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1. Introduction

The search for productivity sources makes the improvement of the contemporary
production systems necessary. The production actors are, in a systematic and permanent
way, engaged in three stages: the audit, the diagnosis and the search for solutions to
improve their production systems.

For the audit of production systems, different Internet and Intranet technologies allow
measuring and storing the state of the different production resources in real time.

From these data and during the stage of analysis of production flows, the production
personnel and the staff in charge must be able to find and formalize the problems inducing a
faulty operation of the manufacturing system. Solutions must be imagined in order to
increase the productivity at a given cost.

Nowadays, the stages of diagnosis and solution search are primarily instrumented by little
formalized expert knowledge. This lack of formalism generates heavy development costs,
does not guarantee reproducibility and does not support the necessary knowledge
capitalization for the improvement of the production system within the same company. To
solve these problems, a solution consists in formalizing the necessary knowledge to set and
solve the problems related to that lack of productivity from the data collected during the
audit stage. This formalization has to give birth to software tools for assisting the involved
actors in a permanent and proactive way.

Several works have been carried out on the performance evaluation of unreliable production
lines (Tempelbeier & Burger, 2001; Van Bracht, 1995; Xie, 1993). However, research on the
simultaneous consideration of maintenance policies, production planning and quality
improvement from an industrial point of view has still to be done.

Confronted with these industrial problems, there are two research lines. On the one hand,
there is a great number of scientific works on the detailed modelling of production resources
and activities. On the other hand, a much less developed research line is interested in the
modelling of problem solving in production systems design. From these two categories, our
research group is interested in the understanding and modelling of the field experts
reasoning during the stages of production flow analysis and solution searching. We are also
interested in automating this reasoning in order to bring proactive software assistance.
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446 Modelling, Simulation and Optimization

With this goal in mind, we will study the different behaviours of the production line that
would lead to a lack of productivity, according to three axes:

e The production axis, by indicating the losses that are incurred by problems in the

production planning (ergonomy of a workstation, lack of training of an operator,

etc.),

e The quality axis, by indicating in which measure the quality problems affect the
productivity,

e The maintenance axis, by taking into account the losses due to maintenance
operations.

We will also be interested by the study of “cause-effect” relationships among these
behaviours: is the lack of training of the operator causing quality problems encountered
later?

This article presents, therefore, our approach for performance analysis and improvement of
production flows in the three dimensional space we have just described. The approach is
based on statistical and probabilistic methods and is a new case of application of the
stochastic approach (Le Goc et al., 2006).

Section 2 presents the industrial context and describes the project. Section 3 presents the
data graphical representation before setting the definition of phenomena in Section 4.
Section 5 effectively presents the stochastic approach. Section 6 presents an application of
the method on a real industrial case. Identification of breakdown models will be the base to
propose action plans, presented in Section 7. Section 8 gives a quantification of the losses
incurred by the occurrences of these anomalous events in the line. Section 8 states our
conclusions and perspectives of future work.

2. The industrial context

As we have presented in previous communications (Zanni et al., 2007; Bouché & Zanni,
2008a; Zanni & Bouché, 2008b), our group is interested in the development of a software tool
for allowing the decision makers in companies to have an analysis of their production line
flows. This analysis will consist in a general and by-workstation productivity evaluation, the
main objective being the maximization of this productivity in terms of the number of good
produced parts in a given time window.

This diagnosis will be followed by an action plan for the improvement of the line, according
to three criteria (quality, maintenance and yield) and a valorisation of the losses that could
have been avoided if the action plan was executed. The general idea is to maximize the
productivity by improving the production cycle time and by reducing the workstations
breakdowns / outages and the number of rejected parts.

We are using a data acquisition system that, after having placed sensors in strategic places
(Fig. 1) of the production line, allows the measuring of different indicators.
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Fig. 1. Location of sensors in a workstation

During the production stage, we are able to detect if the part is good or bad (and,
eventually, the associated fault code) and the times of (Fig. 2):

e The arrival of the part to the workstation (Sensor B),
e The beginning of processing of the part in the workstation (Sensor C),
e The end of processing of the part in the workstation (this fact is detected

automatically for an automatic workstation or with an action on a sensor for a
manual workstation),

e The exit of the part from the workstation (Sensor H).

They aim at defining a set of durations linked with the different stages of the work on the
piece on the workstation (Fig. 2).

d,
d, ds da
- > —>

sime | di: presence of the part in the workstation
d, : post processing duration
—————— —— —————————P  |d;: processing duration

da : post processing duration
T ds : handling duration in the same machine

ds : handling duration between two machines

Part Begin End
arrival processing processing

Fig. 2. Indicators to be measured during production

Part exit

It is important to note that the only durations including effective working on a piece (d; and
ds) are durations with a value added.

The other durations are considered without a value added because they correspond to
waiting, handling, or other non productive activities.
In the case of the failure of a workstation, the indicators we measure are (Fig. 3):

e  The failure beginning time,

e  The failure end time,

e  The identification code of the failure.
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Machine breakdown

Begin Breakdown code End
hreakdown breakdown

Fig. 3. Indicators to be measured during the breakdown station

The data acquisition system will also provide other necessary information, in particular, the
control parameters of the workstations, i.e. some workstation characteristics that will be
specific for each process plan. It will also provide maintenance data, information on
production modifications, and other relevant information.

