We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Software applications for visualization territory
with Web3D-VRML and graphic libraries

Eduardo Martinez Camara, Emilio Jiménez Macias, Julio Blanco Fernandez,

Félix Sanz Adan, Mercedes Pérez de la Parte and Jacinto Santamaria
University of La Rioja
Spain

1. Introduction

In the last ten years, the increasing power of computers and graphics cards has stimulated
developers and users to deepen Virtual Reality (Huang & Lin, 1999; Kreuseler, 2000;
Bernhardt et al., 2002). One of its natural applications of interest for the academic and the
industrial communities is the Terrain Visualization Systems (TVS) (Lin et al., 1999; Luebke et
al., 2003; Ellul & Haklay, 2006). In this field, two-dimensional representations have been
completely superseded since three-dimensional (3D) visualization is closer to reality as well
as easier to interpret. Furthermore, it allows the user to interact realistically with the
environment (Hirtz et al., 1999; Kersting & Doéllner, 2002).

Nowadays, there exist lots of issues to bear in mind on designing a TVS: various Web3D
technologies to represent the Digital Terrain Elevation Models (DTEM), several ways to
provide the TVS with sufficient realism, many graphic libraries both private and open-
source projects, different applications to enable the user to interact with the system, etc. For
example, some recent works can been reviewed about the use of non-proprietary available
Web3D technologies (Web3D Consortium, 2006), specifically VRML, X3D and Java3D
(Fairbairn & Parsley, 1997; Huang & Lin, 2002; Hay, 2003; Geroimenko & Chen, 2005; Hirtz
et al., 2006). The creation of a DTEM can be referred for instance in (Ayeni, 1982; Longley et
al., 2001; Fencik et al., 2005). There exist also several databases that can be used as starting
point (GTOPO30, 2006; ETOPO2v2, 2006; Gittings, 1996). It is necessary to operate with
these databases to extract a grid according to the necessities of realism and fast screen
refresh required for this type of application. Furthermore, a correct structure and
nomenclature for this grid must be carried out, in order to facilitate and to expedite its
management. Another important aspect is the inclusion of texture-mapping in the model to
give realism to the visualization (Heckberts, 1986; Guedes et al., 1997; Déllner et al., 2000).
The applied textures are the terrain orthophotographs, which are previously treated -to
readjust them according to the coordinates of the VRML environment-, partitioned -with the
appropriate size for the different elements that constitute the DTEM- or properly structured
in order to improve the interactive visualization of massive textured terrain datasets if
needed. Regarding the VRML viewers that can be used to represent the DTEM, some well-

www.intechopen.com

140 Multimedia

known samples are DeepView™ , CASUSPresenter™ , WorldView™ , BS Contact,
Viewpoint Media Player, Emma 3D (Emma3D, 2006; g3DGMYV, 2006; Universal 3D Format,
2006). Once 3D navigation system is developed, some interaction tools can be added using
VRML Script and Java (Moore et al., 1999).

As it can be seen, there are several developments all over the world and very recent
semantics in 3D visualization, so it is necessary to make an special effort in generating
surveys and standards (Duke et al., 2005). In this chapter, we wish to contribute to clarify
the process of development of a TVS in real time by providing a guide through the issues
previously commented and illustrating the stages with practical examples. We explain the
pros and cons of some of the different currently available options, offering criteria for an
appropriate development. We come out of our experience in the Renewable Energy
Research Group of La Rioja (Spain) to illustrate this guide. In order to overcome the
limitations given by Web3D technologies in general, and VRML in particular, a specific
graphic engine developed with open source graphic libraries is shown. Some programs -
used to rename the terrain textures according to general VRML structures - and small
applets, as interaction tools between the user and the 3D scene, have been implemented in a
virtual TVS of La Rioja (one of the 17 autonomous regions in Spain, with a surface of about
5000 Km?2). They are used to clarify and exemplify some issues throughout the chapter.

The chapter is organized as follows. First, the basic characteristics of a TVS will be briefly
commented in Section 2. The Web3D-VRML technologies are introduced in Section 3 where
their strong and weak points are shown. Section 4 is devoted to explore the VRML viewers
and some tips to create the DTEM and to endow the TVS with interactivity are provided.
The development of the graphic engine, and its libraries, which present the 3D geometry of
the scene, are discussed in Section 5. Finally, Section 6 concludes the chapter and refers to
future work.

2. Terrain Visualization

The spatial distribution of the terrestrial surface is a continuous function, but for a digital
storage and representation of these values it is necessary to reduce the infinite number of
points to a finite and manageable number, so that the surface can be represented by a series
of discrete values (Geolnformation, 2002) (surface discretization). For this purpose, Digital
Terrain Models (DTM) and DTEM are used.

A DTM is a numeric data structure that represents the spatial distribution of a quantitative
and continuous variable. These variables may be height, slope, contour and orientation, as
well as any other data applicable specifically to the terrain and the characteristics of any
given point. A DTEM is a numeric data structure that represents the height of the surface of
the terrain. By definition it can be seen that a DTEM is a particular type of DTM (Kumler,
1994).

DTEM are usually stored in two digital formats: a) as a map of heights, that is, a two-
dimensional matrix in which each quadrant represents the corresponding height of each
point; b) by means of chromatic representation of the heights, that is, an image either in

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 141

shades of grey or in colours, where they depend on the specific height of each point defined.
In general, dark colours are assigned to areas with low heights, and light colours are
assigned to areas of high heights.

I Terrain |
Spatial Orthophotos

: Distribution :

o |

I |

I |

1 |Pretreatment Pretreatment] 1

I |

I_ N - _ _I

DTEM FILES
QEOREFERENCE TEXTURES

- ‘L _________ L. & ¢ __ 1
I I [
I N [
I ' |
I I) |
| ¥/eb3b Java | Graphic |
: Viewer e Applets : : Engine :
I I h) [
I I [
I ' |
I I [
: ‘L a) SO, !
I o 1 Visualization &
| Wisualization User Interface User Interface |

Fig. 2. Virtual Terrain Visualization Systems: a) with Web3D viewers b) with graphic engine

www.intechopen.com

142 Multimedia

Obviously both formats are similar, but the main problem with this second storing method
is the colour scaling assigned to the true terrain height. Starting from this point and taking
any of the DTEM available on the market as a reference, it is possible to develop an own 3D
DTEM. For this purpose, a polygonal surface can be created, where the vertexes agree with
the coordinates taken from the appropriate DTEM (Lindstrom & Pascucci, 2001).

The next step is to achieve that this 3D model has a realistic appearance; that is to say, that
it allows the user to perceive more details of any height of one given point with respect to
any other one. To achieve this objective, we can think about the possibility of incorporating
a specific model texture. The quickest method for achieving this realistic aspect is by using
orthophotographs of the terrain.

An orthophotograph is a digitally corrected photographic presentation that represents an
orthogonal projection of an object, generated from real oblique photographs. Thus, in an
orthophotograph, actual horizontal measurements can be taken, the same way in which
they can be taken from a map. Incorporating these corrected photographs to a DTM, an
acceptable realistic representation can be obtained (see Figure 1). Figure 2 shows a diagram
with the elements involved in a TVS development.

First, the orthophotos and the terrain spatial distribution data must be pre-treated, and the
results are the data input to the graphic engine (case a) or to the Web3D viewer (case b). In
this latter case, it can be seen that it is necessary to use Java applets, independent of the
visualization, which provide the system with the capability of interaction with the user. In
this chapter, Section 4 is devoted to the basic steps for a TVS implementation based on
VRML, whereas Section 5 deals with a development based on a graphic engine.

