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1. Introduction

Digital video has become a popular multimedia content in both online and offline environ-
ments thanks to the advancement of computer and portable devices, as well as broadband
internet technologies. While digital video is still gaining popularity, it is important to consider
ways to protect the contents from malicious use, efficient ways to search the desired contents
in the database, secure ways to provide extra features for upgraded viewers, reliable ways to
recover from transmission error for uninterrupted viewing, etc., for the future of digital video.
To accomplish such tasks, data hiding is one of the fields that provides the solutions (Johnson
et al., 2003; Katzenbeisser & Petitcolas, 2000).
In general, there are two types of data hiding for video: one that hides the video content
itself (video encryption or scrambling) so that nobody understands what is being transmit-
ted (Takayama et al., 2006; Wong et al., 2003; Zeng & Lei, 1999); the other that embeds external
information into the video, hence utilizing video as the data host. We consider the latter in
this chapter. Under this category, one of the basic requirements for a data hiding method is
the ability to produce video of high image quality. On top of that, additional properties are
desired, depending on the application in question. In case of watermarking, the information
embedded into a video should be able to withstand some common image processing attacks
such as re-compression at different bitrate, random video frame dropping, resizing, etc. (Cox
et al., 2002). In case of steganography, the embedded information should stay undetectable
with respect to steganalysis (Budhia et al., 2006), which is a process for revealing the existence
of hidden information in a suspicious video. In applications such as annotation or indexing,
even though it is not a compulsory property, it is usually preferable to achieve reversibility so
that the embedded information could be removed to restore the original video. Other appli-
cations of data hiding could be found at (Katzenbeisser & Petitcolas, 2000; Kurosaki & Kiya,
2002; Yanagihara et al., 2005).
Some representative data hiding methods in video domain could be found at (Bodo et al.,
2004; Kiya et al., 1999; Liu et al., 2004; Nakajima et al., 2005; Ni et al., 2006; Qiu et al., 2004;
Sarkar et al., 2007; Xu et al., 2006; Zhang et al., 2001). For example, Kiya et al. embed informa-
tion into an MPEG compressed video by modifying coefficients at selected location(s) in each
8 × 8 qDCTCs (quantized DCT coefficients) block (Kiya et al., 1999). The quantization table
is further modified to suppress distortion. Nakajima et al. proposed a high carrier capacity
data hiding method utilizing the idea of zerorun length coding in MPEG domain (Nakajima
et al., 2005). After zigzag scanning, a dummy nonzero value is inserted at a location that is
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z units away from the the original last nonzero qDCTC, where z depends on the data to be
embedded. Zhang et al. utilize MV (motion vectors) in P and B-pictures as the data carriers
for data embedding (Zhang et al., 2001). An MV is selected based on its magnitude, and its
angle guides the modification operation. In these existing works, qDCTC or/and MV is/are
usually utilized as the data carrier. Therefore, modifications done to the video during data
embedding may alter the video bitrate. As a result, researches are carried out to maintain the
original video bitrate for avoiding buffer overflow or underflow during video playback (Har-
tung & Girod, 1996; Pranata et al., 2004). For instance, Pranata et al. embed information into a
frame by evaluating the combined bit lengths of a set of multiple watermarked VLC (variable
length coding) codewords (Pranata et al., 2004). They successively replace the watermarked
VLC codewords having the largest increase in bit length with their corresponding unmarked
VLC codewords until a target bit length is achieved. Recently, a data hiding method using
Mquant (i.e., the scaling factor in rate controller) as the data carrier is proposed, and this
method always produces video with exactly the same bitrate as the original (compressed)
video even after data embedding (Wong & Tanaka, 2007). Suboptimal histogram preserving
modification scheme is also proposed to maintain the distribution of Mquant before and after
data embedding.
In this work, we focus on complete image quality preservation, reversibility, and efficient data
representation scheme as the fundamental research of data hiding in compressed video do-
main. Even though the aforementioned data hiding methods generally produce image/video
of high quality regardless of their applications and data carrier in use, the image quality of
the modified video is always lower than that of the original video. This is a critical drawback
because these data hiding technologies cannot be utilized in applications where image quality
degradation is not permitted. To solve this problem, we propose a novel data hiding method
in the compressed video domain that completely preserves the image quality.
To the best of our knowledge, there is no data hiding method that completely preserves the
image quality during data embedding, and this method is the first attempt of its kind. This
method is also reversible, and it is applicable not only to the existing MPEG-1/2/4 or H.261/3
encoded videos but also applicable to the encoding process of MPEG-1/2/4 or H261/3 video
from a sequence of raw pictures. The RZL (reverse zerorun length) data representation scheme
is proposed to exploit the statistics of macroblocks for achieving high embedding efficiency
while trading off with payload. We theoretically analyze that RZL outperforms matrix encod-
ing (Crandall, 1998) in terms of payload and embedding efficiency for this particular data hid-
ing method. The problem of video bitstream size increment as a result of data embedding is
also addressed, and two independent solutions are presented to suppress this increment. Ba-
sic performance of this method is verified through experiments with various existing MPEG-1
encoded videos.
One of the possible applications of our data hiding method is video indexing where high
image quality and reversibility are greatly desired because we can provide high quality video
as well as additional specialized functions such as searching, playback control, hyper-linking
with other media, etc. (Yanagihara et al., 2005). Here, we briefly introduce three practical
scenarios using video indexing:
The first scenario is educational use. Instead of the traditional straight forward video (i.e., lec-
ture) playback, we can provide interactive learning environment for the viewer. For example,
the video could be played back at a specific speed suitable for the viewer, the parts of the video
where important or complex ideas are presented could be easily accessed or repeated upon
viewer’s request, external resources such as presentation slides and related websites could
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be hyper-linked to the frame of interest and accessed upon viewer’s action, the area(s) in a
frame where the viewer should pay attention to could be emphasized by marking or mask-
ing, frames in which the object of interest appear could be tagged for retrieval, etc. Note that
the aforementioned features could be customized for each viewer based on his/her level of
understanding on the material, and the embedded information could be removed when nec-
essary. On top of that, the lecture to be viewed could be searched by using the information
such as keyword that is embedded in it.
The second scenario is servicing and maintainance business. Instead of the traditional paper-
based manual for an equipment, an interactive video manual could be authored using video
indexing technology. Video based instruction along with audio description is extraordinarily
informative especially when verbal or picture-based manual itself is incapable to provide de-
tailed instructions. Suppose we author an interactive video manual for servicing computer
printer. When a technician services the printer, he could watch and follow the interactive
video instructions at his own pace. The technician could choose the area of the printer to be
serviced (eg. printer cartridge, paper tray, firmware update, etc.) and the desired video will
be played back. When there is a need for part replacement, the technician places the mouse
cursor on the part to be replaced, and information such as URL to the order page, review and
evaluation of the spare part manufactured by each company, current prices in the market, etc.
could be displayed and accessed upon further action. This type of video could also be utilized
for training new technicians.
The third scenario is handling video database. Instead of storing the classification information
or unique tag of each video in a separate file, this information could be embedded into the
video. By doing so, we could avoid managing two separate files (i.e., the record and the video
itself) because the identifying information stays intact with the video and it could be decoded
for purpose of indexing. Also, when two or more video databases are merged, ambiguity in
video retrieval does not occur in our method. In case of using a pre-defined naming scheme
for identifying the videos in place of data hiding technology, the ambiguity problem may
occur because two videos, each from a different database, could have the exact same filename.
From the ordinary user point of view, one could retrieve videos using query keywords, and
browse these candidate videos having the same image qualities as the original unmodified
videos. When the desired video is retrieved, the embedded indexing information could be
removed (since our method is reversible) or it could be used for other purposes.