We study production lines such as the one described in Fig. 4:

Zone 2 Zone 1l
P220 P210 P200

S . S " i v o |

Zone 3

==
4=

4B LY = B EE BT

P225 P230 P240 P250 P260

Fig. 4. Example of a production line

This is a closed loop, where there is a set of workstations, which can be automatic or
manual. In Fig. 4, workstation P200, for example, is the point where pieces are injected in the
line and where they go out. In addition, a finite set of pallets turns around the loop. This fact
allows the transportation of the pieces from a workstation to the next one.
This organisation makes necessary to take into account a last set of parameters, which are:

e The instance of the production plan,

e  The working team.
To take these parameters into account, data are separated by production type and/or by
working team; the idea is to guarantee that time periods for analysis are uniform.

3. Data graphical representation

These data can be analyzed with frequencies and sequential methods.

In first place, we proceed to a Poisson analysis. A Poisson process is a process of
enumeration, which describes the evolution of a quantity in time (Fig. 5). In our study, it
will be a question of tracing the evolution in time of durations dj, d»... In the case of a
perfect process, the Poisson curve is a line characterized by its slope A (we will also speak
about the speed of the Poisson process).
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Fig. 5. Poisson process of evacuation times of a workstation

In real processes, we will observe various slopes, which will make possible, for example, to
determine the moments when the production is faster, if there are intervals of drift in the
workstation, and to define ranges where the behaviour of the station requires a more
thorough analysis.

In second place, we can study the evolution of the working time with a model inspired in
control charts, which are used in Statistical Process Control (Ishikawa, 1982). We trace the
different durations of the tasks according to time (Fig. 6).

WorkstationP225 period 2

Working Time

- S— Occurrences

Fig. 6. "Control chart" of processing times of a workstation

That will make possible the study of possible drifts of the workstation to check if the process
is under control; to identify the workstations where improvements could be made; or to
identify changes of rate/rhythm or perturbations.

Finally, we can analyse properties of the distribution of durations (Fig. 7). We trace the
frequency of the durations to study the setting under statistical laws of the station to
consider.

From these curves, a certain number of analyses may be carried out, such as the analysis of
dispersions, of aberrant values, or others.

Other graphical representation, such as synthesis representations, could be imagined.
Nevertheless, the three types of presented representations are, for us, the base of the
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analysis. This is a first method to have a better view of reality, and to identify specific zones
of bad behaviour or specific phenomena. It corresponds to the more specific level of
abstraction. To make better studies, we need to build meta-data, which will be associated to
specific events or behaviours of the production. These behaviours cannot be directly
deduced from data.

A set of transformations has to be applied to data to obtain the expression of certain
behaviour under the form of a “phenomenon”. The next section will define what we call a
phenomenon before showing how we can compute phenomena from data.

Workstation P230 period 2

Numberof Occurrences

[‘ ’ i”.:nﬂ:,n 1: L. n.An. .0 i

Interval

Fig. 7. Distribution of the processing times of a workstation

4. Phenomena

Phenomena are the expression of particular behaviours. They are described by a set of
attributes, and at least (Le Goc, 2004b):
e A name,
e A characterization of the localisation in the production line,
e Two dates:
o A begin date,
o Anend date.

4.1 Definition of Phenomena
While studying durations, we consider three parameters at the base of the Statistical Process
Control principles (Ishikawa, 1982):
e The stability of the evolution of the duration to verify if the behaviour is stable or
not (Fig. 8),

A ation Max limit

L/
AN

Min limit

Ceeurrences

Fig. 8. Instability
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e  The drift of the evolution of the duration to check if the behaviour is constant or if
there are positive or negative drifts (Fig. 9),

A Duration Max limit

d=Zdpu RN 1\

Min limit

Oceurrences

Fig. 9. Positive and Negative Drift

e The analysis of the values of the duration to verify if they are out of bounds (Fig.
10).

Max limit

A oburation

N——

C T T T T T 4_ T Mintimit

Occurrences

Fig. 10. Out of bounds values

These three characteristics are worth being studied on durations that are with a value added
that is to say, if they are the result of an activity (human or made by a robot), such as d3, the
processing duration.
If the duration is with a value added, like in an automatic handling, the only point of
interest will be to study the drift of the evolution of the duration.
Now we have six durations:

e  di: the presence of the part in the machine,

e do: the pre-processing duration,

e  ds: the processing duration,

e  d4: the post-processing duration,

e ds: the handling duration in the same workstation,

¢  de: the handling duration between two workstations.
As dq is the sum of d», d3 and d4, we will not make studies on this duration.
As dj, d4, ds and de are durations without a value added, we will only study the drift on
these durations.
In addition, to finish, we will carry out all the studies on ds, the only duration with a value
added.
Apart from these “duration linked” phenomena and that are related with the “production”
axis of our space of study, we must also consider a set of phenomena related the “quality”
and “maintenance” axes.
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Regarding the “quality” axis, there are no studies on durations. There is only a discrete
event characteristic of the behaviour that indicates that a piece is bad at a control
workstation.

Other specific behaviours share the same characteristic as the last one, that is, the fact that
there is only a discrete event of the behaviour: the start and the end of the production
Finally, we have phenomena related to the “maintenance” axis. We are able to detect the
period of time when the workstation is stopped and the fault code that produced this stop.
Studies on this duration (and its subcomponents, such as the time to wait for the
maintenance team to arrive or the time interval between the arrival of the maintenance team
and the effective restart of the workstation) might be carried out.

4.2 Phenomena related to the Production Axis
The following subsection gives a complete description of the phenomena we have retained
with their characterization from an industrial point of view.