3. Web3D Technologies

One of the possible ways to implement a TVS consists in using Web3D technologies. The use
of any of the available Web3D technologies permits to develop a 3D environment that can
be shared on Internet.

The term ‘Web3D’ (Web3D Consortium, 2006) refers to any programming language,
protocol, archive format or technology that may be used for creating or presenting
interactive 3D environments on Internet. Among these languages, used to program virtual
reality, VRML (Virtual Reality Modelling Language), Java3D and X3D (Extensible 3D) are
open standards.

There are also a large number of proprietary-level solutions that satisfy the specific needs of
the customers, generally aimed at electronic trade and entertainment purposes, such as Cult
3D, Pulse 3D, ViewPoint, etc.

However, to use an open standard presents important advantages. For instance, the
specifications and documentation are well known, and there are all kinds of applications
that support these standards. Next paragraphs briefly analyse the available standards, their
main characteristics, and their advantages and disadvantages.

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 143

3.1 VRML

VRML is an archive format that permits the creation of interactive 3D objects and
environments. The standard VRML was created and developed by the VRML Consortium,
in principle a non-profit-making organization exclusively aimed at the development and
promotion of VRML as a standard 3D system on Internet. VRML appeared in 1994 as the
first officially recognized technology for the creation, distribution and representation of 3D
elements on Internet by the ISO (International Standards Organization). VRML was
designed to cover the following basic requirements (Bell et al., 1995):

(i) To make possible the development of programs to create, publish, and maintain
VRML archives, as well as programs that can import and export VRML and other
3D graphic formats.

(ii) To provide the capacity to use, combine, and re-use 3D objects in the same VRML
environment.

(iii) To incorporate the capacity to create new types of objects that has not been defined
as part of VRML.

(iv) To provide the possibility of being used in a wide variety of systems available on
the market.

(v) To emphasize the importance of interactive functioning in a wide variety of
existing applications.

(vi) To allow the creation of 3D environments at any scale or size.

VRML is a hierarchic language of marks that uses nodes, events and fields to model static or
dynamic virtual realities:

- Nodes are used to represent particular instances of the 54 primitives of the
language. Instances are defined with a collection of fields that contain values of the
basic attributes of the primitive form.

— Fields are attributes that define the behaviour of the primitive forms. There are
special fields (Eventln and EventOut) that allow the sending and reception of
events to other fields. With these special fields and the command ROUTE, the flow
of events can be controlled, directing the effect of one action among other multiple
objects in order to animate a scene or simply to pass information to any of these
objects.

3.2 X3D

X3D is an open standard XML (eXtensible Markup Language), a 3D archive format that
permits the creation and transmission of 3D data between different applications, especially
web applications.

Its principal characteristics are:
(i) X3D is integrated in XML; this represents a basic step to achieve a correct
integration in:
- Web services.
— Distributed networks.
— Multiplatform systems and transference of archive and data among
applications.

www.intechopen.com

144 Multimedia

(i) X3D is modular; this allows the creation of a lighter 3D kernel, adjusted to the
needs of developers.

(iif) X3D is extensible; this allows adding components to provide more functions, in
order to satisfy the market demands.

(iv) X3D is shaped; this means that different appropriate extension groups can be
chosen according to the specific needs of each application.

(v) X3D is compatible with VRML; this implies that the development, the content and
the base of VRML97 is maintained.

X3D, instead of being limited to a single static wide specification - as in VRML that requires
total adoption to achieve compatibility with X3D - has been designed with an structure
based on components that give support for the creation of different profiles, which can be
individually used. These components can be independently extended or modified, adding
new levels or new components with new characteristics.

Thanks to this structure, the advances in X3D specification are faster and the development
of one area does not delay the evolution of the global specification.

3.3 Java3D

Java3D™ API is a set of classes to create applications and applets with 3D elements
(Sowizral et al., 1998). It offers to developers the possibility of managing 3D complex
geometries. The main advantage that this application programming interface (API) presents
against other 3D programming environments is that it allows the creation of 3D graphic
applications, independently of the type of system. It forms part of API JavaMedia.
Therefore, it can make use of the versatility of Java language, and it can support a great
number of formats, including VRML, CAD, etc.

Java3D has a set of high class interfaces and libraries, which make good use of the high
speed on graphic loading of many graphic cards. The calls to Java3D methods are converted
into Open GL or Direct 3D functions. Though either conceptually or officially Java3D form
part of API JMF, it has libraries that are installed independently of JMF. Despite Java3D does
not directly support each possible 3D necessity, it permits a compatible implementation
with Java code; in other cases, VRML loaders are available. They translate files from this
format to appropriate objects of Java3D, which are visualized by means of an applet.

Java3D provides a high-level programming interface based on the object-oriented paradigm.
This fact implies some advantages such as to obtain a more powerful, faster, and simpler
development of applications.

The programming of 3D applications is based on ‘scene graph models’, which connect
separated models with a tree-like structure, including geometric data, attributes, and
visualization information. These graphs give a global description of the scene, also known as
‘virtual universe’ (Sowizral & Deering, 1999). This permits us to focus on geometric objects
instead of on the low level triangles existing in the scene.

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 145

3.4 Comparisons

X3D takes the work carried out by VRML97 and it tackles matters that have not been
specifically treated so far. From the VRML basis taken as premise, X3D provides more
flexibility than VRML. The main change is the total rewriting of the specifications in three
different chapters, regarding: abstract concepts, file formats, and ways to access to the
programming language. Other modifications provide a greater precision in illumination and
event models and they also rename some fields in order to constitute a solider standard.

The most important changes are:
(i) Expansion of the graphic capacities.
(i) Arevised and unified model of programming of applications.
(iii) Multiple files coding to describe the same abstract model, including XML.
(iv) Modular structure that permits ranges of adoption levels and support for the
different kinds of market.

(v) Expansion of the specification structure.

The X3D scene graphics, the core of any X3D application, are identical to the VRML97 scene
graphics. The original design of VRML graphic structure and its node types are based on
already existing technology for interactive graphics. The changes initially introduced in X3D
aimed at incorporating the advances in commercial hardware by means of the introduction
of new nodes and types of fields for data. Later, a single unified API was developed for
X3D; this means an important difference from VRML97, which had a scripting internal API
apart from the external API. The X3D unified API simplifies and solves many of the
problems found in VRML97, as the result of a more robust implementation.

X3D supports multiple codification archives, such as VRML97 and XML, or compressed
binary (being developed at present). It uses a modular structure that provides greater
extensibility and flexibility. The great majority of these applications neither need the full
power of X3D nor the support for all its platforms and its functionalities defined in the
specification. One of the ad- vantages of X3D is that it is organized in components that can
be used for the implementation of a defined platform or specific market. For that purpose,
X3D includes the concept of profiles. They are a predefined collection of components
generally used in certain applications and platforms, or in scenarios like the geometric
interchange between design tools. Unlike VRML97, which requires total support from the
implementation, X3D allows a support for each particular need. The mechanism of X3D
components also permits the companies to implement their own extensions following a
rigorous set of rules.

Furthermore, X3D specification has been restructured in order to allow a greater flexibility
in the life cycle of this standard, which is adjusted to its own evolution. The standard X3D is
divided into three different specifications that permit ISO to achieve the adaptations of the
concrete parts of the specification and their distribution in time.

