We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

15

Modelling and Simulating
Chip Design Processes

Amir Hassine
Institute of Microelectronic Systems, Leibniz Universitit Hannover
Germany

1. Introduction

When the semiconductor industry emerged from anonymity in the 1960’s, almost no one
expected it to gain such a tremendous importance in human kind’s life. 1981 Bill Gates,
although he today denies to have said it, stated that “640K - program memory - ought to be
enough for anybody”. Indeed, no other industry than the semiconductor industry has
experienced such a growth: The Semiconductor Industry Association! reports about an
average annual growth rate of over 16% from 1975 to 2000. It is even said to be the most
productive industry in the world today (Goodall et al., 2006). Continuous improvements in
EDAZ? tools, reusability and technologies have made it possible to design complex
functionalities and integrate hundreds of millions of transistors on a single chip.

None the less, figures reveal another - less pleasant - fact: managerial expertise in the chip
design industry seems to lag behind technical expertise and progress. The ITRS? reported
several times about a lingering and increasing design productivity gap: the number of
available transistors growing faster than the ability to meaningfully design them.

Managers are nowadays faced with many challenges concerning design projects: They have
to exchange resources, restructure the process, train designers etc. However, trial and error
of several alternatives is not practicable due to narrow time to market windows and severe
budget restrictions. In absence of simulative possibilities, decisions do not rely on evaluating
the alternatives regarding their productivity and costs, but on estimations and gut feelings
and are mostly biased. For planning decisions, it is therefore necessary to provide tools that
support decision makers in evaluating different solutions in an objective and transparent
manner.

Due to the rapid progress in the semiconductor industry, the wide range of available tools
and resources and the immense competition as well as time and budget pressures, the

1 Semiconductor Industry Association, www.sia-online.org
2 Electronic Design Automation
3 International Technology Roadmap for Semiconductors, http.//public.itrs.net

www.intechopen.com

332 Modelling, Simulation and Optimization

necessity to investigate modelling and simulation design systems has emerged as a
prevalent issue. The lack of tools to predict required resources and process runs is the
principal reason for late project cancellations and delays. Just as worrying as the long-term
growth slow down to 8-10%, so are the estimated $ 2 to $ 4 billion losses yearly due to
project cancellations and aborts (Numetrics, 2006). Moreover, 85% of IC* projects miss their
targeted schedules (Collett, 2004).

With simulative approaches, decision makers would be able to compare several process
arrangements regarding their productivity and costs and choose the appropriate one instead
of relying on estimations and gut feelings.

In this chapter a model and a simulator are presented to address the missing tools in the
field of modelling and simulating chip design processes (CDPs). The model regards
resources and design artefacts within a CDP in a generic manner. Thus, it is also applicable
to any other engineering or production process.

2. State of the art

Triggered by the design gap, several contributions focussed on defining and measuring
productivity (Hassine & Barke, 2005) (Numetrics, 2000) as well as establishing business and
technical KPIs> (Leppelt et al., 2006). Infrastructures for data collection (Fenstermaker et al.
2000) and analysis methods (Kahng & Mantik, 2001) have therefore been elaborated and
partially marketed. However, formalization and simulation of design systems have barely
been addressed.

The prediction of the productivity of chip design processes still relies on simple estimations.
It is in best cases based on the outcome of previous comparable projects. However, each chip
design process is admittedly unique and thus the estimations often lead to grave deviations
from plans and budgets.

Apart from (Matzke & Strube, 2006) (Ermolayevet al., 2006) and (Sohnius et al., 2007) few
efforts have investigated modelling and simulating chip design processes in a granular way.
The approach presented aims at modelling design processes in general and is based on
multi-agent systems (MAS). The latter use the approach of collaborating agents (software
programs) to solve a given problem. Thereby the agents stand for the elements of the
original to be modelled and are endowed with behaviors, preferences, the ability to act with
the environment, etc. The approach sets the emphasis on modelling human resources by
means of agents. The latter are endowed with different abilities in carrying out activities,
play different roles (manager, designer, etc.), negotiate with each other, build up teams and
cooperate to execute tasks assigned to them.