4.2.1 The Stock_Saturation phenomenon

It can be deduced from data of post-processing durations (ds) and is characterized by an
increase of the slope of those cumulated durations.

More precisely, on the Poisson curves, a Stock_Saturation phenomenon will be an increase of
the speed of the process and thus a positive drift of the slope of the curve. On control charts,
this phenomenon will be the translation of a quick increase in the execution times of a task
in time (Fig. 11).

When there is a stock saturation, the workstation is not able to make the piece exit the
working zone; this is why we detect this phenomenon by an increase of the speed of the
post-processing duration.

ot e o S e W B i 1D s b 1y

<5 P210
- Phenomenon
o} « Stock_Saturation »

e

Fig. 11. Example of the Stock_Saturation phenomenon

4.2.2 The Workstation_Drift phenomenon

It is the expression of a drift of the production time on a workstation. We can observe it in
the Poisson curves or the control charts with the study of the processing duration (ds).

More precisely, on the Poisson curves, a Workstation_Drift phenomenon will be an increase
or a decrease of the speed of the process and thus a positive or negative drift of the slope of
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the curve. On control charts, this phenomenon will be the translation of a regular increase or
decrease in the execution times of a task in time.
We will use two phenomena to differentiate if the drift is positive or negative (Fig. 12):

e Positive_Worstation_Drift

e Negative_Workstation_Drift

« Workstation_Drift »

P30
Phenomenon
1

| Positive Drift | | Negative Drift |

Fig. 12. Example of the Drift Phenomena

4.2.3 The Workstation_Instability phenomenon

It can be deduced from the working duration on a workstation (ds).

The objective is to verify if the behaviour is stable or if there is any instability in the work.

It will be characterized by a great variability of durations on the control charts (Fig. 13).

In fact, SPC establishes that two consecutive measurements that deviate from each other more than
twice the value of the standard deviation indicate instability (second rule of Shewart (Shewart,
1939)). In our case, this rule can be only applied to aberrant values.

Therefore, to detect this phenomenon, we identify, firstly, the couples of successive values in
the current sample, which deviate from each other more than twice the standard deviation.
If this number of couples is, at least, 10 % of the size of the sample, we say we are in
presence of a Workstation_Instability phenomenon

PE0
Phenomenon
« Wakstation_Instability » |

Fig. 13. Example of the Workstati.(.)n_lﬁ;tal-aility‘}—)hénomle:nén -

4.2.4 The Out_Of_Bounds_Time phenomenon

It can be deduced from the working duration on a workstation (ds).

The objective is to analyze this duration to identify if there are values out of limit. If values
are bigger than the maximum limit, the speed of the workstation is too slow; we will have a
Slow_Working_Period phenomenon. If values are under the minimum limit, the speed of the
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workstation is too fast (which could be the cause of workstation failure or of the production
of bad pieces), we will have a Fast_Working_Period phenomenon (Fig. 14).

P220
Phenomenon
« Slow_Working_Period »

[e—"

Fig. 14. Example of the Slow_Wofking_Period phenomenén

4.2.5 The Lack_Of_Components phenomenon

It can be deduced from data of pre-processing durations (d). It will be characterized by an
increase of the slope of the cumulated pre-processing duration.

More precisely, on the Poisson curves, a Lack_Of Components phenomenon will be an
increase of the speed of the process and thus a positive drift of the slope of the curve. On
control charts, this phenomenon will be the translation of a quick increase in the execution
times of a certain task in time.

The lack of components makes impossible that the workstation begins its work; this is why
we detect this phenomenon by an increase of speed of the pre-processing duration.

4.2.6 The Handling_Speed phenomenon
It can be deduced from data of handling durations in the same workstation (ds). It will be
characterized by an increase or a decrease of the slope of those cumulated durations.
This leads to the definition of two phenomena:

e  Slow_Handling_Speed

e  Fast_Handling_Speed
It is important to consider the case where the handling speed is too fast, because even if it is
not a direct cause of productivity losses, it could cause saturation on workstations or other
problems in the production line.

4.2.7 The Lack_Of_Stock phenomenon

It can be deduced from data of handling durations between two workstations (de). It will be
characterized by an increase of the slope of those cumulated durations.

The lack of stock makes impossible that the workstation begins its work because there are
no pieces in transit between two workstations; this is why we detect this phenomenon by an
increase of speed of the handling duration between those two workstations.
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4.2.8 Completeness of this set of phenomena

This set of phenomena has been defined in collaboration with experts of production, and in
function of the goal of the analyses. The list we have retained is complete according to the
explanations in section 4.1 (Fig. 15):

Studies on durations

Stability of the
evolution of the
duration

Drift of the evolution of the Analysis of values of
duration the duration

ds

do Lack_Of Components

Workstation_Positive_Drift | Slow_Working_Period

ds | Workstation_Instability
Workstation_Negative_Drift | Fast_Working_Period

ds Stock_Saturation

Slow_Handling_Speed
ds

Fast_Handling_Speed
de Lack_Of Stock

Fig. 15. List of phenomena on durations

4.3 Phenomena related to the Quality Axis
The main element that we must consider for the quality axis is the production of bad pieces.
In this case, we will not really have a phenomenon but just a discrete event (which is a kind
of phenomenon where the end date is the same as the begin date).
Therefore, we will characterise the production of bad pieces by a Bad_Piece phenomenon
with, at least, the following information:

e  Date of detection,

e  Fault code (if available),

e Localisation of the detection place.