One of the main differences between VRML/X3D and Java3D, at a conceptual level, is that

Java3D is defined as a low-level 3D-scene programming language. This means that the
creation of 3D objects in Java3D does not only require the 3D element building, but also the

www.intechopen.com

146 Multimedia

definition of all the aspects related to the visualization and control of the environment
capabilities. For example, for the creation of the simplest scenes, the Java3D code is notably
larger than the necessary code in VRML/X3D. On the other hand, the control of the different
elements in the system is more powerful and natural in Java3D. This does not mean that it is
not possible to control a ‘virtual universe” in VRML to include user interaction, but that it is
more complex. VRML has been the favourite of most Web 3D GIS researchers for over
fifteen years because it is cheap, it can provide middle-quality interactive visualization, and
it has high compatibility with Java applets (Zhu et al., 2003). However, recently a growing
number of engineers in the graphics and design communities are using Java3D technology
(Huang, 2003; Java 3D, 2007). Because of its control power, it may be interesting to use
Java3D as a VRML/X3D viewer in a TVS (Lukas & Bailey, 2002; Jin et al., 2005). It is only
necessary to use some of the VRML/X3D loaders developed for Java3D. At present, the
Web3D Consortium is developing under GNU LGPL (Lesser General Public License), Xj3D
as a tool - completely written in Java - to show VRML and X3D contents.

The main advantages of using Java3D as a VRML/X3D viewer is its execution capability in
different platforms and the fact that the final user is released of installing specific
VRML/X3D plug-ins for the browser. In contrast, it must be considered the loss of speed
and performance when using by Java3D vs. other VRML/X3D viewers developed in C/C++
(Burns & Wellings, 2001) and vs. viewers that directly use Direct 3D or OpenGL (Mason et
al., 1999). Whichever viewer used, it must be taken into account that it is necessary to choose
between internal or external programming within the VRML/X3D code. This choice is
subject to the VRML/X3D implementation specification chosen by the programmer of the
VRML/X3D viewer. For instance, at the level of External Authoring Interface (EAI)
implementation, some VRML viewers, like CosmoPlayerTM, are based on Sun’s
Microsystem Java Virtual Machine, and others, like BS Contact, are based on the version of
Microsoft.

4. Use of VRML for the Implementation of a TVS
4.1 Selection of the VRML Viewer

The first decision to make in a TVS implementation is to choose a VRML viewer, which
must be capable of supporting and managing the great amount of data to visualize with a
satisfactory performance. It is important to be very clear about this issue in order to achieve
the best possible results according to the needs of the specific application to develop. In the
list of Web3D viewers available on the market at present, we can specially remark, among
others, those represented in Table 1.

Regarding their technological characteristics, we can distinguish between those viewers
based on the use of a VRML/X3D plug-in in the browser - first column in Table 1 - and
those viewers that use Java applets - second column in Table 1 -. Furthermore, we can find
different non-standard format solutions that use their own technologies and file formats to
store virtual environments. Although these non-standard format solutions can be better
adjusted to the specific needs of a particular application at a given moment, they lack the
advantage to work on an open standard that is universally recognized. So, they are subject
to the decisions of the company proprietary of that format and solution. However, the use of

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 147

a system based on an open standard allows us to port our own virtual environment to other
different developments that also support the standard.

VRML/X3D Non-Standard Format
Plug-in Java
CosmoPlayer AppletXj3D Exel
Cortona WireFusion ViewPoint Media Player
BS Contact 3DzzD Adobe Atmosphere
Octaga BS Contact J Deep View
Flux Shout 3D Emma 3D
FreeWRL | Blaxxun Contact3D Cult 3D
OpenVRML
Venues
OpenWorlds

Table 1. Web3D viewers

For instance, Viewpoint Media Player uses a file format based on XML, and includes the
interaction capability through the use of scripting - continuous lines of interpreted
commands -. Scripting vs. VRML presents a similar capability to interact directly with the
environment in terms of execution time. On communicating with the Viewpoint Media
Player plug-in from an HTML page, the possibility of using either JavaScript or Flash may
be taken into consideration. Adobe Atmosphere and Deep ViewT M (Deep View, 2006) are
different applications mainly used by Adobe to give to its PDF documents the possibility to
include 3D contents.

Adobe stopped the development of Adobe Atmosphere in December 2004, and presently it
uses the Deep View technology developed by HighHemisphere. In this case, Universal 3D
(U3D) file format is used (Universal 3D Format, 2006). Emma 3D (Emma3D, 2006) is an open
source development based on Ogre3D graphic engine and uses an archive format similar to
VRML. Cult3D allows the visualization of models imported directly from 3D Studio and
other formats, as well as basic animation and interaction with the scene. For example, if we
use CosmoPlayer™ as a viewer, we must take into account that it is old software; that
implies that it cannot make good use of the graphic capabilities of new 3D graphic cards,
and it make mainly the rendering by using software instead of hardware.

On the other hand, if we use Xj3D, as well as any other viewer based on applets, we must
remember that we use a viewer running in Java. Therefore, we must have the Java Virtual
Machine (JVM) from Sun Microsystem installed and, according to the particular viewer, we
may also need the Java3D library. In this case, to use the Java3D library allows us to accede
to the graphic capabilities of 3D graphics cards available nowadays. However, using JVM
involves certain declines in the performance of the application, since it is an interpreted

www.intechopen.com

148 Multimedia

programming language (Barr et al., 2005) - or semi-interpreted language because a pre-
compilation is carried out at bytecode level -. In the Table 2, a comparison can be observed
about the loss of performance and speed of Java3D - pure Java (with 3D) in Table 2 - against
other VRML/X3D developed in C/C++ and directly using Direct 3D or OpenGL - C++
(with 3D) in Table 2 -.

Elements Used Comparison with C++
C++ (no 3D) 0%

Pure Java (no 3D) 54%

Mixed Java/C++ (no 3D) 22.5%

C++ (with 3D) 0%

Pure Java (with 3D) 92.4%

Mixed Java/C++ (with 3D) 32%

Table 2. Comparison of performances between Java and C++ (Marner, 2002)

Another important aspect on choosing a viewer is to know on which platforms it can run
(see Table 3), and then, which is the possible range of users having access to the application.
Let us recall here that a viewer developed in Java is multiplatform and requires the JVM of
Sun Microsystem.

As commented in the first Section of this chapter, our research group has developed a
virtual TVS of La Rioja that will be used to illustrate the different stages of the process of
development. In the decision-making process of choosing a viewer, the use of proprietary
solutions was discarded in order to make good use of the advantages of an open standard
such as VRML.

As previously shown, VRML viewers can be classified into two main groups according to
the technology employed: those that make use of JVM and those that incorporate plug-ins
for the browser by means of ActiveX. The principal disadvantage that the former group
presents against the latter one -applications compiled at machine-code level- is the loss of
performance and speed (Wellings, 2004). This is the reason for discarding the use of any
VRML viewer developed in Java; in general the specific needs of a TVS demands mainly
high performance in refresh rates of the visualization (frames per second - FPS) and in
memory use.

Finally, once the capability of the remaining viewers to execute our developed particular
application was tested, we decided to use the Bitmanagement Software viewer
(Bitmanagement, 2006) (BS Contact). At present, Bitmanagement Software and Octaga
develop the leading viewers for the visualization of Web3D VRML/X3D technologies. The
other viewers are a step behind as regards performance and updating on the development
of new standards such as X3D (Bitmanagement, 2006).