2. Review on video compression standard

2.1 MPEG-1 and MPEG-2 compression standards

In MPEG-1/2 compression standard, a sequence of pictures is segmented into GOP’s (group
of pictures). Pictures in each GOP are labeled as I, P or B, depending on the order in which
they appear, and the interval between two consecutive P-pictures are determined by the M-
factor parameter (Hanzo et al., 2007; Symes, 2004). Regardless of the picture type, each picture
is divided into slices, and each slice is further divided into MBs (macroblocks). Each MB
could be coded independently (INTRA mode), or motion compensated (INTER mode) where
motion vectors and differential signals are selectively coded. Finally, each MB contains blocks
of 8 × 8 qDCTCs for luminance and chrominance information. During video playback, DCT
coefficients are reconstructed from the qDCTCs using Eq. (1). Here, x denotes the qDCTC,
QT1 and QT2 are the default quantization table for INTRA and INTER-MB, respectively.
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rec[m][n] =

{

2 × x[m][n] × �(k) × QT1[m][n]/16, if INTRA
(2 × x[m][n] + sign(x[m][n])) × �(k) × QT2[m][n]/16, otherwise

(1)
For a specified video bitrate, MPEG utilizes Mquant (hereinafter referred as MQ) for distribut-
ing the available bits to code the pictures based on their spatial activities and similarity among
index and reference frames. Each divisor in the default quantization table is scaled by MQ be-
fore the quantization operation is carried out. MQ assumes any integer in the range of [1, 31],
and its value is recorded in the header of each slice. This value is utilized by all MBs in the
slice for encoding/decoding, but each MB can have its own MQ value. The acquirement of a
new MQ value is indicated by the CODED_MQ flag in the header of each MB, and this newly
coded MQ value is utilized by all tailing MBs until a new value is coded.

2.2 H.261, H263, and MPEG-4 compression standards

H.261, H.263, and MPEG-4 are similar to MPEG-1/2 in the sense that they are all cosine
transform-based compression standards, and consist of many common entities such as MV,
Mquant, qDCTCs, etc. On the other hand, these standards also differ in many aspects such
as MV of size 8 × 8 pixels is only available in MPEG-4, three dimensional VLC in H.263 and
MPEG-4, color schemes of 4:2:2 and 4:4:4 in MPEG-2, etc. Here, we only present the significant
difference in these compression standards that is relevant to our data hiding method. In par-
ticular, during video playback, instead of using Eq. (1) to reconstruct the coefficients, Eq. (2) is
utilized. The rest of the similarities and differences among MPEG-1/2/4 and H.261/3 could
be found at (Hanzo et al., 2007; ITU-T H.261, 1990).

rec[m][n]=

⎧

⎨

⎩

0, if x[m][n] = 0,
sign(x[m][n])×(2�(k)×∣x[m][n]∣+�(k)), if x[m][n] ∕= 0,�(k) is odd
sign(x[m][n])×(2�(k)×∣x[m][n]∣+�(k)− 1), if x[m][n] ∕= 0,�(k) is even

(2)

3. Methodology

We first present the basic idea using I-picture of MPEG-1 (i.e., all MBs are coded in INTRA
mode, and no MB is skipped nor purely motion compensated), and extend our idea to handle
INTER-MB that may occur in P and B-pictures. Modifications required to process MBs in
MPEG-4 and H.261/3 are later justified.

3.1 INTRA-MB: Excitement and promotion

For any video decoder compliant to MPEG compression standard, the DCT coefficients (i.e.,
only AC components from INTRA-MB, and both DC and AC components from INTER-MB)
are reconstructed by using Eq. (1), where 1 ≤ m, n ≤ 8, respectively. However, DC compo-
nents of INTRA-MB are reconstructed by the multiplication of a constant value (i.e., eight, and
is irrelevant to the MQ value). To ease the discussion, let MB(j) denote the jth MB in a slice.
Also, let �(j) associate the CODED_MQ flag and the MQ value of MB(j) in the following
manner:

�(j) = 0 ↔ CODED_MQ = FALSE;
�(j) > 0 ↔ CODED_MQ = TRUE, where the coded MQ value is as specified.

(3)
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Algorithm 1 Exciting an INTRA macroblock

1: �(j0) ← α
2: for Y, Cb, and Cr channel do
3: for all nonzero qDCTC[m][n] do
4: qDCTC[m][n] ← β × qDCTC[m][n]
5: end for
6: end for

Algorithm 2 Promoting a macroblock

1: �(j0 + 1) ← α × β
2: CODED_MQ flag ← TRUE

Consider MB(j0) such that �(j0) = α × β for some α, β ∈ N and β ∕= 1. Here, N denotes the
set of natural numbers. Obviously, α and β are the factors of �(j0). If �(j0) is a prime, then
the factors are unity and �(j0) itself. We excite MB(j0) using Algorithm 1. Here, α is chosen
as the new �(j0) value and β as the multiplying factor for all nonzero AC qDCTCs residing in
MB(j0). However, their roles could be interchanged as long as none of them is of value unity.
Referring to the INTRA case of Eq. (1), the value of the reconstructed AC coefficient rec[m][n]
is exactly the same before (original) and after MB excitement (modified). In particular, the
factor β that is “divided out" from the original �(j0) is compensated by the multiplication of
β to all nonzero AC qDCTCs in MB(j0) as performed in line 4 of Algorithm 1. Therefore, the
image quality of MB(j0) is completely preserved even after MB excitement.
As mentioned in Section 2, the last coded MQ value is utilized by the remaining MBs in
the slice unless a new MQ value is coded. Since �(j0) is modified when MB(j0) is excited,
MB(j0 + 1) must be modified accordingly to achieve complete image quality preservation in
the slice level. Note that modification is not required for MB(j0 + 1) if:

i. MB(j0) is the last MB in the slice, i.e., j0 = N, where N is the number of MBs in a
slice, or
ii. �(j0 + 1) ∕= 0 in which case this value can never be α × β.

Otherwise MB(j0 + 1) is promoted using Algorithm 2 to avoid the use of Q(j0) = α as the
MQ value. Thus, the operation of MB excitement, followed by MB promotion when necessary,
have no effect on the image quality of a slice of MBs, and hence a frame in a video. Note that,
although the image quality of the video is completely preserved, it is achieved at the expense
of an increase in the video bitstream size, which is further discussed in Section 5.

3.2 Complete video quality preserving data hiding

To embed information into a MPEG-1 compressed video utilizing MBs with MQ value of α× β,
we propose ORS (ordinary representation scheme) which is defined as follows:

1. If the ith message bit µ(i) = “1", excite the MB, and promote the affected MB when neces-
sary, or

2. If µ(i) = “0", do nothing to the MB.

The embedding flow is summarized in Figure 1. Instead of a fixed MQ value, we consider
β ∈ §1 and the corresponding α’s such that � = α × β to increase the payload. Here,

§1 := {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}. (4)
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Excite
MB(j)

j = 1

j � N?

Cond.A

Q(j)�0?Q(j)�0?

Next sliceNext slice

�(i)=1?

j = j + 1

j � N?

Cond.B

j = j + 1
Promote
MB(j)

Store
�,�
Store
�,�

�,��,�

i = i + 1

MB, 

Q,�

3

Fig. 1. Flowchart for data embedding. 1 Cond.A:= Is �(j) > 0 and mod(�(j), β) = 0 for at
least one β ∈ §1?, 2Cond.B:= Is MB(j) completely motion compensated without any qDCTC
or skipped?, 3This symbol denotes storage.

Thus, any MQ value in the range of [2, 31] could be factored into α and β for at least one
β ∈ §1. Note that each β ∈ §1 could also be utilized independently to realize multiple mes-
sages embedding (Wong et al., 2006). In particular, a maximum of 11 unique messages could
be embedded into a video using INTRA-MBs in I-pictures while completely preserving the
original image quality.

3.3 Data extraction and reversibility

To extract the embedded data, the modified video is parsed in the exact same order as MPEG
decoder does. The flowchart for data extraction is summarized in Figure 2. When an MB with
� ∕= 0 is encountered, there are three interpretations:

(i) excited MB that holds the information bit “1", or

(ii) original MB that holds the information bit “0", or

(iii) original MB that holds nothing.