The added value yielded by the agents is measured by so-called Units of Welfare (UoW) but
are not specified deeply in detail. Furthermore, the simulation does not aim at optimizing
the productivity of the whole process but at minimizing the total process duration. Above

4 Integrated Circuit
5 Key Performance Indicators

www.intechopen.com

Modelling and Simulating Chip Design Processes 333

all and because of ethical, acceptance and feasibility reasons the approach is very likely to
face strong resistance by industrials.

3. The RS Model

Within chip design processes - seen as a sequence of activities - design artefacts (DAs) are
transformed into different states and/or are verified regarding their compliance to the
constraints set. Each activity includes several resources and its duration as well as the
quality of its outputs depend on the resources allocated, e.g. designer’s experience, and on
the DA properties, e.g. complexity. On this note, the Request Service (RS) model models
resources as providers of services. The latter are requested by the activities to process DAs.

A series of attributes describes the resources, services and DAs in a quantitative and
qualitative way. Calculation models specify activities” duration and outcome.

A petri-net-like notation is adopted to graphically represent the CDP elements in the
RS model. Since the goal is a computer aided simulation, the scenarios to be modelled and
simulated have to be expressed in a machine-readable manner. Ontologies are used to
formally represent the CDP domain because they offer an easy way to separate the generic
knowledge about CDPs from specific process instances to be simulated. Furthermore, it
allows for splitting up the model from implemented simulators using it.

In order to better comprehend the RS model, the following section illustrates basic
knowledge about Petri nets and ontologies.

3.1. Prerequisites
3.1.1 Petri nets

Petri nets have been developed by Carl Adam Petri in the 60s and represent in their original
form a time-independent and purely causal concept for modelling discrete systems. A Petri
net is constituted of:

e Transitions (rectangles): active elements in a system, e.g. actions or events
e Places (outlined circles): passive elements, e.g. states or conditions
e Edges relating transitions and places.

Places contain tokens (black filled circles). The latter represent dynamic elements being
transported and transformed, e.g. information. When a transition fires, tokens are removed
from pre-located places (respectively to the activity) and transformed/transported to a post-
located one. The number of transported tokens is specified by the edge weight (Fig. 1).

Before firing After firing

&0 e

Fig. 1. Petri net: Firing of a transition

www.intechopen.com

334 Modelling, Simulation and Optimization

The so-called - low-level - Petri nets are highly formal and thus mathematically analysable.
However marks contained in such nets are not distinguishable and transitions fire as soon as
marks are available in pre-located places. Over time, several extensions have been added to
the original Petri nets and new variations -- High-level and timed Petri nets - arose. The
main new features are:

e Tokens are distinguishable through attributes/colours/values. Furthermore they
may be tested and evaluated by guards in the transitions.

e Temporal behaviour can be assigned to any Petri net element. Transitions may for
example fire after a defined or stochastic period, marks’ transportation may be
retarted by the edges, etc.

In spite of the various extensions, even simple processes are still sometimes hard to model.
Particularly significant scenarios for this work, where marks should be shared by several
transitions simultaneously (Conflict, Fig. 2) and scenarios where marks are transported or
transformed in factions (Fig. 3) are not representable with Petri nets.

Fig. 2. Petri net: Conflict -
t=0 t=1
OO0 @
t=2 t=3
OniORORIO.

Fig. 3. Fractional Handling of marks

3.1.2 Ontologies

Ontology is a formal representation of knowledge within a specific domain. It not only
specifies the syntax and the terminology used, but also and particularly it specifies the
semantic binding of the concepts. Several languages are available to author ontologies. We
opted for the OWLS?, a XML-derivative endorsed by the World Wide Web Consortium?.

6 Web Ontology Language, www.w3.org/ TR/ owl-features
"W3C, www.w3.0rg.

www.intechopen.com

Modelling and Simulating Chip Design Processes 335

For illustration purposes, assume the following scenario to be modelled: A designer (actor)
is a resource and may execute at most one activity at the same time. In contrast, an activity
may be executed by several designers simultaneously, but at least by one. Finally, activities
and actors are specified by names. In the following, a UMLS-like notation is adopted to
illustrate ontologies graphically.