4.4 Phenomena related to the Maintenance Axis

These phenomena are not deduced from durations, we obtain them directly from the data

acquisition system.

We have a measure of the gravity of the failure on four levels:

J Type 1 - Energy cut-off (air, electricity...) and immediate halt of the workstation cycles: In
general, this type of failure announces an emergency stop (light barrier crossed
through, emergency stop button triggered...). Everything must be stopped in the
position in which it is (for example, if a hydraulic or pneumatic actuator moves by its
own weight without energy, there will be blockers to lock the actuator movements).

To continue working with the workstation it is required:

o To correct the problem (to give off the immaterial barriers, to rearm the emergency
stop keys ...),

o To switch on energy on the workstation (electric, pneumatic...),
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o To acknowledge the failures appeared in the PLC (programmable logic controller),
o To reset the workstation (with the initial settings of all the components),
o To set on “start” the PLC cycle.

e  Type 2- Dead halt of the PLC cycles and immobilization of movements: The cycles are
stopped, but energies are not cut.
In this scenario, movements are just blocked, but energy flows are not cut. In general,
this type of failure is reported when a sensor is faulty. For example, the movement of
an actuator arrives to its end without having triggered the corresponding sensor (for
example, the end of movement sensor is out of order). The PLC will indicate a type 2
failure indicating the defective component.
At our industrial partner’s, when a workstation has a type 2 failure, all the pieces in
progress are declared as bad, and therefore, cannot be re-injected in the line for further
processing.
To continue working with the workstation it is required:
o To correct the problem (often we will have to switch to manual mode to release

actuators of the workstation),

o To acknowledge the failures appeared in the PLC,
o To reset the workstation (if necessary),
o To set on “start” the PLC cycle.

® Type 3 - Message: This type of failure has just for informational purposes. The
workstation cycles are not stopped and energy flows are not cut.
For example, a grease barrel reaches its low-level limit; a type 3 message will indicate
this fact. If it is not replaced and it is empty, a type 2 failure will be declared with the
consequent workstation stop.
In addition, this type of message is used to indicate to the operator what he has to do
with the product in front of him. These kinds of failures are acknowledged
automatically.

o Type 4 - A particular definition of our industrial partner and only in a few of his production
lines: This failure is the same as a Type 2 one, but the product can be taken again for
further work after resumption of the cycle.

Therefore, we have defined four phenomena for each workstation:
e  Failure_Level_1
e  Failure_Level 2
e  Failure Level 3
e  Failure_Level_4
They will be characterized by the gravity and their start and end dates.

4.5 How to build phenomena from data

After having established all phenomena and their description, we will see two examples of
the algorithms we use to build phenomena.

For example, if we consider the Workstation_Drift phenomenon, it is the expression of a drift
of the production time on a workstation. We can observe it in the Poisson curves or the
control charts with the study of the processing duration (d3) (Fig. 16).
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Workstation P30 period 3

Working Time

. Occurrences

Fig. 16. Visual observation of the Workstdtibn;bfijft phenomenon

To compute occurrences of this phenomenon, we will calculate the slopes of the Poisson
processes that are associated with this workstation during the considered time window. If
we observe several slopes, named successively A1, Az... A, and that these slopes are
decreasing, then we can diagnose a Workstation_Drift phenomenon.

VA,ie[l,n],IFA > 1, )
THEN Workstation Drift @

In the same way, the processing durations on a workstation can be directly used to diagnose
a Workstation_Drift phenomenon. It will be characterized by an increase of the average of
durations.
vd.,i1e[1,n], IF Average(d,,...,d, ) < Average(d, ,,,...,d ) 3
THEN Worstation Drift ©)

Let us consider the data in Fig. 17:

occurrence date added up durations slope lambdas
1084 19/09/2007 19:01 18759881
97771,96 | 0,00010233
1388 19/09/2007 20:00 21730557
12599,15 | 0,00007937
1611 19/09/2007 20:53 14540168

Fig. 17. Data of workstation P200 of the production line

The slopes values on this manual workstation lead us to say that we are in presence of a
Workstation_Drift phenomenon from 20h00 to 20h53.

The idea is to calculate the slopes on a temporal horizon that is coherent with the production
line speed and the considered workstation and to compare the slopes regularly. The
algorithm to build occurrences of this phenomenon is depicted in Fig. 18:
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Constant | h time windows characterized by two dates dy (begin} et d» (end)
Constant : p tolerance

Variables : &, past slope, Az curent slope

Boolean : C Boolean uses fo know if we are in Workstation drift period (1} or not (0)

Data . NbCc (diy Number of pieces treated at time d;
DC (d) Cumulated period of work at time d;

Temporal loop on h
Compute iz = (NbOc(dz) — NbQG (d1))HDC(d2)-DC(d:))
Compare i et As
IF the difference is upper than p
THENIF C=0
THEN  Init occurrence of phenomenon Workstation_Drift
Begin date phenomenon = d,
C=1
IF difference is lower than p
THEN IFC =1
THEN  Stop occurrence of phenomenon Worstation_Drift
End date phenomenon = d,
C=0
Make change the time, actualize d, et d,
Change value i, with value i,

Fig. 18. Algorithm for identifying the Workstation_Drift phenomenon

Considering Fig. 16, the application of this algorithm will give us four occurrences of the
Workstation_Drift phenomenon.

To have another example, let us consider the Stock_Saturation phenomenon. It can be
deduced from data of post processing durations (d4). It will be characterized by an increase
of the slope of the cumulated post processing duration. Fig. 19 shows an example of a time
window for workstation P210 where we can observe five occurrences of this phenomenon.