To resolve this ambiguity, we consider the condition

mod (x, β) = 0 (5)

for each nonzero qDCTC x ∈ MB. Case (i) occurs if condition (5) is true for a specific β ∈ §1

for all x ∈ MB. We store the smallest value of β ∈ §1 that satisfies condition (5), update
� ← �× β, and yank an “1". On the other hand, case (ii) occurs if condition (5) fails but
mod (�, β) = 0 for at least one β ∈ §1 (i.e., Cond.D holds true). In this case, “0" is yanked as
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Output 

“1”
j = j + 1

Output 

“0”

j = j + 1

Store � Store �Store �

j = 1

j � N?

Q(j) > 0? Q(j) > 0?Q(j) > 0?

j � N?j � N?Cond.C Cond.D

Q(j) =

���?

Q(j) =

���?

Next slice

Restore 
MB(j)

Demote
MB(j)

�,��,�

MB, 

Q,�

Fig. 2. Flowchart for data extraction and restoration. 4Cond.C:= Is mod (x, β) = 0 for all
qDCTCs x ∈ MB(j) for at least one β ∈ §1?, 5Cond.D:= Is mod (�(j), β) = 0 for at least one
β ∈ §1?

the output. Case (iii) occurs if Cond.D fails, i.e., when the following holds true, and nothing
is output:

� = 1 (6)

Condition (5) or more generally, Cond.C, is valid for identifying excited MBs because it is
very unlikely that all nonzero qDCTCs in an MB (from the original video) are divisible by a
specific factor β ∈ §1, and this claim is verified through extensive experiments. Nevertheless,
when such a case occurs, we can restrict data embedding to a set of MQ values. Suppose
that there is at least one MB with � = α in the original video and all of its nonzero AC
qDCTCs are divisible by β. We make sure that no other MQ values get mapped to α during
data embedding, i.e., MB(j)’s with �(j) = 2 × α, 3 × α, ⋅ ⋅ ⋅ are ignored for data embedding.
However, MB(j)’s with �(j) = α themselves could be utilized for data embedding since the
value α will be replaced by α̂ (α = α̂ × β̂, and α̂, β̂ ≤ α) if they happened to be excited during
data embedding. When MB(j) with �(j) = α is encountered during data extraction, we know
that it must hold the information “0" since nothing gets mapped to it.
After encountering an excited MB, the next MB with a coded MQ value might be a promoted MB.
If its MQ value is α× β, then it is either a promoted MB or an excited MB, depending on Cond.C.
Otherwise, it is an MB that may hold “0", “1", or nothing, and hence condition Cond.C and
Cond.D are considered again to determine its state. Note that a promoted MB never occurs by
itself without a preceding excited MB. Therefore, we only resolve the ambiguity of reaching
a promoted MB or an MB encoding “0" when its previous MB is excited. Suppose MB(j0) is
identified as holding “1", i.e., MB(j0) is excited with �(j0) = α, and the information held by
MB(j0 + 1) is to be determined. We list the interpretations of MB(j0 + 1) based on �(j0 + 1)
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MB(j0) MB(j0 + 1) Interpretation

α ∕= α × β MB(j0) encodes “1", and MB(j0 + 1) encodes “0", “1" or nothing.
α α × β MB(j0) encodes “1", and MB(j0 + 1) is a promoted MB, or it

encodes “1". It can never encode “0" because �(j0) and �(j0 + 1)
can never be the same in the original video.

α × β ∕= α × β MB(j0) encodes “0", and MB(j0 + 1) encodes “0", “1" or nothing.
α × β α × β MB(j0) encodes “0", and MB(j0 + 1) must encode “1" because

�(j0) and �(j0 + 1) can never be the same in the original video.

Table 1. Distinguishing promoted MB and unmodified MB

Algorithm 3 Restoring an excited INTRA macroblock

1: � ← α × β
2: for Y, Cb, and Cr channel do
3: for all nonzero qDCTC[m][n] do
4: qDCTC[m][n] ← qDCTC[m][n] / β
5: end for
6: end for

Algorithm 4 Demoting a promoted macroblock

1: �(j0 + 1) ← 0
2: CODED_MQ flag ← FALSE

in Table 1. For completeness of discussion, we also list the cases where MB(j0) encodes “0",
i.e., �(j0) = α × β.
With the procedures presented above, the excited and promoted MBs could be identified. Hence,
we could restore an excited INTRA-MB to its original state by using Algorithm 3. Similarly, a
promoted INTRA-MB could be restored to its original state by using Algorithm 4.

3.4 Example: Encoding and decoding information

An example is shown in Figure 3 using two arrays of MBs (original at the top, modified at the
bottom) together with their coded MQ values extracted from an I-picture. Here, the value of
�(j) is recorded in the array if �(j) > 0, or ‘X’ is marked otherwise. Suppose the message
µ = 1010 ⋅ ⋅ ⋅ . MB(j0) is excited to hold the first bit of µ (i.e., “1"), thus �(j0) is updated to
α = 3 and each nonzero AC qDCTC is scaled by the factor β = 2 as shown. Then, we check
if MB(j0 + 1) needs to be promoted. Since �(j0 + 1) = 10 ∕= 0, MB(j0 + 1) is not promoted.
Instead, MB(j0 + 1) is considered to encode the second bit of µ. MB(j0 + 1) is left as it is
because an “0" is to be embedded. Note that �(j0 + 2) = 0, but MB(j0 + 2) is not promoted
since MB(j0 + 1) is not excited. Next, MB(j0 + 3) is excited to encode the third bit of µ (i.e., “1").
MB(j0 + 4) is promoted so that �(j0 + 4) = 13. MB(j0 + 5) is left as it is to encode the forth bit
of µ (i.e., “0"). The same process is repeated to embed the entire message.
To extract the embedded information, MBs are visited in the exact same order as in the en-
coding phase. DEC (message decoder) extracts “1" from MB(j0) because it satisfies Cond.C
with β = 2. Since �(j0 + 1) > 0 and �(j0 + 1) ∕= �(j0)× 2, DEC declares that MB(j0 + 1)
is not a promoted MB. DEC extracts “0" from MB(j0 + 1) because it fails Cond.C but satisfies
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Fig. 3. Example: Encoding and decoding information

Cond.D with β = 2. DEC does not check MB(j0 + 2) for possible promotion performed because
MB(j0 + 1) was not excited. DEC extracts “1" from MB(j0 + 3) since it satisfies Cond.C with
β = 13. DEC declares MB(j0 + 4) as a promoted MB because �(j0 + 4) = �(j0 + 3)× 13 and
MB(j0 + 4) fails Cond.C. DEC further extracts “0" from MB(j0 + 5) because it fails Cond.C
but satisfies Cond.D with β = 11. The decoding process continues until the entire message is
extracted.

3.5 Handling INTER-MB

When dealing with INTER-MB which could occur in P and B-pictures, line 4 in Algorithm 1
is modified as follows during MB excitement:

x ← βx + sign(x)× y, (7)

where x is a nonzero qDCTC in the MB (DC components are also included), and y = (β− 1)/2.
The scaling equation given by Eq. (7) is derived in Appendix. Since all operations are carried
out in integer mode in MPEG coding standard, y must be an integer. Hence, the multiplying
factor β has to be an odd number, and 2 must be removed from §1 when processing an INTER-
MB. In particular, we use β ∈ §2 when dealing with INTER-MBs where

§2 := §1 ∖ {2} = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31}. (8)

Next, an INTER-MB is promoted using the same operations as applied to promote an INTRA-
MB, i.e., Algorithm 2. However, since an INTER-MB may be skipped or completely motion
compensated, these MBs are ignored during the search for the next MB coded with qDCTCs
(i.e., image signal in case of INTRA-MB or differential signal in case of INTER-MB) for neces-
sary MB promotion. Refer to (Hanzo et al., 2007) for more information on MB type.
When extracting the embedded information from an INTER-MB, condition (5) is replaced by
the following condition:

mod (x − sign(x)× y, β) = 0. (9)

Cond.C is also updated accordingly using §2 in place of §1. An INTER-MB is declared as
encoding nothing if it fails Cond.D, and this happens when

� ∈ {1, 2, 4, 8, 16}. (10)
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Algorithm 3 is utilized to restore an excited INTER-MB, except that the division operation in
line 4 is replaced by

x ← (x − sign(x)× y)/β (11)

for all nonzero qDCTC x ∈ MB. Finally, a promoted INTER-MB is restored to its original state
by using Algorithm 4.