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 149

VRML Viewer | Windows | Pocket PC | Linux | Mac OS
BS Contact X X - -
Cortona X - - X
Octaga X - X -
Flux X - - -
FreeWRL - - X X
CosmoPlayer X - - -
OpenVRML X - X X
Venues X - - -
OpenWorlds X - - -

Table 3. Summary of the running capability in different platforms

4.2 3D Model Creation

Once the different available Web3D technologies have been analysed and one has been
selected, as well as the necessary Web3D viewer, we have to determine the specific needs of
the system that we want to implement. In this stage, the first step to develop the 3D TVS is
to prepare a DTEM. In order to use this model, it is necessary to obtain the terrain heights
corresponding to each pair of coordinates (X, Y) in the specific area that is to be visualized.

Nowadays, there is the possibility of knowing free the height of any point on Earth with a
resolution of approximately 1 kilometre. This is possible thanks to files such as GTOPO30
(Global Topographic Data horizontal grid spacing of 30 arc seconds) which provides a
global digital elevation model of the U.S.

Geological Survey’s Center (USGS) for Earth Resources Observation and Science (EROS)
(GTOPO30, 2006). Without any doubt this is a highly useful tool, but they do not reach the
desired precision for our TVS of La Rioja; so it was necessary to resort to other local
databases with higher resolution. In this case, as a starting point for the generation of the
DTEM, a database with a 5-metre spatial resolution was used. This database is in dBASE
format and occupies several Gigabytes. In order to work with it, it was necessary to create a
program that allowed consulting automatically through coordinates X and Y, represented in
Universal Transverse Mercator projection (UTM) (Longley et al., 2001).

So, it was possible to sequence the process of generation of the grid on the terrain. For this
purpose, a program using PERL was created, which permitted covering the whole area, a
total surface of more than 5.000 Km?, and extracting the corresponding height coordinates.
Although the program worked correctly, the consulting process was too slow since the
different databases used were not correctly indexed. In order to solve this problem we had
to resort to a program in C++ Builder that makes the automation of the indexation of the
different databases. Subsequently, another specific application was necessary to choose the
step of the grid and the area from where the data would be extracted. In the code in Figure

www.intechopen.com

150 Multimedia

3, it can be seen how the Borland Data Base Engine (BDBE) is used to accede to the
databases by means of the use of TTable (named as Tablel in the code).

Thus, a dynamic access to the databases and to their different index archives -previously
generated is achieved, which accelerates the search of heights in UTM coordinates. This
piece of program shows a nested loop that accedes to the databases, which contain the
terrain elevation data. Inside this loop, another nested loop allows obtaining the grid
desired. The horizontal and vertical grid steps are defined by the user as input parameters
of a C++ Graphical User Interface (GUI).

for{int j=initrow; j<=endrow; j++ |
for {int i-initcolwan;i<-=sndoolunn; 1++) |

DE="xXv"+IntTodtr (numdb) ; //Name of the Database

tor {int h=U:h<ypoints: b+t |
for {int k=0;k<xpoints;k++)]
Tablel->Tablellane=0DE:
Tablel-»IndexName="UTMXY"; //Name of the file
J/of indexation
Tablel-»0Open(] ; JS/Dalabase dpen

Tablel-=Retkeyi): J/Activation ot the search
by key
Tahlel-»FieldBylane [("IITMH ") -»A=sString = utmx;
Siget of the UTMK parameter for the search
Tablel-»FieldByName ["UTMY") ->ReString — utmy;
S/8et ot the UIMY parameter tor the search
if({rablel->GotoKeyi)){ //Test of existence of
A4 some element with these UTM coordinates
ucmz="lablel->t'ieldByHans {"U1Ms ") —
Text+"N\n"; fffbtaining of the corresponding height
telse|
utmz="0%n"; S/If there iz no existence then
Jioct 0
'
Tablel-»Cluse () ; //Dalabase cluse

—

|
Fig. 3. DTEM Creation code

Once we obtained the height of each one of the desired coordinates, the following step is to
classify the resulting information into an appropriate structure for its subsequent treating
and processing. In our exemplary application, it can be noted in Figure 6 that the region of
La Rioja (Spain) was divided into different Zones with the aim of facilitating dynamic up-
loading and down-loading according to the relative position of the observer/user. It was
decided to build a dot-matrix structure totally adaptable to the step of the grid terrain at any
moment for each zone.

From this point, different tests must be carried out to adjust the size of the grid step to the
specific needs of each application. In our TVS of La Rioja, we are concerned with a terrain

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 151

visualization application in which a flight at a determined height is simulated; then an
excessive precision is not required, as it is not going to provide anything visually important
for the observer (Ayeni, 1982).

So finally, a compromise was reached for obtaining satisfactory resolution fidelity, a
required level of detail, and an admissible visualization refresh rate (the previously
mentioned FPS): the value of 100 meters grid step was selected. This value is more than
sufficient to maintain an acceptable realism in a topographic environment, and even
provides a fluid navigation.

g L b il
]

e e T, e L U
—'lj"é_-?fx- m- !_—.1,-’.-".- = y -
oo [| e | v [| =y fx= sffond |
v | wn | - IJ'—'F‘?- - Fl“:““E; ’l -
; -‘,"'l: - l-iE - el —'1:-_,:_- <l .
TR e e (L T(pi“,;-. --f_ P
== e ISR e i
R TS e ERE™
Lo | oo | e | e B e
=== s E 1 R
S o e e [
S 1K o T o9 i Y
Goblermna de s Le Risjs =

Pl IChEAR Al 2 Mot Wl
e o Bhebas e i mmactniaspaion CARTOGRAFIR 15808

Fig. 4. Division in zones of the surface to be visualized (116x75 Km). Each colour represents
a different zone

4.3 Texture Treatment

The next step to achieve a realistic TVS is to map textures on the DTEM by means of
orthophotographs obtained from aerial photographs (Hohle, 1996, Ewiak & Kaczynski,
2006). Moreover, some treatments must be applied to the orthophotographs before mapping
them, in order to optimise the implementation. For example, in our TVS of La Rioja, the
orthophotos were obtained from the Autonomous Government of La Rioja, in JPG format,
covering 10 Km?2 of surface everyone. When carrying out a simulation of a VRML
environment, it is necessary that the model files and texture files are not excessively large.

That is the reason why each scene is stored in dot-matrix file, which cover an extension of
only 1 Kma2. Therefore, the texture/orthophotographs have to be divided into partitions. A

www.intechopen.com

152 Multimedia

specific C++ program was employed to obtain these partitions. This application allows the
user to define on the orthophotos some parameters, such as their origin and destination
directories, their new names once they are partitioned and new size. It considers their
original size in case of being necessary to use data from some of them.

Another treatment required is to adjust the optimum resolution of the textures for its further
visualization during the simulation. In order to find this optimum resolution, some tests
were carried out from 0.5 m/pixel up to 4.0 m/pixel. Finally, it was proved that using
resolutions lower than 2 m/pixel does not really provide a more realistic scene, due to the
texture treatment that the different viewers carry out. Furthermore, to use high resolution
textures implies that the files are heavier, more work for the viewers, and a lower
visualization refresh rate (FPS). With all these issues in mind, we opted for 2 m/pixel as an
appropriate texture resolution for our particular application.

Another important aspect in order to accelerate the simulation is the inclusion of levels of
detail (Blow, 2000; Luebke et al., 2003), so that it is possible to lighten the viewer load with-
out losing realism or quality for the observer user. The level of detail was established with
the use of different resolution textures depending on the distance from the observer to them.