The T-Box (Terminological Box) specifies the generic knowledge. It defines the concepts, e.g.
Resource, Activity, DA, etc., their attributes and the relations and restrictions between the
concepts. The A-Box (Assertions Box) contains concrete instances of the concepts, attributes
and relations defined in the T-Box and hence, describe a concrete process to design a
concrete DA using concrete resources/services. The semantic specified in the T-Box is
assertive for the A-Box and defines how individuals are related to each other.

As shown in Fig. 4 and Fig. 5, the concepts (called Classes in OWL) to be modelled are
Actor, Resource and Activity. To model a specific occurrence of the modelled scenario, e.g.
Actors A executing Activity Acty, instances of the corresponding concept (Individuals) have
to be created. The attributes (Datatype Properties) specify the concepts and accordingly their
instances.

UML OWL
Resource T-Box
<owl:Class rdf:ID="Actor">
<rdfs:subClassOf>
<owl:Class rdf:ID="Resource"/>
</rdfs:subClassOf>

T

Actor

</owl:Class>
<owl:DatatypeProperty rdf:about="...name">

<rdfs:domain rdf:resource="...Actor"/>
. <rdfs:range rdf:resource="....string" />
name : string
Y
A-B
Actor: Actl s
name = Synthesis <Activity rdf:ID="Act1">
<name rdf:datatype="...string"> Tim </name>

</ Activity>

|
|
|
|
|
|
|
|
: </owl:DatatypeProperty>
|
|
|
|
|
|
|
| —

Fig. 4. Modelling with ontologies: Concepts, Individuals and Datatype Properties

8 Unified Modelling Language, www.uml.org

www.intechopen.com

336 Modelling, Simulation and Optimization

Relations (Object Properties) describe the semantic between the concepts. By means of
cardinalities, relations may be refined and constrained (Fig. 5).

UML OWL
T-Box

Actor

|

|

| <owl:ObjectProperty rdf:about="...executes">

| <owliinverseOf rdf:resource="...executedBy"/>

| <rdfs:domain rdf:resource="...Actor"/>
<rdfs:range rdf:resource="... Activity" />

! </owl:ObjectProperty>

|

I

|

|

executes 1..*

<owl:ObjectProperty rdf:about="...executedBy ">
</owl:ObjectProperty>
' <owl:Class rdf:about="... Activity">
0..* | executedBy <rdfs:subClassOf> <owl:Restriction>
i <owl:onProperty rdf:resource=" executedBy "/>
<owl:minCardinality>1</owl:minCardinality>
! </owl:Restriction>
I
I

Activity

</rdfs:subClassOf>
</owl:Class>

Fig. 5. Modelling with ontologies: Object Properties and Cardinalities

3.2. Modelling resources
A resource is modelled as provider of services. A service is requested and used or consumed
by an activity. Services have the following attributes:

e workpower: denotes the quality and/or quantity of the service offered. This may be
a single value as it is the case of the RAM offered by a computer or a mapping of
values to targets, e.g the ability of a designer to carry out activities.

e qoailability: of the service in h/day.

e intensity: to which the service is portioned. Services may be delivered at the amount
requested (~), e.g. RAM, or at a fixed amount (=) independently from the request,
e.g. the automation level to which a tool automates activities.

e repartition: describes how services are shared in case of concurrent requests.
Services may be not shareable and delivered to the first requesting (FCFS, First

Come First Served), e.g. RAM allocation, or may be split equally (V =) or
weighted according to the requests (%).

Furthermore, a cost model is assigned to each service expressing the costs per workpower and
time unit entailed through using the service.

www.intechopen.com

Modelling and Simulating Chip Design Processes

337

In some cases, services are not - literally - consumed but affect the way how activities are
executed. Thus, assigning costs for example to the automation level of a tool or setting limits
to the availability of such services is a counterintuitive way to address the accessibility to the
resource itself and the costs generated. To avoid doing so, every resource offers the special
service “Access”. This service can be restricted in its availability and shareability
(workpower). Costs caused by non-consumable resources can then be modelled by assigning
costs to the corresponding Access service. The services described above cling to each service
of a resource and may have different values within the same resource.