3.6 Application to H.261, H.263, and MPEG-4

Since H.261 and H.263 reconstruct the DCT coefficients of an INTRA-MB using a linear equa-
tion similar to that of Eq. (1), Algorithm 1 could be applied directly when exciting an INTRA-
MB. Interestingly, similar to the case of MPEG-1/2, line 4 in Algorithm 1 is also deduced to be
replaced by Eq. (7) when dealing with an INTER-MB. Note that the reconstruction equation
given by Eq. (2) differs depending on the value of MQ (i.e., odd or even), but Eq. (7) handles
both cases simultaneously. This claim is justified in Appendix.
In case of MPEG-4, since the DC component of an INTRA-MB is reconstructed using MQ with
a non-linear equation, the proposed method is restricted to INTER-MBs in MPEG-4. Similar
to MPEG-1/2 and H.261/3, INTER-MB of MPEG-4 compressed video is excited using Algo-
rithm 1 and Eq. (7).
By exciting MB and promoting the affected MB, data embedding could be carried out while
completely preserving the image quality of the original video. Procedure for decoding the
embedded information, restoring the excited MB, and demoting the promoted MB could be easily
derived from the aforementioned discussions and we omit the presentation here.

4. Reverse zerorun length

In this section, we propose RZL (reverse zerorun length) data representation scheme for
achieving high embedding efficiency. For the rest of the chapter, embedding efficiency η refers
to the number of bits embedded per modification. When embedding at a rate lower than the max-
imum carrier capacity (i.e., payload), more than k locations could be utilized to encode k bits
of information while attempting to reduce the number of modifications. This idea is realized
by exploiting the statistics of MB with respect to the proposed data hiding method.

4.1 Method

Suppose we treat each MB in its original state as “0" and the excited state as “1". The origi-
nal/natural message induced by any video is thus an array of zeros. We exploit this statistic
to encode a binary message µ while aiming to reduce the number of MB excitements.
Let µ be a binary message of length ∣µ∣, and let k ∈ N such that k ≥ 2. µ is di-
vided into segments of length k bits, and each segment µ(i) is processed one at a time for
i = 1, 2, ⋅ ⋅ ⋅ , ⌈∣µ∣/k⌉, where ⌈z⌉ is the smallest integer greater than or equal to z. Unless speci-
fied otherwise, ∣Z∣ denotes the cardinality of the set/array Z. Given µ(i) in ORS format as the
input, the binary-to-RZL convertor (hereinafter referred as BIN2RZL) computes the decimal
equivalent of µ(i) (denoted by µ10(i)), outputs µ10(i) number of zeros, followed by an “1" to
mark the end of the message segment. For example, suppose µ = 011101001 and k = 3,

BIN2RZL(011) = 0001 (i.e., three zeros followed by unity)
BIN2RZL(101) = 000001 (i.e., five zeros followed by unity)
BIN2RZL(001) = 01 (i.e., one zero followed by unity)

(12)

To embed the message µ using RZL, the output of BIN2RZL(µ(i)) for all i are concatenated.
The resulting sequence of zeros and ones are threated as a new message µ̂, and µ̂ is embedded
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Fig. 4. Encoding and decoding example using RZL. Each MB is assumed to be usable for data
embedding.

by exciting and promoting MBs as described earlier. In other words, RZL utilizes the distance
between two consecutive “1"s output by BIN2RZL to encode information. Using the same
example, µ̂ = 000100000101 and Figure 4 illustrates the resulting macroblocks after encoding
µ̂ with RZL. Note that in this particular example, five MB excitements are required to encode
µ = 011101001 in case of ORS but only three MB excitements are required in case of RZL. Also
note that given any binary sequence of length k, the output of BIN2RZL may be longer or
shorter than k. Discussions on the number of excitements and locations required to encode µ(i)
are presented in Section 4.2. For completion of discussion, RZL switches to ORS when k = 1.
To decode the message embedded in RZL format, µ̂ is first decoded by considering the state
of each MB as described earlier. To ease the dicussion, let µ̂(j) denote the jth bit in µ̂. The
indices ji where µ(ji) = 1 are stored in the array J in the order in which they appear. Note
that ∣J∣ × k = ∣µ∣. To decode µ(i), we set j0 = 0 and consider the RZL-to-binary convertor
(hereinafter referred as RZL2BIN) that converts ji − ji−1 − 1 into binary representation of k
digits, with zeros stuffing as the prefix when necessary. In particular,

RZL2BIN(BIN2RZL(µ(i)), k) = µ(i). (13)

Note that the value k is required in RZL2BIN.

4.2 Performance analysis and discussion

The performance of RZL is compared to that of matrix encoding (ME) (Crandall, 1998). ME(k)
is a data representation scheme that encodes k bits of information by utilizing 2k − 1 locations
with at most one modification. In the context of the proposed data hiding method, location
refers to MB with � = α × β for β ∈ §1 or β ∈ §2 (depending on the MB type), and modifi-
cation refers to MB excitement. ME is widely utilized because its payload could be traded for
higher embedding efficiency. However, in order to store k bits of information, ME constantly
requires 2k − 1 locations. On the other hand, the number of locations required by RZL varies
depending on the message segment to be embedded. In particular, RZL occupies one location
in the best case scenario (i.e., µ(i) = 000 ⋅ ⋅ ⋅ 0), and occupies 2k locations in the worst case
scenario (i.e., µ(i) = 111 ⋅ ⋅ ⋅ 1).
Since we may assume that the message µ is randomly distributed, i.e., P(0) = P(1) = 0.5,
hence the expected number of locations required for encoding a k bit message segment in case
of RZL is

2k ⋅ (2k + 1)

2
×

1

2k
=

2k + 1

2
= 2k−1 + 0.5 (14)

using the fact that ∑
n
i=1 i = n(n + 1)/2 for n ∈ N. For embedding ⌈∣µ∣/k⌉ segments, it is

difficult to formulate the estimated number of locations required. Nevertheless, ⌈∣µ∣/k⌉ ×
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k 1 2 3 4 5 6 7 8 9

ME 1 3 7 15 31 63 127 255 511

RZL 1 2.5 4.5 8.5 16.5 32.5 64.5 128.5 256.5

Table 2. Expected number of locations required

k 1 2 3 4 5 6 7 8

ME 1.000 0.667 0.429 0.267 0.161 0.095 0.055 0.031

RZL 1.000 0.800 0.667 0.471 0.303 0.185 0.109 0.062

Table 3. Expected payload for ME and RZL for various k [×10−4 bits]

(2(k−1) + 0.5) gives a coarse estimation for the number of locations required to encode µ with
segment size k when using RZL. Table 2 records the expected number of locations required
to encode a k bit message segment for k = 1, 2, ⋅ ⋅ ⋅ , 9. For comparison purposes, the number
of locations required for ME is also recorded in the same table. Obviously, RZL requires, in
general, less locations (almost half) when compared to ME for encoding the same amount of
information (i.e., k bits).
Next, we analyze the embedding efficiency η of ME and RZL (hereinafter referred as η[ME(k)]
and η[RZL(k)], respectively). When ME is applied, an MB is excited with the probability of
1 − 1/2k, and hence η[ME(k)] = k/(1 − 1/2k). The subtraction of 1/2k is due to the fact that
an array of zeros (message segment) with length k occurs with probability 1/2k in which case
no modification is required. In other words, we always start with an array of zeros (be it of
length 2k − 1 locations) and the only time we need not excite any MB is when the message
segment to be embedded (k bits) is an array of zeros (which occurs with probability 1/2k).
In case of RZL, we always need to excite an MB to mark the message, hence η[RZL(k)] = k,
which is lower than η[ME(k)]. However, as recorded in Table 2, RZL requires less locations to
encode the same amount of information when compared to ME, and hence a larger k could be
utilized in case of RZL. As an example, suppose ∣J∣ = 10000, and we compute the payload of
ME and RZL using various values of k. Table 3 records the expected payload in fraction, i.e.,
actual payload divided by ∣J∣. The results suggest that