(i) From O to 1,500 metres: 2 m/ pixel resolution.
(ii) From 1,500 to 5,000 metres: 4 m/ pixel resolution.

(iif) From 5,000 metres to eye-sight reach: without texture and only the net-meshing is
observed.

Y

Z
Fig. 5. Orthophotograph reference system

Another noteworthy treatment of the orthophotographs is their reference coordinates. The
orthophotographs are represented in UTM (see Figure 5a) and they have to be adjusted to
the coordinate system used in the VRML simulation (see Figure 5b). For that reason, it is
necessary to make a 180° clockwise turn of the orthophotographs with a software
application (for instance, it is sufficient to use any photo-editor application). In this way,
orthophotograph UTM coordinate system and VRML environment system fit one another
perfectly. Once the texture files are prepared, the graphic engine or the web3D viewer can
read them for a realistic visualization.

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 153

4.4 Tools for implementing the user interaction

What provide VRML with the capability of implementing the user interaction is the
JavaScript Code (usually denominated VRMLScript) and the Java code. On the one hand
writing VRMLScript code requires the incorporation of different interaction elements within
the VRML virtual scene; on the other hand it is possible to interact with the scene from some
external applets with Java code.

Thus, the programmer is completely free to create his own user interface with Java libraries
and to connect with the virtual scene with the EAI library (Gosling et al., 1996; Yu et al,,
2005; Sowizral & Deering, 2005).

For the use of VRMLScript or Java, it is necessary to resort to VRML package libraries (see
Figure 7): whilst VRMLScript needs the vrml.node and vrml.field packages, when using
Java applets, vrml.external library is required. Let us focus on the use of applets to connect
with VRML scenes by means of EAI library. The following elements are examples that may
be taken into account in order to pro-vide a TVS with interactivity; in fact, they were used in
the TVS of La Rioja (see Figure 6):

(i) HTML file: in the own HTML page, the reference to the VRML file and to the applet
must be included. The reference to the VRML files is made with the label ‘<embed
src="scene.wrl”...> and the applets are usually inserted using the label ‘<applet
width="150" height="40" code="joystick.class”>’.

(ii) Applets: they present their usual generic code, but they must also include the
necessary code to communicate with the VRML scene. This communication is
achieved with the creation of an instance in the Browser class. By means of these
instances, we can accede to the VRML scene and control it.

(iif) References to the nodes: in order to read certain information from the VRML scene
or to control certain parameters, it is necessary to make reference to a specific node
that contains this information or parameters. To achieve this, the getNode ‘Node
nodel = browser.getNode (“Control-Position”)” is used. This way, we can make
reference to a specific node that has been previously defined in the scene by means of
the key-word ‘DEF’.

(iv) Reading/Writing of the VRML scene: Once a specific node is referenced, their fields
can be acceded with the functions getEventIn(String) and getEventOut(String):
‘Orientation = (EventOutSFRotation) nodel.getEventOut (“orientation changed”);’.
The use of these functions is limited to access to the fields defined as eventOut and
exposedField. Once the reference to the field is created, its value can be read by means
of getValue(): ‘orientation = Orientation.getValue();” or it can be written with the
function SetValue(): ‘avatarSize.setValue(size); .

(v) Receiving VRML scene events: In the case of needing to receive events produced by
the scene, we must implement in our applet the interface EventOutObserver: “public
class compass extends Applet implements EventOutObserver’. The next step in the
definition of the applet is to overwrite the callback method, which will reply each
event produced in the scene: ‘public void callback(EventOut eventout, double d,
Object obj)'.

www.intechopen.com

154 Multimedia

Coordenadas UTM Movimiento

Distancias J}

¥ Caminar ;
X = 546025.75 i gt
¥ = 47011635 bl
Z=4505.0 € Examinar
€ Vol E [T Medir
¢ Saar
L |’-|II|I ¥ Habiitar Sonido ' Panoramica
{')
" Game Like

Exageracion Joystick
1 [Habilitar Jopstick

3

Fig. 6. External applets for interaction with the user

In Figure 6, the different applets that have been developed for our exemplary application
are shown:

(i) UTM Coordinates: this applet shows at any time the position of the user in UTM
coordinates.

(if) Orientation: with this element, the user can know the angle from where he is
watching.

(iii) ~ Movement: this panel permits to change rapidly the way we move in the 3D
scene (walking, sliding, inspecting, flying, jumping, panoramic view, Game-like
view).

(iv) Sound: this application allows to activate or deactivate the background sound.

(v) Distances: with this applet, the zenith view and measure distances in two or three
dimensions can be activated.

(vi) Surfaces: the option to measure the surface defined with a series of points pointed
out in the scene can be used.

(vii) Exaggeration: this applet permits to increase the height, exaggerating it in order
to watch the size of the different heights increased.

(viii) Joystick: it allows activating or deactivating the navigation or the scene control by
means of a Joystick added to the computer.

(ix) ~ Map: this applet includes a map of the terrain and shows us at any moment the
position and orientation of the user. Besides, it permits us to move directly to any
point on the map simply by clicking on it.

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries

155

import vrml.external.Browser; //Importation of VRML libraries
import wvrml.external.Node;
public class brujula extends Applet

implements EventOutObserwver, Runnable

{

//Bpplet initialisation
public void run(}
{
ifi{browser == null)
{

//Reference to the VRML viewer

for(; browser == null; browser = Browser.getBrowser (this))

try

{
Thread.currentThread () ;
Thread.sleep (5L} ;

}

catch{InterruptedException ex) { }

//Reference to the node of position control
Node nodel = browser.getNode{"PositioonControl”};

//Reading of the output events of the orientation changes

Orientation =
(EventOutiFRotation)nodel.getEventout ("orientation changed”);

//Definition of this applet to answer to the events

Orientation.advise (this, null):

}

//Answer of the output events generated by the VRML viewsr and
//associated to this applet
public woid callback (EventOut eventout, double d, Object cbj)
{
//Reading of the present orientation value
orlentation = Orilentation.getValue();
f/Orientation treatment

}

Fig. 7. Basic structure for interconnection between an applet and the VRML scene

5. Graphic Engine for a TVS

5.1 Open Source Libraries for 3D Visualization

An alternative solution to the Web3D viewers for the TVS performance is to develop a
program known as graphic engine. It executes graphic routines by calling methods from
specialized libraries, like Open inventor TM, Coin3D, or OpenSceneGraph, among others.
Let us focus on this latter mentioned library to explain some of their common characteristics.
OpenSceneGraph (OSG) (OpenSceneGraph, 2006) is a recently-developed graphic library
which incorporates the different primitive basic concepts of OpenGL (Mason et al., 1999).
This library uses the programming language C++, because it is independent of the platform

www.intechopen.com

156 Multimedia

and open source. Among the possible uses of this library we find simulations, scientific
visualizations, virtual engineering and game development.

OpenSceneGraph uses scene graph techniques to contain all the information regarding the
scene generated. A scene graph is a data structure that permits the creation of a scene
hierarchic structure, keeping the father-son connections among the different elements. For
example, variations of position and orientation in the father node affect son nodes; thus, an
arm robot with several joints can be created, with each piece dependent on the previous one,
and simply applying movement to the initial piece; the rest of the dependent pieces will
automatically move according to the defined structure.