Fig. 6 and Fig. 7 depict the T-Box of the resource ontology and a corresponding tool A-Box.

Service

workpower: 1.5

availability: 24
intensity: n.a.

repartition : n.a.

CostModel: CM 0

R 0% workpower: double
esource offers | workpowerUnit: string has
name: string |1 offeredBy | availability: double 0..* of |1
1 has Intensity: string
CostModel
Zﬁ timeUnit: string
1 A costOfUsePerUnit: double
ccess
fixedCosts: double
of
Fig. 6. Resource’s T-Box
| 5
; I Tool: To:lll '7
cmomoo oo o - P | — — —————— | g 1
|, [ExploitationLevel: AutomationLevel: Access: AccessAl
r EL1 AL1

b { timeUnit: hour

costOfUsePerUnit: 0
fixedCosts: 0

1
l
1
! workpowerUnit: n.a. [
1
1
1
1

Computerl

_1—
Ty e
‘_E ComputinResource:

workpower: 3
workpowerUnit: n.a|
availability: 24
intensity: n.a.
repartition : n.a.

workpower: o
workpowerUnit: n.a.
availability: 24
intensity: ~
repartition : FCFS

GenericActivits;:
Synthesis

l

CostModel: CM-
Actl

timeUnit: hour
costOfUsePerUnit: 0
fixedCosts: 0

Fig. 7. A tool A-Box

A tool offers the service automating design activities to a certain extent (AutomationLevel)

and the possibility to use a computing resource (ExploitationLevel). The latter allows for
example for recognizing overdesigned computing resource as is the case for instance when a

www.intechopen.com

338 Modelling, Simulation and Optimization

tool without multiprocessor capability runs on a multi-processor computer. Costs are
generally not incurred by the tool itself but by the licenses. Similarly, simultaneous tool
usages are also typically limited by the licenses.

For graphical representation purposes a Petri net-like notation is adopted (Fig. 8): Places
represent resources and tokens residing in them stand for the different resource's services.
The services' attributes are appended to the tokens (brackets). In case of several similar
services with different values, services may be summarized in a table.

workpower
availability
Activity |AL intensity
repartition
Placement
CostModel
Routing

Fig. 8. Graphical representation of resources, exemplarily on the basis of a tool resource

3.3. Modelling design artefacts

In addition to the resources, the properties of the DAs and states being processed affect the
duration of activities and the quality of their outcome to a decisive extend. DAs are
described through two hierarchies of indicators and parameters: DAC (Design Artefact
Complexity) addresses the technical characteristics of the DA whereas the DAQ (Design
Artefact Quality) addresses its qualitative aspects. Both are applicable for the DA as a whole
and are transitive for its states. They are typically approximated at the beginning of a design
process and become more and more accurate as the process progresses. A Detailed
description is given in (Leppelt et al., 2006).

The different states the DA undergoes within a CDP are specified through a format (e.g. text
document, Verilog, DEF, GDSI], etc.) and a hierarchy of quality attributes (QA). In contrast
to the DAC and DAQ, QA are state specific and not predefined. They may be adjusted to the
user's needs to include parameters that are not defined in the DAC/DAQ.

Design artefacts are graphically represented similar to resources (Fig. 9, showing a cut-out of
DAC and DAQ hierarchies). A place now stands for a design artefact and the tokens stand
for the different DA states. The states’ attributes (Format and the QA hierarchy) are
appended to the tokens. Fig. 10 shows the design artefact’s ontology.

www.intechopen.com

Modelling and Simulating Chip Design Processes

339

04
Format

DA:

ped oo

0.9
0.8 VHDL
Verilog

| DAG,DAQ

[y, e

| W

Functional

Die Area

Standard

Gate Equiv.

LUTs

QA =
I:LOC =
Modules =
—Inputs =

Fig. 9. A cut-out from the DAC and DAQ and graphical representation of design artefacts.

