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1. Introduction

Optimum shape design is an interesting and important field both mathematically and for
industrial applications. Uniqueness, stability and existence of solution are important
theoretical issues for scientists. Practical implementation issues are critical for realization for
engineers and designers. As examples of industrial applications we can consider weight
reduction in car engine, aircraft structures, electromagnetically optimum shapes, such as in
stealth airplanes. There is also a great interest in shape optimization for fluid flow systems.
The engineers and designers are interested in reducing the drag force on the wing of a plane
or on a vehicle, or in reducing the viscous dissipation in hydraulic valves, pipes and tanks.
The computation of optimal profiles that minimize the aerodynamic drag, the viscous
energy which is dissipated in the fluid, the volume and weight of building structures plays
nowadays a very important role.

In this paper, we investigate a methodology for the shape optimization problem. The
problem consists in finding a shape (in two or three dimensions), which is optimal in a
certain sense and satisfies certain requirements. In other words, we would like to find a
bounded set D, which minimizes a functional J(D) and satisfies constraints B(D)=0 . The
problem typically involves the solution of a system of nonlinear partial differential
equations, which depend on parameters that define a geometrical domain. The solution is
usually obtained numerically, by using iterative methods, for example by the finite element
method (Strang & Fix, 1973). The continuum description of the geometrical domain is
discretized with different meshing strategies. Some of them are fixed grid strategies (Xie &
Steven, 1993; Li et al., 1999; Garcia & Gonzales, 2004), design element concepts (Imam, 1982),
adaptive mesh strategies (Belegundu & Rajan, 1988) and remeshing strategies. The shape
optimization problems are discussed by many scientists, and to mention only a few we note
the works (Belegundu & Chandrupatla, 1999; Atanackovic, 2001; Delfour & Zolesio, 2001;
Mohammadi & Pironneau, 2001; Skruch, 2001; Allaire, 2002; Bendsge & Sigmund, 2003;
Haslinger & Mékinen, 2003; Allaire et al., 2004).

In recent years, some attempts have been made to use optimal control theory for the shape
optimization problems (Szefer & Mikulski, 1978, 1984; Mitkowski & Skruch, 2001; Skruch,
2001; Laskowski, 2006; Skruch & Mitkowski, 2009). In this paper, we continue investigations
of this topic and we show that the method based on the Pontryagin maximum principle
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188 Modelling, Simulation and Optimization

(Pontryagin et. al., 1962; Boltyanskii, 1971; Mitkowski, 1991) can be used for solving the
formulated task of optimization. Of course, a general solution and proof are very often
impossible. Therefore the main focus in this paper will be put on numerical solutions and
simulations. The computer program has been designed in the MATLAB/Simulink
environment. It uses an iterative method, that is, we start with an initial guess for a shape,
and then gradually evolve it, until it falls into the optimum shape. Using the program we
show how to find optimum shapes for different types of beam design. The approach can be
also successfully applied to shape optimization of many mechanical systems.

The paper is organized as follows. In section 2 we formulate the problem. General solution
of the problem is presented in section 3. To illustrate our approach, we consider a single
span beam with rectangular cross-section (section 4), I cross-section (section 5) and a
clamped beam with rectangular cross-section (section 6). We also show how to implement
numerical solution of the problem (sections 4.2, 5.2 and 6.2). Numerical simulation results
are presented in sections 4.3, 5.3 and 6.3. The study of the existence of local minimum for the
optimization problem is given in section 4.4.

The following notation is used throughout this chapter:

Il norm in the space L*(T, X)

7 volume mass density of the beam material

b width of the beam’s cross-section

E Young's modulus

h height of the beam’s cross-section

1 moment of inertia

[ length of the beam

L*(7,X) Banach space with the norm ||f||0o =ess sup|f(t] , fT—>X
teT

PC(T,X) space of piecewise continuous functions f :7 — X

R set of real numbers

R" real n—dimensional vector space over R

W (T, X) Banach space with the norm ||f||1 = max{”f” , i—f J

00 0 t "
wh transpose of the vector w

2. Formulation of the problem

Consider a physical system of which the statics can be described by the following equation

dx
SO risteutele), )

where x e Wl’w([§0,§1],R”), E.5€eR, & <&, Eelé.], ueU,,, U,y stands for the set of
admissible controls

U = fuePC(g, & IR ) 12(&.4 1R")-u(e) e U}, )
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Modelling and Simulation of the Shape Optimization Problems 189

<v<u

m m
U= {V eR Upin = ‘max’ ¥min < umax}’ Upnin > Umax € R (3)

[ :R"xR" xR —R" is a vector function that is continuous with respect to each variable and

whose partial derivative V,f(0,7,7) exists and is continuous for all (0,7,7)e R” xR" xR .