Ω[RZL(k + 1)] ≥ Ω[ME(k)], (15)

where Ω[Z(k)] denotes the payload for data representation scheme Z ∈ {ME, RZL} with
parameter k. Eq. (15) becomes more obvious for k ≥ 2. Therefore, we may use a larger k for
RZL to encode the same amount of information held by ME. Specifically, for a fixed message
length ∣µ∣ and a fixed number of usable MBs, we expect kRZL ≥ kME. For the same reason, we
expect higher embedding efficiency in RZL since

k/(1 − 1/2k) ≤ k + 1, ∀k ≥ 1. (16)

The aforementioned expectations are verified in Section 6. Thus, when embedding at any
rate lower than the maximum carrier capacity, RZL could be utilized for achieving higher
embedding efficiency, which in turn leads to smaller video bitstream size increment during
data embedding.
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5. Suppressing video bitstream size increment

When an MB is excited during data embedding, the magnitude of all nonzero AC components
(including DC components in case of INTER-MB) are increased by a factor of at least β. Refer-
ring to the default VLC table specified in MPEG coding standard (Symes, 2004), it is observed
that when the magnitude of a qDCTC increases, the length of its VLC increases even if its
zerorun length remains the same. As a result, whenever an MB is excited (modified), the video
bitstream size always increases. The simplest way to suppress video bitstream size increment
is to code a new VLC table and utilize it in place of the original VLC table. However, the orig-
inal VLC table in a compressed video could itself be a user-defined table or the default VLC
table as specified by MPEG coding standard. Therefore, to achieve complete reversibility after
data embedding, we must not code a new VLC table. Instead, we propose the following two
independent solutions:

(i) Only small multiplying factors (eg. β = 2 or 3) are utilized so that the increase in code
length (in VLC table) for each nonzero qDCTC is kept to the minimal. In particular, all
prime factors no larger than φ ∈ §1 is utilized for INTRA-MB, and all prime factors no
larger than ρ ∈ §2 is utilized for INTER-MB. The restriction using φ and ρ reduces the
payload since only a subset of β is considered for data embedding.

(ii) Instead of using all MBs with � = α × β (β ∈ §1 and β ∈ §2 in case of INTRA and
INTER-MB, respectively) for data embedding, only MBs that are made up of at most τ
number of nonzero qDCTCs are utilized. This is a natural way to limit the bitstream
size increment since less nonzero qDCTCs implies less multiplications by the factor β.

To ease the discussion, we define

δ(V) = filesize(V′)− filesize(V). (17)

Note that δ(V) > 0 since the modified video V′ has larger filesize than the original video V.
We use “filesize" and “video bitstream size" interchangeably for the rest of the chapter. Also,
unless specified otherwise, “increase of video bitstream size" or δ(Vi) refers to the change of
filesize for the entire video instead of “change of bitstream size per second" or such. The effect
of each solution on payload and δ(V) are verified in Section 6. Last but not least, because
higher embedding efficiency implies less modifications, which in turn leads to smaller δ(V),
RZL proposed in Section 4 could be utilized to further suppress δ(V) while trading off with
payload.

6. Experimental results

Eight test videos are utilized to verify the performance of the proposed method. Each video
is encoded by MPEG-1 compression standard using ISO/IEC TR 11172-5 (1998) at 1.5Mbps
with 15 pictures in a GOP and picture type ratio of I:P:B = 1:4:10. More information on the
test videos could be found in Table 4. Note that we need not evaluate the image quality of
the modified video because when the modified video is fed into an ordinary decoder, it com-
pletely reconstructs the original video even compared at the bit-to-bit level. Nevertheless, we
verified that each modified video has exactly the same PSNR value as its original counter-
part. It is verified that the embedded information could be decoded and removed to restore
the original video. Also, using Microsoft Windows Media Player (version 6.4.09.1130), it is
verified that all modified videos could be played-back properly.
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Video Video description
Total Frames

Dimension MB per frame
I P B

V1 Coastguard 20 80 198 352 × 288 396

V2 Container 20 80 198 352 × 288 396

V3 Driving 20 80 198 352 × 240 330

V4 Flower garden 10 40 98 352 × 240 330

V5 Foreman 20 80 198 352 × 288 396

V6 Hall monitor 20 80 198 352 × 288 396

V7 Mobile calendar 20 80 198 352 × 288 396

V8 A walk in the sqaure 30 120 298 352 × 240 330

Table 4. Information of standard test videos

6.1 Payload

First, we consider the payload offered by each � = α × β for β ∈ §1 and β ∈ §2 in case
of INTRA and INTER-MB6, respectively. We record the payloads of V1 :Coastguard as the
representative example in Table 5. As expected, the payload is relatively low if we utilize
only a specific pair of α and β for data embedding (eg. α = 5 and β = 3 that provide merely
20-bits in INTRA-I). However, more than a pair of α and β could be utilized simultaneously to
provide higher total payload. Note that the payload offered by � = 1 is always zero because
1 /∈ §1 and 1 /∈ §2. Also, in case of INTER-MB, the payload offered by � ∈ {2, 4, 8, 16} is
always zero since the only factor for these values is 2, which is not in the set §2. Similar results
are observed for other test videos. For the rest of the chapter, payload refers to the sum of the
payloads offered by each pair of α and β for β ∈ §1 or β ∈ §2 depending on the MB type.
Secondly, for each video, the average payload (bits per frame, hereinafter bpf ) for I, P and B-
picture are recorded in Table 6. When operating at full capacity, i.e., (φ, ρ, τ) = (31, 31, 384),
the payload of a video reaches its upper bound with respect to the proposed method. Using
I-pictures of V1 as the representative example, we elaborate the results. The value 4395-bits /
20 frames = 219.8bpf implies that, on average, out of 396 MBs in an I-picture, 219.8 MBs are
equipped with coded MQ values that are each divisible by at least one β ∈ §1. Hence, on
average, 219.8 bits could be embedded into each I-picture of V1. The rest of the results are
interpreted similarly.
In the full capacity mode, it is observed that the payload is influenced by the variation of
spatial complexity (activity) in the video and similarity among frames. Regardless of the pic-
ture type, video of high variation in spatial complexity and low similarity among frames (eg.
V4 and V7) offers high payload, and vice versa (eg. V2 and V6). On average, approximately
55.9%, 24.0%, and 23.6% of all MBs are usable for data embedding in I, P, and B-pictures,
respectively. Also, for the same parameter setting, it is observed that regardless of the video,
I-picture consistently yields the highest payload. This is because all MBs in I-picture are coded
while only selected MBs in P and B-pictures are coded due to motion compensation.
Next, we investigate how the payload is influenced by solution (i) which is proposed in Sec-
tion 5 for suppressing filesize increase. When φ or ρ is reduced from 31, the payload reduces
regardless of the picture type or video. Nevertheless, for each video, I-picture still yields the
highest payload. When (φ, ρ) is reduced from (31, 31) to (13, 13), the reduction of payload is
insignificant, i.e., an average drop of ∼ 2.6%,∼ 4.1%, and ∼ 7.9% are observed for I, P, and
B-pictures, respectively. Similar results are observed for the reduction of (φ, ρ) from (13, 13)
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� INTRA-I INTRA-P INTER-P INTRA-B INTER-B

1 0 0 0 0 0
2 24 0 0 0 0

36 282 1 0 0 0
4 601 6 0 0 0
5 763 18 3430 0 2672
6 727 22 0 0 0
7 568 17 2451 0 6503
8 411 15 0 0 0
9 330 9 0 0 0
10 211 5 664 0 3549
11 147 3 558 0 2618
12 116 3 0 0 0
13 105 3 340 0 1396
14 89 1 164 0 1088
15 20 1 46 0 931
16 1 1 0 0 0
17 0 0 7 0 750
18 0 0 0 0 0
19 0 0 0 0 260
20 0 0 0 0 145
21 0 0 0 0 62
22 0 0 0 0 18
23 0 0 0 0 13
24 0 0 0 0 0
25 0 0 0 0 0
26 0 0 0 0 0
27 0 0 0 0 0
28 0 0 0 0 0
29 0 0 0 0 0
30 0 0 0 0 0
31 0 0 0 0 0

Sum 4395 105 7660 0 20005
6Note that β = 3 is removed from §2 because there are INTER-MBs in some
original videos in which case all of their qDCTCs are of the form 3z + sign(z)
for integer z. This causes false detection of excited MB. Thus, in our experiments,
§2 = {5,7,11,13,17,19,23,29,31} is considered.