DAComplexity|| DAQaulity DAStateOA DARebpresentation
value: double|[value: double value: double format: string
1| of of[1 of| 1 1| of
1| has has
has| 1 1| has DAState |(..*
]] has 0..*
DesignArtifact
1 of
Parameter
1 | describedBy ["hame: string | g *
unit: string
0.* | value: string
of
0..*| hasSubParameter
isSubParameterOf

Fig. 10. Ontological representation of design artefacts

www.intechopen.com

340 Modelling, Simulation and Optimization

3.4. Modelling activities

Design artefacts are transformed within activities into different states. The services granted
by resources and the properties of the DAs and states being transformed determine the
duration of the activity and the quality of its output. The transformation behavior of an
activity is composed of three parts:

e Pre-Production (Pr-Pr): Before an activity starts, the input states have to be available
(reqDA). Minimum amounts/qualities of services may be necessary to start
(minReq) and dependent on the current case, more or less services are required
(optReq). For example, in the case of a larger or a critical desigh more RAM or a
more experienced designer may be required.

e Production (Pr): Determines the time the activity takes, which states are produced
and which quality results.

e Post-Production (Ps-Pr): In case of insufficient outcome's quality, iterations may be
initiated.

Activities are represented by transitions (rectangles) consisting of three blocks as described
above (Fig. 11).

Beside the elements of a chip design process, ie. resources, activities and DAs,
transformation behaviours of activities - requests and calculation functions for activities'
duration and quality dependent on resources/services and input DAs/states - must be
formalized.

Design Artefacts

Out

Synthesis

Pr-Pr Pr Ps-Pr

* requiredDA: Statel| ¢ Produce State 2 in Format2 | * Output Ok? | Services
of pAl . Dura'tion =F (Seryices, DA)| - Iterate? ¢

*minReq: 1 GBRAM | e Quality = F (Services, DA)

* optReq: 2 GB RAM

Requests

>

Resources

Fig. 11. Graphical representation of activities

www.intechopen.com

Modelling and Simu

lating Chip Design Processes

It is very likely that such calculation models will often have to be revised, improved and
adjusted. Therefore, they have to be expressed in a flexible way allowing for later changes
without having to change the code of an implemented simulator. The simulator offers an
interface to read in calculation models expressed in a specific developed notation - Prefix-
Selector-Point (PSP) - from XML files. The developed notation generated from a context-free

grammar PSPgc.

PSPgis a 4-tuple (

T, N, S, P) where

e TerminalsT={,(,),[,], ,', value, instance, indicator, parameter}

UOUR

e Non-terminals N = {OPERATOR, SERVICE, ATTRIBUTE, RESOURCE,
COMPUTER, ACTOR, LICENSE, TOOL, SUPPORT,
DALIBRARY, GA, DA, DASTATE, INDICATOR,
PARAMETER, DAC, DAQ, STATEQA, OPTCRIT, FORMULA,

U S U A where

O={+-x,& |, ,/,>= <= = ...} Operators

R = {Quality, QA, Complexity, . . . }: Reserved words
S = {Access, RAM, AbilitWrtTool, . .. }: Services

A = {workpower, availability, . . . }: Attributes

OPERAND)}

e Start symbol S = Formula

e Producti

www.intechopen.com

ons P={

OPERATOR :=+| - | x |&| / | ...,

SERVICE ::= Access | RAM | AutomationLevel | ...,
ATTRIBUTE ::= workpower | availability | ...,

RESOURCE := COMPUTER | ACTOR | LICENSE | TOOL | SUPPORT

DALIBRARY,
COMPUTER ::= instance,
ACTOR ::= instance,
LICENSE ::= instance,
TOOL ::= instance,
SUPPORT ::= instance,
DALIBRARY ::= instance,
GA ::= instance,
DA ::= instance,
DASTATE ::= instance,
INDICATOR ::= indicator,
PARAMETER ::= Parameter.Parameter | parameter,

DAC = DA.Quality | DA.Quality. INDICATOR
DA.Quality. INDICATOR.PARAMETER,
DAQ == DA.Complexity | DA.Complexity.INDICATOR