Another important father-son relationship exploited by the scene graph techniques is the
possibility of defining enveloping volumes, which gather close elements. Thus, during the
process of rejection of the elements that will be represented on screen, it is not necessary to
analyze the children of a node father already rejected.

Although the library is still under development at present, it is being employed by different
users in research and commercial applications. There are even other open source
developments, which extend and give support to the capabilities of OpenSceneGraph, such
as OpenProducer (OpenProducer, 2006) or VT Jugger (VR Juggler, 2006), for instance.
OpenProducer is a library that permits the treatment of different current representation
systems and interaction devices.

Although there is other libraries providing this support, OpenProducer offer the advantage
of being an open source development and it allows working with the OpenScreneGraph
library. VR Juggler is a technology that supplies necessary tools for the development of
virtual reality applications. It constitutes a virtual platform for the development of
applications that are applicable to nearly all the virtual reality systems.

5.2 Graphic Engine Development
Once the graphic library is selected, the graphic engine consults the 3D model; so, it must be
optimized for satisfactorily fast terrain visualization. At software level, the way to deal with
this matter is to maintain at any time a similar amount of information (textures and DTM),
which allows a fluid data management.

For this purpose, let us resort to a dynamic up-loading and down-loading of the scene
according to the position and direction of the user at each moment. This process is carried
out with a database that paginates the different scene areas and allows us to decide which
parts are necessary to bear in mind at each moment (see Figure 8). At a theoretical level, the
database limit is not defined, but in practice, the larger the size, the less performance, and
the dynamic up-loading and down-loading are affected. That is the reason why a database
restructuring was carried out in our TVS of La Rioja, regarding communities and provinces.

The restructuring consists in searching for a way to limit the database size to the specific
needs at each moment according to the zone where the user goes. In this way, it was

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 157

possible to maintain a more or less constant loading process with a reasonable order for a
desktop PC with the following minimum characteristics: Pentium 4 1,7 GHz, 80 GB ATA 100
Hard-Drive, 512 Mb DDRAM, Ati Rage 128 Pro II. In order to achieve this, we can set
several levels of texture resolution with a PagedLOD node. So, according to the distance
between the observer view-point and the model, the appropriate level will be visualized.
The PagedLOD node (see Figure 9) is a variant of the LOD node, but it also allows the up-
loading and down-loading of the memory of the scene elements. Then, the scene graph that
the system has to manage during the rendering process is smaller.

0z2gDE: :DatabazePager* databasePager = osgDBi:Registry::iinstance()-
»getOrCreateDatabazsePager ()

cdatabasePager->registerPagedLODs (root) :
sgceneView-»getCullVisitor () -»zsetDatabaseRequestHandler (databazePager) !

Fig. 8. Activation of the dynamic up-load and down-load system

PagedLOD {
DataVariance DYNAMIC
nodeMask Oxffffffff
cullingActive TRUE
Center 488500 4.694e+006 0
Radinz -1
RangeMode DISTANCE FROM EYE POINT
Rangelist 3 {
5000 15000
1000 5000
0 1000
I
NumChildrenThatCannotBeExpired 0
FileNameList 3 {
f29cl C.ive
f29cl B.ive
£29cl A.ive

}

num_children 0

}

Fig. 9. PagedLOD node of a scene element

The rendering in OpenSceneGraph is divided into three stages. The first stage is the Update
Process, in which changes in the scene graph regarding execution time are made. The
second stage is the Cull Process, in which the list of scene elements that will be rendered in
the next stage is set. Finally, the Draw Process is the last stage. With this structure, and the
ranges for rendering appropriately chosen for each level, constant refresh rates from 20 to 30
FPS were achieved, even during the loading of the application (see Figure 10).

On the other hand it is important, although not strictly necessary, to generate the whole
geometry of the scene in the binary format of OpenSceneGraph. This binary format (IVE)
facilitates the initial process of scene loading, so the waiting time that users spend in loading
the application is reduced.

www.intechopen.com

158 Multimedia

Fig. 10. Screen capture of the application at an initial moment and FPS

class MyKevboardMouseCallback : public Producer::KeyboardMouseCallback
{
public:
MyFeyvboardMouseCallback {osgUtil: dceneView® sceneView) -
Produccr: :KeyboardMousceCallback (),
m(0.0f), my(0.0f), mbutton(0),
_done{Fa1H;), h
:trackﬂallfnew Producer::lrackballi,
_scenevView(sceneview!

oog:Matrixd getVicwMatrix{)

{

// Utilizaticr of the IntersectVisitor
osgUtil::IntersectVisitor iv;
J/ Craation ard initia’i=sation of the vrow with present and next
/7 pusilions
oog::rcf ptr<cig::Lincdcgment> scglormal = now oog::iLincdogmeont;
segNormal-»set (fp, 1£p)
// Addition of the row to the IntersectVisitor
Lv.addLinesSegmernl (segNocmal o get (7
// Launch of the Visitor on the scene

sceneView—>getSceneData()->accept (1v);
J/ verificaticn of collision detection and consequent actuation

if {iv.hitsi))

[

}

return osg:iMetrixd (| trackBall->getkatrix{)y.ptr i)/

b
Fig. 11. Terrain collision detection

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 159

Cotrdenades UTH Orientacion

W A5 S i
T= A RAREW _}\l{f
et E T fn&\

Fig. 12. User interface

5.3 User Interaction Tools

One of the most important aspects in a graphic application of a TVS is to provide the user
with an easy and friendly navigation. For this purpose, user interaction is usually
implemented by means of the mouse, so the cursor can be moved over the scene on screen.

Therefore, it is required to endow the application with the capability of receiving and
responding to the mouse events happened on the scene. This can be achieved by creating a
new class from the class ‘Producer::KeyboardMouseCallback’ and implementing the
appropriate methods to define the interaction between this object and the rest of the objects
in the environment.

For example, in a TVS, the user must always be above ground level, and, generally, at a
determined height. Then, it is necessary to use a collision detection system, which prevents
the user from going through the ground as he moves over the scene. For this purpose we
used a specifically designed visitor in OpenSceneGraph: ‘IntersectVisitor’. The visitor is a
design patter of performance, which permits to define the operations that will be applied to
the elements of a heterogeneous structure of objects.

A design pattern in programming is just the structure or the core of the solution of a
common problem of software development. In this case it is an algorithm that allows
determining whether a certain segment/line intersects any point of the geometry of the
object that accepts the visitor. In the code in Figure 11, the results of the operations executed
by IntersectVisitor are sent and accepted by the object that stores the geometries of the scene
‘sceneView — getSceneData()— accept(iv)’. In the code in Figure 11, the results of the
operations executed by IntersectVisitor are sent and accepted by the object that stores the
geometries of the scene “sceneView— getSceneData()— accept(iv)’.

www.intechopen.com

160 Multimedia

Apart from facilitating 3D visualization of the scene, it is also necessary to create a user-
friendly interface (see Figure 12). With this interface, the user can interact in a simple way,
and it provides him with the capability to control or to obtain information from the scene. In
Figure 13, the screen refresh loop in C++ that has been used in our TVS is shown. The
observer position can be obtained and presented on screen at any moment by means of the
last two sentences in C++ code shown in Figure 13.