It is important to remark that now we have to consider five occurrences of the
Stock_Saturation phenomenon rather than all the data on the same time window. We make,
also, the assumption that, if no phenomenon is detected, the behaviour of the production
line is correct.

Therefore, because phenomena are meta-knowledge, we are able to build a sequence of
phenomena, which contains more information than the original data but “lighter” than the
original set.

The construction of phenomena is, then, a kind of a discrete event abstraction (Le Goc,
2004a).

Post analysis may be performed on the phenomena sequence, by application of the
stochastic approach to identify the correlations that can exist among phenomena. Next
subsection will show the bases of the stochastic approach and the way we can use it to
obtain fault models. These models will serve in the last step of our development to build
action plans.
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Workstation P210 period 2

Cumulated end of processing Time

PRl
i PR OO
w Stk Dabuenior =

Occurrences

Ph; Phy Phy || Phe Phg

Fig. 19. Example of the Stock_Saturation phenomenon

5. The Stochastic Approach

A sequence ® ={0i}i=o,...n-1 is an ordered set of m occurrences ok = (f, x, i) of discrete events
ex= (x, 1), where:

e xeXisthe name of a discrete variable,

e iel,cN is a discrete value of x, and

o hel'={t}, tieR is the time of the assignation of the discrete value i to the variable x so

that: ox= (f, x, 1) < x(k) = 1.

We have a continuous clock structure. Occurrences may happen at different times, but not
necessary at regular intervals (that is to say, fxo-tx-1 # t1-ti):

Vi, e R,VieN,3t,, <1,
(4)

x(ty ) #Einx(ty)=i= o, =(t;,,x1i)

A couple (ox, 0,) of two successive occurrences of discrete events related to a variable x
describes the modification of the values of the variable x over the interval [t, t,[:

vok e (tk’x’i)’on = (tn’x’j)a
(0,,0,) =Vt elt, t,[x(t)=inx(t,) = j

®)

As a consequence, a sequence w={ox} of discrete event occurrences oi=(t, x, i) concerning
variable x describes the temporal evolution of a discrete function x(f) defined on X.

R(C',C”,[T’,r*b < Jo,,0, € 0,
(0, =2 C*) A (0, = C'Y A (d(0,)—d(0,) €|, 6)
where Vo, =(t,,x,i) € w,d(0,) =1t,

A discrete event class is a set Ci={¢;} of discrete events e=(x, 7). The notation “¢;::C"” (resp.
“0r:C” or “Ciy”) denotes that the discrete event ¢; (resp. the occurrence 0,=Ci) belongs to the
class Ci. A timed binary relation R (Ci, Co, [z, 7*]) describes an oriented relation between two
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discrete event classes that is timed constrained. “[7,7*]” is the time interval for observing an
occurrence of the output class Ce after the occurrence of the input class Ci (equation 3).

5.1 Abstract Chronicle Model

In this context, an abstract chronicle model is a set of binary relations with timed constraints
between classes of discrete events. Such a model is called an “ELP” model (ELP is the
acronym of Event Language of Processing, (Le Goc et al., 2006)). For example, the ELP
model Mjx= {Rlz (Cl, 2, [2’12', 2'12+]), Ros (CZ, s, [2'23', 2'23+])} of Fig. 20 is made of two binary
relations between three discrete event classes. A sequence w satisfies the M1 ELP model
when:

Jo,,0,,0, € w,(0, ::C") A (0, ::C*)A (0, :: C*)

. . )
A(d(o,)—d(o,) € [Tur T12]) ~(d(o,)—d(o,) € [sz Tzs])

ELP models can be used to predict the occurrences of discrete event classes (like C3 in the
ELP model Mi23) in an unknown sequence «'.

-+ - +
‘ [2-12 - ] ‘ [T23 — ]‘

Fig. 20. ELP representation of the Mi23 model

To this aim, rules of the equation 5 form can be used in a diagnosis task. When such a rule
predicts an occurrence of a discrete event class with a minimal confidence, the
corresponding ELP model is called a “signature” (Le Goc et al., 2006).

Va',Vo,,0, €@,
(o, ::Cl)/\(on ::Cz)/\(d(on)—d(ok)e[r,‘z,rl’;]) (8)
=30, €@',(0, ::C’)A(d(o,)—d(o,) € [12’3,r2+3])

To measure the confidence of such rules, we define the anticipating ratio of an abstract
chronicle model as the number of sub sequences of a sequence ® that matches the complete
abstract chronicle model, divided by the number of the sub sequences that matches the
abstract chronicle model but without the final binary relation (the class C3 in Fig. 20). An

abstract chronicle model is a signature when its anticipating ratio is equal to or greater than
50%.

