 9. Partial pressure measurements.
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Fig. 10. Partial pressure measurements.
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Fig. 11. Partial pressure measurements.
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One of the most important tasks that affect both long- and short-term outcomes of neonatal
intensive care is maintaining proper ventilation support. To this purpose in this paper we de-
velop signal processing algorithms for estimating respiratory parameters using intra-arterial
partial pressure measurements and stochastic differential equations. Stochastic differential
equations are particularly amenable to biomedical signal processing due to its ability to ac-
count for internal variability. In the respiratory modeling in addition to breathing the main
source of variability is randomness of the metabolic rate. As a consequence ordinary differ-
ential equations usually fail to capture dynamic nature of biomedical systems. In this paper
we first model the respiratory system using five compartments and model the gas exchange
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between these compartments assuming that differential increments are random processes. We
derive the corresponding probability density function describing the number of gas molecules
in each compartment and use maximum likelihood to estimate the unknown parameters. To
address the problem of prediction/tracking the respiratory signals we implement algorithms
for calculating the corresponding confidence interval. Using the real data set we illustrate the
applicability of our algorithms. In order to properly evaluate the performance of the proposed
algorithms an effort should be made to investigate the possibility of developing real-time im-
plementing the proposed algorithms. In addition we will investigate the effect of the window
size on estimation/prediction accuracy as well.
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