6. CONCLUSIONS AND FUTURE WORK

In this chapter we have set out the main steps to be followed for the development of an
application for terrain visualization.

while { rendersSurface->isRealized()&s lkbmch->done({})
{
// set up the frame stamp for current frame to record the current
// time and frame
// number so that animtion code can advance correctly
osg:.:ref ptr<osg::FrameStamp> frameStamp = new
os5g: :FrameStamp;
frameftanp->setReferenceTime {osg: : Timer: : instance {} -
>delta s(start tick,osqg::Timer::instance()->tick(})):
" frameStamp->setFrameNumber { frameNum++) ;
// pazss frame stamp to the SceneView =o that the update, cull and
// draw traversals all use the same FrameStamp
scenevView->setFrameStamp (framesStamp.get ()} ;
// pass any keyboard mouse events onto the local keyboard mouse
[/ callback.
kbm->update{ *kbmch) ;
// set the view
sceneView->setViewMatrix (kbmch->getViewMatrix ()} ;
// update the viewport dimensions, incase the window has been
// resized.
sceneView->setViewport (0,0, rendersurface-
>getWindowiWidth {) , renderSurface->getWindowHeight (}) ;
// do the update traversal the scene graph - such as updating
// animations
sceneView->update () ;
// do the cull traversal, collect all objects in the view
// frustum into a sorted
// set of rendering bins
sceneView->cull ()
// draw the rendering bins.
sceneView->draw() ;
/f Swap Buffers
rendersurface-»>swapBuffers{};
// Reading of the present position wvalue
sceneView->getViewMatrixAsLookAt {eye, center, up, 0.0f);
// Observer position updating
refresCoord {eye, center, up):

}
Fig. 13. C++ code for the screen refresh loop

First, the basic characteristics of a TVS and a diagram of the development process have been

presented. Then, a brief study of the different applicable Web3D technologies (VRML, X3D,
or Java3D) has been included. With this base, the different necessary steps to realize a TVS

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 161

based on VRML have been detailed, from the choice of the viewer to the incorporation of
external tools in Java for the interaction with the user. Aspects such as DTEM creation and
the inclusion of photorealistic textures to the model have been also explained.

From the aforementioned, it can be deduced that the use of VRML for the creation of
terrain visualization is viable, but always at the expense of depending on an external
element that takes over the scene visualisation, on which neither real control exists, nor its
code is known, nor its program can be modified. In order to overcome these limitations, the
development of a specific graphic engine by means of the use of open source libraries has
been proposed. To achieve this aim, several available open source graphic libraries and
their basic functioning characteristics have been analysed.

Finally, the steps followed in the implementation of a TVS by means of OSG library have
been detailed. Several tips and codes are also involved in this chapter to illustrate some
stages in the development process. One of the potential capabilities of the developed
system, which may be implemented in the future, is to include different 3D geometries,
with the final purpose of facilitating aspects such as management, distribution and
planning of the terrain, as a further onward step in geographical information systems
(Longley et al., 2001). One practical example may be the inclusion of tracing of roads in the
design stage (see Figure 14).

The starting point would be the road design maps, in this particular case, or any other
element on which one may be working (canalisation, electricity posts and lines, railways
and other forms of communication networks, etc.). From these graphic maps a previous
treatment should be carried out, with any of the 3D design tools that exist on the market
(3D Studio, Mayer, Blender, etc).

e diiiadad TM Chrigrtacion
e 4G5S
= 4090 BT ___"';'L'ij;"
W i L3
= |4nd . If’iié:__

Fig. 14. Exémple of the incorporation of external geometries

www.intechopen.com

162 Multimedia

7. Acknowledgements

To the Autonomous Government of La Rioja, Ministry of Tourism, Natural Environment
and Terrain Policy, for making available to us digital orthophotographs and terrain digital
models, which enabled us to develop this simulation.

To GER (Grupo Eodlicas Riojanas) for the partial financing of this project and for the interest
shown in applying simulation in its own specific field of activity.

8. References

Ayeni, O.0. (1982). Optimum sampling for digital terrain models: a trend towards
automation, Photogrammetric Engineering & Remote Sensing, 48, 11, 1687-1694.

Barr R,; Haas Z.]. & Van Renesse R. (2005). JiST: an efficient approach to simulation using
virtual machines. Software — Practice and Experience, 35, 6, 540-576.

Bell G.; Parisi A. & Pesce M. (1995). The Virtual Reality Modeling Language: Version 1.0
Specification, Technical Report.

Bernardin T.; Cowgill E.; Gold R.; Hamann B.; Kreylos O. & Schmitt A. (2006). Interactive
mapping on 3-D terrain models. Geomistry Geophysics Geosystems, 7, 10.

Bernhardt Saini-Eidukata B.; Schwerta D.P. & Slator B.M. (2002). Geology explorer: virtual
geologic mapping and interpretation. Computers & Geoscience, 28, 10, 1167-1176.

Bishop J. & Horspool N. (2004). Developing Principles of GUI Programming Using Views, In
Proceedings of SIGCSE’04, pp. 373-377, Norfolk (VA-USA), March.

Bitmanagement Software. http:/ /www.bitmanagement.de/ [26 July 2006].

Blow J. (2000). Terrain rendering at high levels of detail, In Proceedings of Games Developers
Conferences, San Jose (CA-USA).

Bradley J. (1999). An Efficient Modularized Database Structure for a High-resolution
Column-gridded Mars Global Terrain Database. Software- Practice and Experience,
29, 5, 437-456.

Burns A. & Wellings A.J. (2003). Real-time systems and programming languages, Addison-
Wesley, isbn 0201729881.

Burrows A.L. & England D. (2002). Java 3D, 3D graphical environments and behaviour.
Software-Practice and Experience, 32, 4, 359-376.

Deep View. http://www.righthemisphere.com/company/links/solutions/Adobe/index
pdf.htm [25 July 2006].

Déllner J.; Baumman K. & Hinrichs K. (2000). Texturing techniques for terrain visualization,
In Proceedings of Conference on Visualization'00, pp. 227-234, Los Alamitos (CA-USA.

Duke D.J.; Brodlie KW.; Duce D.A. & Herman I. (2005). Do You See What I Mean?. IEEE
Computer Graphics and Applications, 25, 3, 6-9.

Ellul C. & Haklay M. (2006). Requirements for Topology in 3D GIS. Transactions in GIS, 10, 2,
157-175.

Emma3D. http:/ /www.emma3d.org/ [25 July 2006].

ETOPO2v2 DEM. http:/ /www.ngdc.noaa.gov/mgg/ fliers/06mgg01.html [26 August 2006].

Ewiak I. & Kaczynski R. (2006). True ortho-sat vs. aerial. GEO: connexion, 5, 5.

Fairbairn D. & Parsley S. (1997). The Use of VRML for cartographic presentation. Computers
& Geoscience, 23, 4, 475-481.

www.intechopen.com

Software applications for visualization territory with Web3D-VRML and graphic libraries 163

Fencik R.; Vajsdblovd M & Vanikova E. (2005). Comparison of interpolating methods of
creation of DEM, In Proceedings of 16th Cartographic conference, pp. 77-87, Brno
(Czech Republic).

g3DGMV. 3D Graphical Map Viewer. http:/ /g3dgmv.sourceforge.net [13 July 2006].

Geolnformation Technologies Group, 2002. Digital elevation models and digital terrain
models. Swiss Federal Institute of Technology, Zurich, Switzerland.
http:/ /www.geoit.ethz.ch/education/ presentations/dem dtm/ [08 August 2006].

Geroimenko V. & Chen C. (2005). Visualizing Information Using SVG and X3D, XML-based
technologies for the XML-based Web, Springer-Verlag, isbn 1852337907.

Gittings B.M.; 1996. Digital Elevation Data Catalogue. http://www.geo.ed.ac.uk/
home/ded.html [04 January 2007].