DA.Complexity INDICATOR.PARAMETER,
STATEQA ::= DA.DAState.QA | DA.DAState. QA.PARAMETER,
OPTCRIT ::= Quality | Speed | Cost,
FORMULA ::= (OPERATOR, OPERAND, OPERAND) | REQDA,
OPERAND := value | FORMULA | OPERAND,OPERAND
RESOURCE.SERVICE.ATTRIBUTE

342 Modelling, Simulation and Optimization

RESOURCE.SERVICEJinstance] | DA.DAC | DA.DAQ |
DA.STATEQA | Optimization.OPTCRIT,
REQDA ::= DA.DAState | DA.DAState,DA.DAState,

}

The terminals indicator and parameter are to be substituted through indicator and parameter
names defined in the DAC, DAQ and QA. instance is to be substituted through names of
concrete concept instances and value € R. Calculation models and request rules are
generated by applying the production rules of the PSGg and substituting the corresponding
variables. The sentences derived from the PSPg typically have the form (operator, operand,
operand) where operand may represent a point separated address.

To illustrate, assume for example that in order to start, an activity requires that the assigned
computer Compc offers at least 1 GB free RAM and that the assigned License Licy is
adequate for using tool Toolr (minReq). In the following, the derivation of the corresponding
phrase in the PSP notation is described. The highlighted words are non-terminals to be
substituted in the next step by applying a PSP¢ production rule:

minReq: Formula = (Operator, Operand, Operand)

, Operand, Operand)

, Formula, Operand)

, (Operator, Operand, Operand), Operand)

(>=, Operand, Operand), Operand)

(>=, Resource.Service.Attribute, Operand), Operand)
, (>=, instance. RAM.workpower, Operand), Operand)

~

~

(&
(&
(&
(&
(&
(&

e

, (>=, instance. RAM.workpower, value), Operand)
(&, (>=, instance. RAM.workpower, value), Formula)

U088l

(&, (>=, instance. RAM.Workpower, value),
(=, instance.AllowsUsing[instance], value)
)

Replacing the terminals instance and value through instances” names and figures results in
the concrete condition to start the activity in question:
(&, (>=, Compc.RAM.Workpower, 1), (=, LicL.AllowsUsing[Toolr], 1))

To allow generic formulas, the PSP notation is extended to permit the use of generic entries
like [Tool] instead of the instance name Toolr. The assignment of a concrete tool is thus done
by the simulator itself based on the process entered.

4. The RS Simulator

Adrenalin is a simulator implemented in Java based on the RS model. It offers different
views for data entry, a simulation and a charts view for simulation results. The data entry is
guided through the semantic specified in the ontologies and thus guarantees a semantically
correct entry. Activities' behavioural models are read in from an auxiliary XML file.

www.intechopen.com

Modelling and Simulating Chip Design Processes

343

Simulation results are also logged allowing for a transparent backtracking of simulation
runs. Fig. 12 illustrates the setup of the simulator.

Adrenalin

Entry Module Simulator Module Chart Module

] n o

* ot e
$ i —> X /
x
A
*.owl * proj *.aux

Fig. 12. Setup of the Adrenalin simulator

The simulator allows users to answer the most urgent questions about process duration and
costs and to compare alternatives to recognize potential bottlenecks and identify critical
factors such as deadline over-run, resource overload or wastage:

AN .

How much time would the process take?
How much would it cost?

Which quality would be reached?

Which resources arrangement is appropriate to handle a given design complexity?
Which design complexity is manageable with a given resources arrangement?

In the present implementation, the resources allocation to activities is considered as given.
The simulation can then deliver answers to the first three questions. The other questions can
be addressed by manually adjusting the process, re-allocating resource and re-simulation.

Fig. 13 depicts a basic simulation step. Each step is made up of four phases:

e Check phase: Activities check availability of needed input DA states (Pr-Pr).
e Request phase: Activities send out their requests.
e Grant phase: If minReqs are satisfiable, resources grant activities as much as
possible from the requested services (optRegs) taking into account their services
properties, e.g. shareability.

www.intechopen.com

344 Modelling, Simulation and Optimization

e Produce phase: Activities produce a portion of their output (Pr). After the whole
production finishes (Ps-Pr) and dependent on the achieved quality, activities
decide about initiating iterations or writing out corresponding DA states.