5.2 The Stochastic Representation
When the discrete event classes are independent and the distribution of the inter-occurrence
times of a discrete event class complies with a Poisson law of the form f(t)=1-¢-*#1, the couple

1 A is the average number of occurrences in a unit of time and is called the Poisson rate
(Cassandras & Lafortune, 2001).
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made by the process and its monitoring Knowledge Based System (KBS) can be considered
as a stochastic discrete event generator (Le Goc et al., 2006).
Consequently, a sequence of discrete event classes provided by such a generator can be
represented under the dual form of a homogeneous Markov chain and its associated
superposition of Poisson processes. A chronicle model is then connected with a specific path
in the state space of the Markov chain, and the timed relations will be provided by the
corresponding superposition of Poisson processes.
To represent a sequence @=(Ci)kck=0,.., m} as a Markov chain X=(X(fx); keK), the set of
discrete event classes C“={Ci}i=o..n1 in @ is assimilated to with the state space Q={i}i=o..n-1 of
X. A binary sub sequence @'=(Cix1, Cit) of @ corresponds then to a state transition in X:
X(d(Cix.1))=i—>X(d(Cix))=j, where d is the function providing the time of a class occurrence. A
simple depth-first backward search algorithm (i.e. from an output class to the input classes)
is used to generate the tree of the most probable paths that lead to an output class (Le Goc et
al., 2006).
This tree and the matrix of transition probabilities are a first representation of the sequence
of alarms. This result is interesting because, whatever the length of the sequence of alarms, it
is entirely contained in a finite matrix. The tree of sequential relations can then be used to
produce a functional model? of the couple (process, KBS) or to find signatures of the form of
the equation 5.
To constitute a timed binary relation of the form R(Ci, C, [z, 7*]), the timed constraint [, 7]
is simply added to the sequential relation Rs(Ci, C¢). Such a timed constraint is related with
the average delay D;j=E[d(Ciy)-d(Cix1)] between two successive occurrences ok.1::C' and oy::Ci
in a specific a7 sequence that contains only the occurrences of the two classes Ci and Ci of
the sequence a.. The average delay D;; between the occurrences of two classes Ci and Ci of @
is evaluated from two types of Poisson processes:

e A Poisson process (Nij(t-tmin); teT) that counts the number of sub sequences @'=(Ci.

1, Cix) in each w7,
e A compound Poisson process (NPij(t-tuin); teT) associated to each Poisson process
(Ni.j(t—tmm); tET).

The average delay Dj; is then given by (Le Goc et al., 2006):

, . NP, —t
b, = £ld(cy)-alci, - - E’j; ©)

- Vil

In our applications, the timed constraints are often intervals of the form [0, 2/ 4], which
takes into account 60% of the occurrences’.

These data structures and the associated algorithms have been implemented in a Java
platform with a set of tools to help experts analysing sequences of phenomena. There are
two algorithms linked with the stochastic approach: The BJT4T algorithm (Backward Jump
with Timed constraints for Trees) and the BJT4S algorithm (Backward Jump with Timed
constraints for Signatures) (Bouché et al., 2008b).

2 A functional model is the description of all variables of the system and relations which can
exist among these variables.
3 See (Le Goc et al., 2006) to a more detailed explanation of this choice of timed constraints.
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The role of the BJT4T algorithm is to compute the set of the most probable timed binary
relations R(Ci, Cj, [z, 7*]) in a set £2 of sequences & that leads to a specific discrete event class
C. The BJT4S algorithm evaluates the anticipating ratio of each branch of the tree: the
signatures are the branches of the tree having an anticipating ratio greater that an arbitrary
threshold (we have made the choice to use 50%, see (Bouché et al., 2008b)).

6. Example: Identification of fault models on real data

In the following of this chapter, we will use data of a company that provides automotive
parts (such as door locks). More precisely, we will show data from one production line of
this company, even if we have all data on long periods, we will only use data on one week
for this example.

In first place, we obtain the phenomena log (Fig. 21).

Atin_ 2. el (131873
1014 24609 20030602 1
1013 25534 20038/06/02 1
1213 2075 2008 06/02 11
1313 34733 2008/06/02 1
1314 34457 2008/06/02 1
1312 36530 2003 06/02 1
1942 2388 2003 06/02 11
1012 28956 20030602 1
1212 2315 20038 06/02 11
1312 36757 2008/06/02 1
1910 2389 20058/06/02 11
1312 36758 20038/06/02 1
1312 36752 20038/06/02 1
1958 2390 Z003/05/02 11
1312 36760 2003 06/02 1
1312 36761 20038 06/02 1
1314 344558 20038/06/02 1
1312 36762 2008/06/02 1
1312 36763 2008/06/02 1
1312 36764 2008/06/02 1
1314 34459 2003/06/02 1
1312 36765 Z003/06/02 1
1312 36766 2003 0602 1
1933 2391 20058/06/02 11
1312 36767 2008/06/02 1

Fig. 21. Example of a log of a production line

Afterwards, we may carry out probabilistic studies, in order to identify if there exist
correlations among phenomena and the temporal constraints on these correlations. The first
step of the stochastic approach is, then, to build the transition matrix from the log of
phenomena (Fig. 22).

The transition matrix is a counting matrix; we make the sum of transitions that we can
observe from two phenomena in the log of phenomena. On the matrix of Fig. 22, the number
4 on the first row means that in the log of phenomena we have observed four transitions
from a phenomenon 1012 to a phenomenon 1014.
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Fig. 22. The transition matrix

As we have explained in section 0, the next step is the use of a representation under the dual
form of a Markov chain model and a superposition of Poisson processes (Fig. 23). The
transition matrix is used to compute the Markov matrix where we will have the probabilities
of transition among phenomena. The transition matrix will also be used to determine, then,
the time constraints among phenomena in the superposition of Poisson processes.

Sequence of phenomena

Representation

‘ Poisson Model ‘ ‘ Markov Chain Model ‘
Timed part of the BJT4S equential part of the BJT4:
algorithm algorithm
‘ Timed constraints ‘ ‘ Sequential Relations ‘

Union of results

Knowledge Models such as
breakdowns models, etc ...