Table 5. Distribution of usable MQ values for V1 : Coastguard

to (7, 7). When (φ, ρ) is further reduced to (2, 5), the average payload of each video drops to
approximately half of its original payload regardless of the picture type. With this relatively
strict condition, i.e., (φ, ρ, τ) = (2, 5, 384), we still achieve an average payload of ∼ 104,∼ 38,
and ∼33bpf for I, P and B-pictures, respectively.
Now, suppose that data embedding is restricted to MBs with at most τ number of nonzero
qDCTCs (i.e., solution (ii) in Section 5). The results for applying this restriction to the MBs
extracted with (φ, ρ) = (31, 31) and (2, 5) are recorded in Table 7 for τ = 10, 4 and 1. Payload
for each type of picture generally decreases when τ is decreased. The results indicate that the
reduction in payload is most severe in case of I-picture, followed by P and B-pictures. As an
example, consider the payload for (φ, ρ) = (31, 31). When τ is reduced from 384 to 10, the
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Video
(φ, ρ) = (31, 31) (φ, ρ) = (13, 13) (φ, ρ) = (7, 7) (φ, ρ) = (2, 5)

I P B I P B I P B I P B

V1 219.8 97.1 101.0 219.8 97.0 95.9 207.2 85.7 75.5 109.0 52.4 36.9
V2 118.1 20.5 12.8 118.1 20.5 12.8 117.6 20.4 12.8 66.6 15.9 6.8
V3 215.1 103.6 106.5 214.8 103.4 99.6 200.7 88.9 70.3 107.5 54.5 35.9
V4 239.0 144.2 132.2 212.3 118.1 96.8 184.3 84.5 61.9 118.9 44.0 39.3
V5 216.5 64.9 88.5 216.2 64.7 87.4 210.6 61.5 72.6 106.4 37.6 50.1
V6 165.2 29.3 45.3 165.2 29.3 45.3 164.0 29.2 37.1 87.5 14.4 29.2
V7 312.0 190.4 154.3 282.1 163.4 119.6 242.6 118.9 70.7 151.9 55.4 47.3
V8 162.4 49.5 48.0 162.4 49.5 47.5 159.0 46.7 34.5 86.0 28.0 20.2

Table 6. Average payload per frame for each picture type with parameter (φ, ρ, τ = 384) and
ORS [bp f ]

(φ, ρ) = (31, 31)
Video τ = 10 τ = 4 τ = 1

I P B I P B I P B

V1 0.00 7.53 72.25 0.00 2.20 40.49 0.00 0.45 13.37

V2 1.05 5.18 8.59 0.60 2.46 5.69 0.00 0.51 2.85

V3 1.85 8.04 57.20 0.30 1.99 32.04 0.10 0.33 10.98

V4 5.80 5.55 100.58 2.00 2.15 67.42 0.70 0.88 24.67

V5 2.10 7.48 57.40 0.80 2.48 34.32 0.10 0.59 12.30

V6 0.00 8.61 32.81 0.00 2.69 21.89 0.00 0.40 8.35

V7 2.20 33.11 120.64 1.55 9.61 81.99 0.55 1.95 33.24

V8 0.03 4.08 33.20 0.00 1.18 21.64 0.00 0.25 9.01

(φ, ρ) = (2, 5)
Video τ = 10 τ = 4 τ = 1

I P B I P B I P B

V1 0.00 4.28 27.66 0.00 1.19 15.71 0.00 0.28 5.29

V2 1.00 4.01 4.76 0.55 1.85 3.22 0.00 0.38 1.72

V3 1.10 4.93 19.93 0.25 1.11 11.40 0.10 0.19 3.74

V4 3.20 1.28 29.53 1.00 0.55 20.26 0.20 0.23 7.50

V5 1.25 4.53 33.34 0.40 1.54 20.31 0.05 0.36 7.22

V6 0.00 4.09 20.20 0.00 1.55 11.87 0.00 0.33 3.61

V7 0.55 9.46 36.63 0.35 3.01 24.74 0.20 0.59 10.00

V8 0.00 2.56 14.08 0.00 0.86 9.23 0.00 0.21 4.03

Table 7. Average payload influenced by τ with respect to ORS [bp f ]

payload is ∼ 1%,∼ 14% and ∼ 69% of the original payload (i.e., when τ = 384) of I, P and
B-pictures, respectively. When τ is reduced to 4 and 1, the payload further decreases. Similar
results are observed for (ρ, τ) = (2, 5). Nevertheless, in case of (φ, ρ, τ) = (2, 5, 1), B-pictures
could still be utilized to embed information at the rate of ∼5.4bpf.
Finally, when RZL is applied to any combination of (φ, ρ, τ), we expect the resulting payload
to be a fraction of the original payload achieved by (φ, ρ, τ). The fraction depends on the
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Fig. 5. Embedding efficiency vs. payload for ORS, ME, and RZL

parameter k of RZL, and it is recorded in Table 3. Nevertheless, when k increases, the payload
decreases, and vice versa.
We conclude that the payload (bpf ) for each type of picture is influenced by the parameters
φ, ρ, and τ, as well as the application of RZL. Payload decreases whenever solution (i), (ii), or
RZL is applied, but their roles in suppressing δ(Vi) become obvious in Section 6.3.

6.2 Performance of RZL

In this section, we simulate the embedding process using ME (Crandall, 1998) and RZL as
the data representation scheme. For comparison purposes, we also consider ORS proposed
in Section 3.2. As for the experiment parameters, ∣J∣ = 100000, and k = 1, 2, ⋅ ⋅ ⋅ , 7. For each
k, a message segment of length k bits is randomly generated and embedded. This process
is repeated until all available locations (∣J∣ of them in total) are occupied. Next, the number
of message segments embedded (ω) and the number of modifications (ν) are counted. This
process is repeated for 1000 times, and the average of ω and ν are computed. The average em-
bedding efficiency is computed as η̄ = k × ω̄/ν̄. The aforementioned procedures are carried
out using ORS, ME, and RZL. The results are shown in Figure 5.
As expected, the embedding efficiency for ORS is always 2 because an MB is excited with
the probability of 0.5 when embedding a random binary message regardless of its length.
Next, the results suggest that when we increase the parameter k from 1 to 2, η[RZL(k)] stays
the same, i.e., 2, as indicted by the vertical (solid) line in Figure 5. This is because every
time we embed a message segment, we have to excite an MB regardless of its length k. Thus,
η[RZL(2)] = 2/1.
For each k, it is observed that RZL(k) is inferior to ME(k) in terms of embedding efficiency.
Rather, the results should be considered from the payload point of view. For instance, when
we consider ME(2) and RZL(3), the carrier capacities are about the same, i.e., Ω[ME(2)] ∼
Ω[RZL(3)], but RZL(3) achieves a higher embedding efficiency when compared to ME(2),
i.e., η[RZL(3)] > η[ME(2)].