Controller Activitvy _l—l DA Dacnsiean

Pr_Pr Pe_Pr
check .
reqDA
>
request
> min/optReq
—>
grant
>
< services
produce
ok
iterate I
4—

Fig. 13. Principal simulation steps

5. Calibration and results

Calibration of the simulator, e.g. calculation models for activities” duration and quality, is a
continuous and recursive process. To illustrate, three data sets have been investigated and
integrated into the simulator by means of the PSP notation to determine behaviour of some
activities.

Set; is composed of five digital designs used by an industry partner to configure new tools
or tool versions: A scalable design in four different sizes ranging from 200 to 1,600 kGates
and a 42 kGates sized design. Duration, memory usage and normalized CPU factors (CPUF)
are available. Set, consists of data for logical synthesis of 31 industrial digital designs that
have been or are intended to be produced. The design codes contain up to 70,000 lines. Sets
is composed of nine free downloadable’ non-synthesized verilog codes of digital designs
with lines of code (LoC) ranging between 2,300 and 94,000 lines.

From each set, some designs were not used in the investigation. Untried designs served as a
benchmark to evaluate the accuracy of the determined metrics. The statistical computing
language R0 has been used to determine metrics to predict

e memory usage and duration of some physical synthesis activities dependent on
design size and CPUF (Set;) and

9 Opencores, Www.opencores.org.
10 The R Project for Statistical Computing, www.r-project.org.

www.intechopen.com

Modelling and Simulating Chip Design Processes 345

e Jogical synthesis” duration and the number of nets generated thereby dependent on
code's design attributes and the CPUs of the computing resources used (Set, and
Set3).

The metrics determined for Set; show very accurate prediction of activity duration and
memory usages. However four of the five investigated designs represent a scalable design
and thus, the metrics are primarily relevant for comparable designs. Set, and Set 3 which
contain more heterogeneous data also produce accurate predictions especially for longer
activities and more complex designs (Fig. 14).

BO-------- P R el tetetel
A e A . + Sets: Duration
e B EE S e = Sets: Nets '
Ao . --=-- Sety: Duration
L --+-- Sety: Nets

B
T R U
Fig. 14. Ratio of predicted to real values for Set, and Set;

6. Conclusion

This work addresses the lack of approaches to model and simulate chip design processes. In
cooperation with leading semiconductor industries, a simple though expressive model to
represent design processes has been developed. The model is endowed with the formalism
necessary to allow for computer aided simulation. Adrenalin, the simulator based on the RS
model, gives users the possibility to try several process alternatives and compare them to
each other in a simulative and thus cheap and fast way.

www.intechopen.com

346 Modelling, Simulation and Optimization

Generating calculation models is a continuous and recursive process. The interface offered
by Adrenalin to read in calculation models from XML files and the formalized PSP notation
allow for later adjustment without editing the simulator code.

The exemplary investigation of some industrial data has produced accurate results in
estimating activity durations and thus attests to the predictability and ability to simulate
chip design processes.

Future work will continue to generate further calculation models using more data for
calibration and combining further input variables to substantiate the metrics. Furthermore,
the focus will be set on automating re-arrangements of planned processes in order to
determine controllable complexity and needed resources in case of given resources and
complexity respectively.

7. References

Goodall, A.; Fandel, D., Alan, A.; Landler, P. & Huff, H. R. (1998). Long-term Productivity
Mechanisms of the Semiconductor Industry, Proceedings of American Electrochemical
Society Semiconductor Silicon, pp. 125-143

Hassine, A. & Barke, E., (2005). Measure Your Design Value to Improve It, Proceedings of
IEEE International Engineering Management Conference, pp. 668-672

Collett, R. (2004). Benchmarking IC Development Capability - Why?, Fabless Forum, Vol. 11

Numetrics (2006), IC Product Lifecycle Management and Portfolio Optimization - Critical
Elements of an Enterprise Solution, White Paper, Numetrics Management Systems Inc.