Gosling J.; Joy B. & Steele G. (1996). The Java Language Specification, Addison-Wesley, isbn
0201634554.

GTOPO30 DEM. http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html [26
August 2006].

Guedes L.C.; Gattass M. & Carvalho P.C.P. (1997). Real-time rendering of phototextured
terrain height fields, In Proceedings of SIBGRAPI 97, pp. 18-25, Campos de Jordao
(SP-Brazil).

Guillen A.; Meunier C.H.; Renaud X. & Repusseau P.H. (2001). New Internet tools to
manage geological and geophysical data. Computers & Geoscience, 27, 5, 563-575.

Hay R.J. (2003). Visualisation and Presentation of Three Dimensional Geoscience
Information, In Proceedings of 21st International Cartographic Conference, Durban
(South Africa).

Heckbert P.S. (1986). Survey of Texture Mapping. IEEE Computer Graphics & Applications, 6,
11, m-y, 56-67.

Hirtz P.;, Hoffmann H. & Nuesch D. (1999). Interactive 3D landscape visualization:
improved realism through the use of remote sensing data and geoinformation, In
Proceedings of Computer Graphics International, pp. 101-108, Cannmore (Alberta-
Canada).

Hirtz P.; Hoffmann H. & Nuesch D. (2006). Evaluating X3D for use in software visualization,
In Proceedings of ACM symposium on Software visualization, pp. 161-162, Brighton
(United Kingdom).

Hohle J. (1996). Experiences with the production of digital orthophotos. Photogrammetric
Engineering and Remote Sensing, 62,10, 1189-1194.

Huang B. (2003). Web-based dynamic and interactive environmental visualization.
Computers, Environment and Urban Systems, 27, 6, 623-636.

Huang B. & Lin H. (1999). GeoVR: a web-based tool for virtual reality presentation from 2D
GIS data. Computers & Geoscience, 25,10, 1167-1175.

Huang B. & Lin H. (2002). A Java/CGI approach to developing a geographic virtual reality
toolkit on the Internet. Computers & Geoscience, 28, 1, 13-19.

Java 3D Applications. http://www.j3d.org/sites.html [24 January 2007].

Jin B.; Bian F.; Zuo X.; Wang F., 2005 Study on visualization of virtual city model based on
Internet. Geo-Spatial Information Science ; 8(2):115-121.

Kersting O. & Dollner J. (2002). Interactive 3D visualization of vector data in GIS, In
Proceedings of tenth ACM international symposium on Advances in geographic
information systems, pp. 107-112, McLean (VA-USA).

www.intechopen.com

164 Multimedia

Kreuseler M., 2000. Visualization of geographically related multidimensional data in virtual
3D scenes. Computers & Geoscience; 26(1): 101-108.

Kumler M.P., 1994. An Intensive Comparison of Triangulated Irregular Networks (TINs)
and Digital Elevation Models (DEMs). Cartographica; 31(2):1-99.

Lindstrom P. & Pascucci V. (2001). Visualization of large terrains made easy, In Proceedings
of IEEE Visualization, pp. 363-371, Piscataway (NJ-USA).

Lin H.; Gong J.; Wang F., 1999. Web-based three-dimensional geo-referenced visualization.
Computers & Geoscience; 25(10): 1177-1185.

Longley P.A.; Goodchild M.F.; Maguire D.J. & Rhind D.W. (2001). Geographic Information
Systems and Science, Wiley, isbn 0471892750.

Luebke D.P. et al. (2002). Level of Detail for 3D Graphics: Application and Theory. Terrain Level of
detail, Morgan Kaufmann, isbn 1-55860-838-9.

Lukas S. & Bailey M. (2002). FlySanDiego: A Web-aware 3D interactive regional information
system, In Proceedings of SPIE - The International Society for Optical Engineering, pp.
368-378, San Diego (CA-USA).

Marner J. (2002). Evaluating Java for Game Development, Technical report.

Marschallingera R.; Johnson S.E., 2001. Presenting 3-D models of geological materials on the
World Wide Web. Computers & Geoscience; 26(1): 467-476.

Mason W and others, 1999. OpenGL programming guide. Addison-Wesley. Moore K.,
Dykes J., Wood J., 1999. Using Java to interact with geo-referenced VRML within a
virtual field course. Computers & Geosciences ; 25(10):1125-1136.

OpenProducer. Introducing OpenProducer. http://www.andesengineering.com/Producer
[26 August 2006].

OpenSceneGraph. http:/ /www.openscenegraph.org [26 August 2006].

Sowizral H.A.; Deering M.F., 1999. The Java 3D API and virtual reality. IEEE Computer
Graphics and Applications ; 19(3):12-15.

Sowizral H.A.; Deering M.F., 2005. Virtual university three-dimension query system based
on VRML and java technology. Computer Engineering; 31(6):173-175.

Sowizral H.; Rushforth K.; Deering M., 1998. The Java 3D API Specification. Addison-Wesley.

Universal 3D Format. http:/ /www.intel.com/technology/systems/u3d/ [25 July 2006].

VR Juggler: About the Juggler Suite of Tools. http://www.vrjuggler.org/about.php [26
August 2006].

VR Juggler: The Programmer’s Guide. http:/ /www.vrjuggler.org [26 August 2006].

Web3D Consortium - Open standards for real-time 3D communication.
http:/ /www.web3d.org/ [22 July 2006].

Wellings A.J., 2004. Concurrent and real-time programming in Java. Wiley. Wu Q., Xu H.,
2003. An approach to computer modeling and visualization of geological faults in
3D. Computers & Geoscience; 29(4): 503-509.

Yu C; Wu M. & Wu H. (2005). Combining Java with VRML worlds for web- based
collaborative virtual environment, In Proceedings of IEEE Networking, Sensing and
Control, Tucson, pp. 299-304, Arizona (USA).

Zhu C,; Tan E.C. & Chan K.Y. (2003). 3D Terrain visualization for Web GIS, In Proceedings of
Map Asia, Kuala Lumpur (Malaysia).

www.intechopen.com

Multimedia
Edited by Kazuki Nishi

ISBN 978-953-7619-87-9

Hard cover, 452 pages

Publisher InTech

Published online 01, February, 2010
Published in print edition February, 2010

Multimedia technology will play a dominant role during the 21st century and beyond, continuously changing the
world. It has been embedded in every electronic system: PC, TV, audio, mobile phone, internet application,
medical electronics, traffic control, building management, financial trading, plant monitoring and other various
man-machine interfaces. It improves the user satisfaction and the operational safety. It can be said that no
electronic systems will be possible without multimedia technology. The aim of the book is to present the state-
of-the-art research, development, and implementations of multimedia systems, technologies, and applications.
All chapters represent contributions from the top researchers in this field and will serve as a valuable tool for
professionals in this interdisciplinary field.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Eduardo Martinez Camara, Emilio Jimenez Macias, Julio Blanco Fernandez, Felix Sanz Adan, Mercedes Perez
de la Parte and Jacinto Santamaria (2010). Software Applications for Visualization Territory with Web3D-VRML
and Graphic Libraries, Multimedia, Kazuki Nishi (Ed.), ISBN: 978-953-7619-87-9, InTech, Available from:
http://www.intechopen.com/books/multimedia/software-applications-for-visualization-territory-with-web3d-vrmi-
and-graphic-libraries

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FRE LETHIELERe5S EiEE PR E ARG SR HE4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