www.intechopen.com



�����������,�

Ordinary representation scheme

V1 266.17 172.43 107.99 66.40 39.08 22.10

V2 82.04 53.83 33.36 22.24 12.00 6.70

V3 340.06 224.02 136.78 81.02 50.07 26.65

V4 246.62 154.82 95.44 60.80 32.60 18.47

V5 205.22 125.50 77.17 46.46 25.78 15.96

V6 102.09 64.73 39.41 22.66 13.31 6.94

V7 441.21 280.47 173.76 104.13 65.43 33.78

V8 282.98 184.63 118.76 70.28 38.69 23.17

Matrix encoding with parameter k

Video k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

V1 203.74 104.05 51.46 24.66 12.81 6.60

V2 57.65 29.34 15.39 7.37 3.20 2.20

V3 258.22 129.78 64.47 32.44 16.06 9.08

V4 180.97 94.27 46.16 24.15 11.56 4.99

V5 151.58 73.92 37.72 19.00 8.26 4.86

V6 76.63 40.68 19.54 10.12 4.86 2.48

V7 343.39 165.56 86.15 42.59 21.37 10.67

V8 210.62 103.03 53.39 25.81 12.60 5.76

Reverse zerorun length with parameter k

Video k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

V1 179.42 86.81 43.17 21.18 10.60 5.47

V2 53.44 26.80 13.07 6.37 2.96 1.93

V3 227.95 109.30 52.12 29.24 13.21 6.95

V4 160.21 79.36 37.60 19.61 10.18 5.19

V5 127.76 61.95 30.68 16.28 9.09 4.61

V6 69.30 34.17 17.35 8.13 3.94 2.24

V7 300.39 145.76 72.35 35.59 18.35 9.52

V8 186.70 90.90 45.93 22.57 11.80 6.25

Table 8. Increase of video bitstream for ORS, ME(k), and RZL(k + 1) [Kbytes]

In fact, the embedding efficiency of RZL(k + 1) is always higher than that of ME(k) for k ≥ 2.
Moreover,

Ω[ME(k)] ≤ Ω[RZL(k + 1)] (18)

and
η[ME(k)] ≤ η[RZL(k + 1)] (19)

hold true simultaneously for k ≥ 3. Since higher embedding efficiency implies less modifica-
tions (i.e., MB excitements), δ(Vi) is expected to be smaller when RZL(k + 1) is utilized as the
data representation scheme as oppose to ORS or ME(k).

6.3 Suppression of video bitstream size increment

First, we compare the performance of ME (Crandall, 1998) and RZL in terms of δ(Vi) when
embedding the same amount of information. Since solution (i) and (ii) are independent, it
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Video (φ, ρ) = (31, 31) (φ, ρ) = (2, 5)
τ 384 10 4 1 384 10 4 1

V1 414.18 47.87 13.62 1.99 166.78 18.33 5.20 0.82

V2 120.94 5.27 1.56 0.35 60.28 3.12 0.88 0.21

V3 522.67 34.89 8.47 1.22 198.74 12.67 3.13 0.46

V4 364.40 20.83 6.59 0.92 98.60 5.98 1.93 0.28

V5 300.97 32.88 9.04 1.40 141.87 18.24 5.41 0.86

V6 158.86 19.92 6.90 1.17 85.22 12.78 3.93 0.50

V7 676.18 67.76 21.17 3.43 179.60 19.90 6.29 1.00

V8 416.32 24.57 7.08 1.24 185.12 10.15 2.94 0.58

Table 9. Increase of video bitstream size with respect to (φ, ρ, τ) [kbytes]

is sufficient to consider a particular set of parameters and infer the results for other settings.
In partcular, we consider (τ, φ, ρ) = (384, 31, 31) which causes the largest δ(Vi) during data
embedding. Since

Ω[ME(k)] ≤ Ω[RZL(k + 1)] ≤ Ω[ORS], (20)

we embed a message of length Ω[ME(k)] bits into each video by using ORS, ME(k), and
RZL(k + 1). For fair evaluation purposes, we ensured that each type of picture (i.e., I, P and B)
holds the exact same amount of information when using different representation scheme. The
experiment is repeated for k = 2, 3, ⋅ ⋅ ⋅ , 8, and the resulting filesizes are recorded in Table 8.
As expected, when either ME or RZL is applied, δ(Vi) is significantly suppressed. When
embedding the same amount of information, RZL(k + 1) consistently yields the smallest δ(Vi)
when compared to ORS and ME(k) regardless of the value k. For example, using the filesize
increased in case of ORS as the reference, the average reduction of δ(Vi) are 25% and 34% for
ME(2) and RZL(3), respectively. However, when we consider ME(7) and RZL(8), the average
reduction of δ(Vi) are 69% and 72%, respectively. In other words, the superiority of RZL over
ME in suppressing δ(Vi) is more obvious for smaller k and become less obvious as k increases,
which agree with the simulation results shown in Figure 5. We conclude that both ME and
RZL are capable in suppressing δ(Vi), and RZL outperforms ORS and ME when embedding
the same amount of information.
Next, we verify that solution (i) and (ii) proposed in Section 5 are also capable in suppressing
δ(Vi) caused by data embedding. For each test video, we consider δ(Vi) after embedding at
the maximum rate with respect to parameter (φ, ρ, τ). For simplicity, we utilize ORS as the
data representation scheme. The results are recorded in Table 9. Using V1 and the parameter
setting of (φ, ρ) = (31, 31) as the representative example, we elaborate the results. When
τ = 384, δ(V1) = 414.18 kbytes, which is the upper bound of δ(V1) for the proposed method.
Once τ is reduced to 10, δ(V1) reduces to 47.87 kbytes, or equivalently ∼ 1/9 of δ(V1) for
τ = 384. When τ is further reduced from 10 to 4, δ(V1) is suppressed to 13.62 kbytes. A
negligible δ(V1) of ∼ 2 kbytes is observed when τ = 1, but the payload is also significantly
reduced (refer to Table 7). The result for other videos and the setting of (φ, ρ) = (2, 5) are
interpreted similarly.
To better visualize the suppression of δ(Vi) , we consider coding efficiency ε that is defined
as the number of message bits embedded per video bit increased. Higher ε implies smaller δ(Vi),
and vice versa. The results for ε are recorded in Table 10. On average, 0.0087 bits (from
the message) are encoded per increased video bit in case of (φ, ρ, τ) = (31, 31, 384). In other
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Video (φ, ρ) = (31, 31) (φ, ρ) = (2, 5)
τ 384 10 4 1 384 10 4 1

V1 9.5 38.0 73.5 164.5 10.0 38.7 75.3 160.2

V2 6.6 49.4 104.6 208.7 8.0 50.3 110.1 210.8

V3 7.9 42.0 93.9 221.2 8.4 42.0 91.6 203.1

V4 7.1 59.4 124.3 327.5 8.4 60.8 127.5 327.2

V5 11.0 44.6 94.6 216.2 13.0 46.8 93.7 207.2

V6 11.2 44.0 80.5 175.3 12.5 41.3 76.8 178.9

V7 9.4 47.9 98.2 240.2 11.5 49.2 99.9 249.1

V8 7.4 51.6 113.7 266.3 7.9 54.2 118.3 260.2

Table 10. Coding efficiency for various (φ, ρ, τ) at 1.5Mbps (×10−3)

words, embedding a single message bit causes an increment of 115 bits in the video bitstream.
The rest of the results are interpreted similarly. The results show that ǫ increases when τ is
reduced. In the best case scenario, an average increase of four bits in the video bitstream size
is observed for every message bit embedded. Interestingly, ε(31, 31, τ) ∼ ε(2, 5, τ) for all τ
considered. We conclude that both solution (i) and (ii) are capable in increasing the coding
efficiency, and solution (ii) has greater impact in suppressing δ(Vi) than solution (i).
In conclusion, the results suggest that RZL, solution (i), and (ii) are capable in suppressing
δ(Vi) while trading off with payload Ω(Vi).