Numetrics (2000). Measuring IC and ASIC Design Productivity, White Paper, Numetrics
Management Systems Inc.

Leppelt, P., Hassine, A. & Barke, E. (2006). An Approach to Make Semiconductor Design
Projects Comparable, Proceedings of Asia Pacific Industrial Engineering Management
Systems Conference, pp. 2067-2074

Fenstermaker, S.; George, D.; Kahng, A.Mantik, S. & Thielges, B. (2000). METRICS:
A System Architecture for Design Process Optimization, Proceedings of IEEE Design
Automation Conference, pp. 705-710

Kahng, A. & Mantik, S. (2001). A System for Automatic Recording and Prediction of Design
Quality Metrics, Proceedings of International Symposium on Quality Electronic Design,
pp- 81-86

Sohnius, R.; Ermolayev, V.; Jentzsch, E. & Matzke, W.-E. (2007). An Approach for Assessing
Design Systems: Design System Simulation and Analysis for Performance
Assessment, Proceedings of International Conference on Enterprise Information Systems,
pp- 231-236

Matzke, W.-E. & Strube, G. (2006). A Management Tool for the Performance Management of
Distributed (global) Dynamic Engineering Design Processes, Proceedings of IEEE
International Engineering Management Conference, pp. 146-151

Ermolayev, V.; Jentzsch, E.; Karsayev, O.; Keberle, N.; Matzke, W.-E.; Samoylov, V., &
Sohnius, R. (2006). An Agent-Oriented Model of a Dynamic Engineering Design
Process, In: Agent-Oriented Information Systems III, Vol. 3529/2006, pp. 168-183,
Springer Berlin/ Heidelberg

www.intechopen.com

Modelling Simulation and Optimization
Edited by Gregorio Romero Rey and Luisa Martinez Muneta

ISBN 978-953-307-048-3

Hard cover, 708 pages

Publisher InTech

Published online 01, February, 2010
Published in print edition February, 2010

Computer-Aided Design and system analysis aim to find mathematical models that allow emulating the
behaviour of components and facilities. The high competitiveness in industry, the little time available for
product development and the high cost in terms of time and money of producing the initial prototypes means
that the computer-aided design and analysis of products are taking on major importance. On the other hand,
in most areas of engineering the components of a system are interconnected and belong to different domains
of physics (mechanics, electrics, hydraulics, thermal...). When developing a complete multidisciplinary system,
it needs to integrate a design procedure to ensure that it will be successfully achieved. Engineering systems
require an analysis of their dynamic behaviour (evolution over time or path of their different variables). The
purpose of modelling and simulating dynamic systems is to generate a set of algebraic and differential
equations or a mathematical model. In order to perform rapid product optimisation iterations, the models must
be formulated and evaluated in the most efficient way. Automated environments contribute to this. One of the
pioneers of simulation technology in medicine defines simulation as a technique, not a technology, that
replaces real experiences with guided experiences reproducing important aspects of the real world in a fully
interactive fashion [iii]. In the following chapters the reader will be introduced to the world of simulation in topics
of current interest such as medicine, military purposes and their use in industry for diverse applications that
range from the use of networks to combining thermal, chemical or electrical aspects, among others. We hope
that after reading the different sections of this book we will have succeeded in bringing across what the
scientific community is doing in the field of simulation and that it will be to your interest and liking. Lastly, we
would like to thank all the authors for their excellent contributions in the different areas of simulation.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Amir Hassine (2010). Modelling and Simulating Chip Design Processes, Modelling Simulation and
Optimization, Gregorio Romero Rey and Luisa Martinez Muneta (Ed.), ISBN: 978-953-307-048-3, InTech,
Available from: http://www.intechopen.com/books/modelling-simulation-and-optimization/modelling-and-
simulating-chip-design-processes

INTECH

open science | open minds

InTech Europe InTech China
University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai
Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

www.intechopen.com

51000 Rijeka, Croatia PE _EETHIER A KE5s 5 _EiEE R R AR IRIE IMAE405 87T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