Fig. 23. The Stochastic Approach

The objective is to produce behavioural models of breakdowns. These models may be used to
perform real time diagnosis, but also to define action plans and corrections on the
production line. Fault models will probably reveal implicit links among the workstations of
the considered line.
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The application of the stochastic approach corresponds to the generic level of analysis of our
project. The stochastic approach produces behavioural models that, according to our
experience, are realistic indeed and can be used to make prediction or diagnosis.

Fig. 24 shows an example of correlation between two phenomena detected on workstations
P210 and P220 (see the production line in Fig. 4).

We detect the Slow_Working Period phenomenon on workstation P220 and the
Stock_Saturation phenomenon on workstation P210. It is easy to see that, if there is an
important working time on workstation P220, the line will be slowed down and a
consequence is the saturation of stock that can be observed on workstation P210.

Therefore, to improve performance of the line in this context, the problem will not be to
eliminate the Stock_Saturation phenomenon but to improve the working time on workstation
P220. With a single action, we can act on two phenomena.

= -
— P210
Phenomenon
« Stock_Saturation »

P220
Phenomenon
« Slow_Waorking_Period »

Fig. 24. Example of a correlation between two phenomena

While taking into account all the observations from the other workstations we realise that
this binary relation can be generalized to all the production line to produce a global binary
relation between two phenomena (Fig. 25):

Slow_Working_Period Stock_Saturation

Workstation N Workstation N-1

Fig. 25. Example of a binary relation between two phenomena
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On our data, the stochastic approach permits to build the following tree of sequential
relations (Fig. 26). The base of the tree (it is an arbitrary choice) is the phenomenon 1953,
which corresponds to a Failure_Level _2 phenomenon on workstation P140.

e g— e

= | ————

Fig. 26. Tree of sequential relations

From this tree, the BJT4S algorithm extracts the 1953 class signature in Fig. 27. A signature is
the branch of the tree, which has an anticipating ratio greater than 50%.

1113
Negative_Workstation_Drift
P 140

{immtRn MEaath]
1312 F.
Slow_Working_Period \‘,gnn Venan G Pt Waiin
P10 - l'.f;:um -.aian-ﬂ‘
|Beladis mlninite]
‘! ENTT l\.'J.n.l.uT.
1313 1953

Wallrlils ol bl | Slow_Working_Period Failure_Level 2

. P 140 P 140

1114
Negative_Workstation_Drift
P 150

Fig. 27. Example of a signature or behavioural model

To explain how this model has to be read, let us consider the branch 1312 = 1113 = 1313 =

1953 in Fig. 27. This means that:
If we observe the occurrence of a Slow_Working_Period phenomenon on workstation

P110
Followed by an occurrence of a Negative_Workstation_Drift phenomenon on
Workstation P140 in the time interval [Os, 1m],
Followed by an occurrence of a Slow_IWorking_Period phenomenon on workstation
P140 in the time interval [0s, 1m36s],
Then there is a strong probability to observe an occurrence of a Failure_Level 2
phenomenon on workstation P140 in the time interval [0s, Im19s].
The idea is, therefore, to use such a rule in a diagnosis task to make impossible the
occurrence of such a succession of phenomena that leads to a severe failure. In this way, it is

www.intechopen.com



466 Modelling, Simulation and Optimization

possible to improve the performance of the production line, by preventing the occurrence of
a serious phenomenon.

It is important to note that, by these means, we can identify relations among phenomena on
different workstations. Therefore, we propose a global method of analysis that is not limited
to the study of all workstations independently.

These models will be the base of the proposal of action plans to improve the performance of
the production line in study. They can also be used on-line with a real time supervision
system. In fact, the goal will be to observe phenomena on line, and to compare them with
the knowledge base of fault models. If we detect the beginning of a model, we can generate
an alarm to warn the operator on the risk of the occurrence of a total breakdown. In this
way, corrective actions can be done before the occurrence of that eventual total breakdown.
Fault models can also be used to make new studies, by defining new phenomena with high
abstraction levels.

7. Action plans

This project fits into the heuristic approach to knowledge-based diagnosis (Zanni et al.,
2006). The basic assumption of this approach is that diagnosis is a heuristic process. It
implies that experts rely on associational knowledge of the form observations — faults, that
knowledge derives from experience with the device under consideration (a production
system in our case) and that it can be elicited from domain experts.

The systems built under this approach can reach a high level of performance and may be
very efficient in their reasoning.

However, what has to be done when we have identified a fault or an unsatisfactory state?
The goal of the supervisor of the production line is, precisely, to make the unsatisfactory
state(s) disappear: an action is required when the state of the process is not satisfactory, and
otherwise nothing has to be done.

Therefore, when required, the supervisor must decide and propose an action on the process.
An action is a modification of at least one of the input variables of the process. The causal
relations between the variables will transform and propagate a modification of an input
variable on the internal variables and ultimately on the output variables (Le Goc, 2004a).

To control the behaviour of a process, the relations linking causes to effects must be known.
The natural form of the expert knowledge is the “if-then” rule. Conceptually, the simpler
form of such a relation is:

If the process is in the state X and
If the action U is executed (10)
Then the process produces the output Y

In this rule, the process output Y is the effect of applying a modification U. This relation
depends on the process state X. The causal relation can be modelled, then, as a ternary
predicate in first order logic of the form (Le Goc, 2004b) C (Y, X, U).

In our case, the state X is the set of indicators measured by the data acquisition system and,
particularly, the control parameters of the workstations.