6.4 Influence of video bitrate

In this section, we investigate the influence of video bitrate on the performance of our method
by re-compressing Vi at 1.0, 2.0, 2.5 and 3.0 Mbps for i = 1, 2, ⋅ ⋅ ⋅ , 8. Here, we only consider
(φ, ρ, τ) = (31, 31, 384) using ORS. The payload of Vi compressed at these bitrates are recorded
in Table 11. The results indicate that, in general, the payload of I and P-pictures decrease as the
video bitrate increases. A possible explanation to these observations is that I and P-pictures
are finely quantized (with the same MQ value) when the bitrate is high since there are enough
(available) bits to code them before reaching the bitrate restriction. In other words, the rate
controller is frequently in idle state when coding at a higher bitrate, resulting in less coded MQ
values when coding I and P-pictures. The remaining bits are utilized to code the B-pictures,
and different MQ values are coded for achieving the specified bitrate. For that, the payload of
B-picture shows no obvious trend as the video bitrate varies.
Next, we consider the influence of bitrate on δ(Vi). Since the payload and video length (i.e.,
number of frames) vary for each video, embedding at the maximum payload of each video
does not lead to a conclusive result. Instead, to fairly evaluate our method, we embed in-
formation at a specific rate into each type of picture for all video bitrates. In particular, for
each video Vi, we embed 55.8, 1.5, and 10.1 bpf into each I, P, and B-picture, respectively, for
i = 1, 2, ⋅ ⋅ ⋅ , 8. These values are selected (i.e., payload of V2 at 3.0 Mbps) because these are the
smallest payloads for all videos and for all bitrates considered. δ(Vi) after data embedding is
recorded in Table 12 in unit of kbytes. As expected, the results suggest that data embedding
always leads to video bitstream size increment in the modified video. δ(Vi) generally increases
as the (compression) bitrate increases because there are more nonzero qDCTCs in video com-
pressed at higher bitrate, and vice versa. Again, we stress that the video bitstream increment
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Video
1.0Mbps 2.0Mbps

I P B I P B

V1 251.7 127.1 105.5 196 65.8 98.8

V2 142.9 31.9 22.8 95.2 11.9 14.2

V3 233.6 130 106.7 194.8 73.5 102.1

V4 246.8 172.6 67.7 227.1 130.6 133.9

V5 241.3 113.5 93.6 195 47.4 64.3

V6 181.9 50.9 77.2 162.7 28.8 31.5

V7 324.3 235.6 96 300.4 166.4 148.3

V8 237.1 112 60.2 184.4 48.8 58.4

Video
2.5Mbps 3.0Mbps

I P B I P B

V1 176.5 41.2 80.5 161.7 27.4 58.2

V2 74.3 2.1 12.3 55.8 1.5 10.1

V3 180.5 52.4 83.3 167.8 37.4 66.7

V4 217.7 107.2 125.6 205.9 85.2 120.7

V5 173.9 32.8 51.3 152.5 22.4 41.4

V6 138.7 22.9 29.2 118.9 19.4 31.4

V7 289.2 141.8 148.3 275.8 109 154.9

V8 125.6 24.3 33.9 107.9 14.6 31.0
7Refer to Table 6 for payload at 1.5Mbps

Table 11. Payload for video bitrate 1.0, 2.0, 2.5,and 3.0Mbps [bp f ]

Bitrate [Mbps] 1.0 1.5 2.0 2.5 3.0

V1 25.7 37.3 49.9 59.0 70.0

V2 36.1 45.9 56.4 65.0 64.1

V3 33.3 48.1 63.4 76.5 90.1

V4 19.8 27.0 32.7 37.1 40.5

V5 28.4 36.9 42.6 47.3 51.9

V6 28.8 35.1 39.3 43.0 43.8

V7 35.8 44.9 53.4 61.7 73.1

V8 77.2 86.9 96.2 102.1 110.6

Table 12. Increase of video bitstream size for various bitrates [Kbytes]

δ(Vi) could be suppressed by tuning the parameters (φ, ρ, τ), and/or utilizing ME (Crandall,
1998) or RZL as the data representation scheme.
Last but not least, we utilize the results from Table 12 and PSNR values to plot the graph
of bitrate vs. PSNR in Figure 6 for both the original and modified videos. V2 and V7 are
shown here as the representative results. Instead of looking at a fixed bitrate and compare the
PSNR values, we should consider a particular PSNR value and compare the bitrates because
our method does not distort the image quality of the video during data embedding. For the
same PSNR value, the modified video is of higher bitrate than the original video due to MB
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Fig. 6. Graphs of bitrate vs. PSNR

excitements and promotions. In other words, to achieve a specific PSNR value, MPEG-1 requires
lower bitrate than our method (i.e., MPEG-1 coupled with the proposed data hiding method).
In particular, when embedding 55.8, 1.5 and 10.5 bpf into each I, P, and B-picture, respectively,
the video bitrate is increased by 2.3% and 4.2% for V2 and V7, respectively, which are very
small increments. Similar results are observed for other videos. Thus, we stress again that our
data hiding method preserves the image quality of the video at the expense of video bitstream
size increment.

7. Conclusions

A novel data hiding method that completely preserves the image quality of the host video
was proposed in the compressed video domain. During video playback, the modified video
completely reconstructs the original video even compared at the bit-to-bit level. This method
is reversible where the original video could be restored from the modified video. RZL (re-
serve zerorun length) data representation scheme was proposed to improve the embedding
efficiency by trading off with payload. It was theoretically and experimentally verified that
RZL outperforms matrix encoding in terms of payload and embedding efficiency. Basic per-
formance of this method was evaluated using various MPEG-1 compressed videos. Results
suggest that, approximately 55.9%, 24.0% and 23.6% of all MBs are usable for data embedding
in I, P and B-pictures, respectively, which is sufficient for applications including indexing and
annotation. The video bitstream size increases up to 40% when operating at full-capacity and
this can be suppressed by RZL or any of the two independent solutions proposed. In the best
case scenario, an average increase of four bits in the video bitstream size is observed for every
message bit embedded.
As future works, we seek for possible extensions of our data hiding method to withstand
hostile environment so that the embedded message could still be extracted after common
image processing attacks. We should explore complete quality preserving data hiding in other
domains such as still picture and audio. At the same time, we should succeed in suppressing
video bitstream size increment due to data embedding without sacrificing payload. We also
seek for the applications of RZL in other data hiding domains.
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Appendix

[A]. Scaling equation for MPEG-1/2

We derive the scaling equation for INTER-MB. Assume that x > 0 (thus sign(x) = 1) and
assume that the coded Mquant value � is updated from α × β to α, which is the same as �/β.
Based on Eq. (1), we want to update x using x ← β × x + y and hence, we need to find y such
that Eq. (21) holds true.

rec =
[2 × x + sign(x)]×�× QT2

16

=
[2 × (β × x + y) + sign(β × x + y)]×�/β)× QT2

16
.

(21)

For simplicity, we also assume that sign(x) = sign(β × x + y) since there is no restriction on
the sign of y. After simplification and trimming of Eq. (21), we obtain:

[2 × x + sign(x)] = [2 × (β × x + y) + sign(β × x + y)]/β.

Since sign(x) = sign(β × x + y) = 1, we have the following:

2 × x + 1 = [2 × (β × x + y) + 1]/β

Simplifying the equation gives us β = 2y + 1, and thus y = (β − 1)/2 for x > 0. Similarly, we
can derive that y = (1 − β)/2 for x < 0.

[B]. Scaling equation for H.261, H.263 and MPEG-4

Similar to MPEG-1/2, we assume that the Mquant value is � = α × β. First, we consider the
case when � is odd. Referring to Eq. (2), we want to find y so that the following equation
holds true:

sign(x) ⋅ [2αβ∣x∣+ αβ] = sign(βx + y) ⋅ [2α∣βx + y∣+ α] (22)

Again, we have the freedom for setting the sign of y, and we force y to have the same sign as
x. Hence, Eq (22) could be simplified to

2β∣x∣+ β = 2∣βx + y∣+ 1. (23)
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Assume that x > 0, then we obtain

2βx + β = 2βx + 2y + 1. (24)

Simplifying Eq. (24) leads us to y = (β − 1)/2 for x > 0. Similarly, we can derive that y =
(1 − β)/2 for x < 0.
Now suppose � is even. We want to find y so that the following equation holds true:

sign(x) ⋅ [2αβ∣x∣+ αβ − 1] = sign(βx + y) ⋅ [2α∣βx + y∣+ α − 1] (25)

When we assume that x and βx + y are both of the same sign, Eq. (25) simplifies to Eq. (23),
and the aforementioned discussion could be applied directly. Therefore, y = (β − 1)/2 when
x > 0 and y = (1 − β)/2 when x < 0 for both odd and even �.
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