Modifications of the set-up parameters of the workstations (whose set represents the action
U) will produce changes in the state X that will be reflected as an output Y.
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Our objective is to control the process behaviour.
To express this fact, it is necessary to reformulate the previous rules, by the introduction of a
new term, the goal G of the supervisor (Le Goc, 2004a).

If the goal G is to obtain the output Y and
If the process is in the state X (11)
Then the action U must be carried out

Formally, the causal relation is now a 4-arity predicate I(Y, U, X, G) such that:

I(Y,U, X, G) <= C(Y, X, U) n Equal(Y, G) (12)

The pieces of knowledge I (Y, U, X, G) are the ones that we have elicited in the knowledge
acquisition stage for the generic analysis. We have worked with experts on the development
of an ontology of actions, with the associated phenomena. Fig. 28 shows a part of this
ontology:

Phenomena Actions

Improve_Process ‘

Slow_Working_Period Adapt_Waorkstation ‘

Train_Qperator ‘

Improve_Process ‘

Stock_Saturation

Improve_Logistic ‘

Fig. 28. A part of the ontology on relationships phenomena - actions

In this way, if we consider the model of a breakdown on Fig. 25, to improve the production
line, we must act on the Slow_Working_Period phenomenon. Therefore, we will propose to
improve the process, to adapt the workstation, or to train the operator.

The ontological study has been carried out by considering different sources. In particular,
diverse ontologies on production systems or enterprise ontologies have been studied. Our
main sources have been the MASON ontology (Lemaignan et al., 2006) and the one on
Unified Assembly System Design developed by the University of Nottingham, the Royal
Institute of Technology (Sweden) and the New University of Lisbon (Lohse et al., 2005)
Others ontologies we have considered are the TOVE (Fox, 1992; Fox & Griininger, 1998) and
the ENTREPRISE (Ushchold et al, 1998) ontologies.
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8. Losses

To conclude, we remind that all this work has been done with the goal of improving the
performance of the production lines. In fact, for our industrial partner to improve performance
of his production line means to produce more good pieces in a certain time window.

Therefore, we can estimate the losses incurred (due to non-quality or to fault/breakdowns)
in a given time period (Zanni & Bouché, 2008b).

Losses due to non-quality can be evaluated by the number of bad pieces produced per hour.

Lquatity = Total quantity of produced bad pieces / production time 13
Lquality = Number of bad pieces / hour (13)
Losses due to production factors can be evaluated by the difference between the theoretical
number of pieces that the line can produce (according to the specifications of the line) and
the effective number of good pieces produced.

Lproduction = (Theoretical number of pieces - Number of effectively
produced pieces) / production time (14)
Lproduction = Number of non produced pieces / hour

We need to consider, also, the losses produced by maintenance problems. These losses may
be evaluated as the total time of breakdown multiplied by the work pace of the line divided
by the total production time. In this way, we have the number of non-produced pieces
during breakdowns.

Liaintenance = Breakdown periods * work pace of the production line /
production time (15)
Laintenance = Number of non produced pieces during break / hour

If we make the addition, we obtain a global estimation of losses:

Losses = Lquality + Lproductian + Lmaintenance

Losses = Number of bad pieces / hour +
Number of non produced pieces / hour + Number of pieces non
produced during breakdowns / hour

(16)

The amount of these losses may be very important; on one of the lines we study, we have
estimated losses in 185 pieces / hour. This line should produce 450 pieces / hour, that is, the
losses represent more than 40%.

Estimation of losses will permit us to evaluate the pertinence of the proposed action plans.
With this aim, we will implement a simulator of the production line, on which we can test
them.

9. Conclusions

We have presented a global method based on a knowledge-based approach for the
development of a software tool for modelling and analysis of production flows.
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To the best of these authors understanding, the reasoning on the number of produced parts
and the recommendations according to the three criteria, quality, maintenance and
production, have not been fully addressed yet. In addition, the generic vs. specific analysis
(global vs. by-workstation) approach will make the tool flexible and available for use by the
production staff on site (not necessarily at ease with other possible performance indicators)
and decision makers.

The method we propose is based on data processing and data mining techniques. Different
kinds of techniques are used: graphic representation of the production, identification of
specific behaviours to identify phenomena, and research of correlations among them on the
production line. Most of these techniques are based on statistical and probabilistic analyses.
To carry on high-level analyses, a stochastic approach is used to identify fault models.

Fault models can finally be used to propose action plans, which can be studied by
simulation before implementation.

Therefore, the following steps of our project include the development of a simulator. We
will use it to compute the effects of the action plan. The principle will be to build new
sequences of data with the specifications of the action plan and to introduce them into real
data to compute the effects. If a proposition of an action has no effect, it is not necessary to
implement it. Furthermore, if the implementation of that action does not produce significant
improvements (according to the decision maker) in the quantity of good pieces that were
produced, a non-application of the action might be envisaged.

Our future works also include the possibility of exploring a new generation of expert system
using multi-agents techniques for on-line analysis and diagnosis production chains.

The idea is to introduce, for each workstation in the line, an autonomous agent capable of
monitoring its operation. To do this, it will generate the characteristic of the workstation
behaviour, from statistics and probabilistic computations. Therefore, each workstation will
be able to make its own diagnosis, based on its own behavioural models, but it will also be
able to have a global view of the behaviour of the whole line through exchanges with the
rest of the agents.

This communication among the agents will permit them to act together for the optimization
of the operation of the line or to produce high-level alarms to prevent the occurrence of
major failures.
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