Geometrical and strength constraints are imposed on the system in the form of equalities
and weak inequalities

I(xu.8.4)= IG (£)e)de +7,(&.x(&) & x(&)<0, i=12,.. @
Ej(xu.é.8)= jB (€)eMe+ B (& x(G) . x(&)=0, j=12...q, 5)
where Gi.'R”xR’”xR—>R”, 7: ‘RxR"xRxR" >R, Bj.'R"xR’"xR—>R",

B; :RxR"xRxR"—>R,i=12,..,p, j=12,...,q. Existence of the constraints (3), (4) and (5)
should secure the solutions the proper physical meaning. We assume that the functions G,,

B, 7, ,8 ; are continuous with respect to each variable, the partial derivatives V,G, (6’, 11,1) ,

VaBj(O,r],T) exist and are continuous for all (f,7,7)eR"xR"™ xR, moreover, the partial
derivatives V,J,»(Toﬂo,ﬁ,fh), VakVi(To:ao’Tl’éﬁ)/ Vrkﬂj(foﬂo:fl"%)/ VGkﬂj(TO’a()’Tl’al)’

k=0,1 exist and are continuous for all (10,00,11,01)e RxR"xRxR". The shape

optimization problem involves the constrained minimization of a cost function. In our case
the cost function will be formulated as

x u,g, 51 jGo f)df"'}/o(fm (50) g1, X (51)) (6)

Here, the functions G, and y, are from the same class as G; and y,, i=1,2,...,p . The cost

function may represent any design requirement of the physical system such as displacement
of a chosen point, surface or volume of an element, etc..

The problem is to determine the quadruple (x,u,&),& )e W"” ([50 , g"l],R" )x U,s xRxR which

satisfies the equation (1), constrains (4), (5) and minimizes the cost function (6).

3. General solution of the problem

These types of problems as presented shortly in section 2 can be solved using one of the
variants of the Pontryagin maximum principle (Ioffe & Tikhomirov, 1979; Alekseev et al.,
1987; Hartl et al., 1995; Bania, 2008). In this approach the key role plays the Hamiltonian

Hy :R"xR"xR"xRxRxR?”xR? >R defined as
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190 Modelling, Simulation and Optimization

Ho(y/,x,u,é,/?o,l, ) W fxu;‘ ZﬂG xug“ Zijj(x,u,é‘), (7)
=1

where  the  functon  yeW" ([go,gllR”), AeR,  a=[i A0, eR?,
,u:[yl,,uz,...,,uq]TeR". The number 4, and the vectors A1, u are called Lagrange

multipliers.

Suppose a quadruple (x*,u*,fg & ) gives the local minimum in the problem described
above. Then according to Pontryagin maximum principle, there exist the Lagrange
multipliers /13 >0, 2" >0, ,u* and the function y/* that satisfy the following;:

(@) adjoint equations

d"é f) ==V, Holy (€)' () (€)e 202 ), ®
(b) state equations
w_ seee), g
(c) maximum condition
Holy (€)' @) (€)e A )2 Holy ()X @i d'w) veu, (10
(d) nontriviality conditions
Al >0, )
(e) complementary conditions
AL ut8.8)=0, i=12,..p, (12)

(f) continuity of the function HO( (&) x"(&), u*(ﬁ),ﬁ,ﬂg,l*,,u*) for £e [55,51*],

(g) transversality conditions

v'(&)=vaols < g) &< () .00 00), (13)
w'(6)=voolsx(a)e xlg)a s w0 (14)
L T R A P o Ty P e o R G V) (15)
L g B P 0 o g B iy g g PP ) (16)

where ¢ RxR"xRxR"xRxR”xR? — R is defined as follows
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Modelling and Simulation of the Shape Optimization Problems 191

p q

(D(Toﬂo’ﬁﬂpﬂo’i’ﬂ): 2/1,‘71'(70r00'71r01)+ Zﬂjﬂj(foﬂo’fl;al) 17)
i=0 j=1

The maximum principle has been and remains an important and effective tool in the many

areas in which optimal control plays a role. There have been many advances of this principle

in the last fifty years that extended its applicability. It should be underlined that the theorem

gives only necessary conditions of optimality. Existence of solutions needs separate studies.

4. Optimal design of a single span beam with rectangular cross-section

4.1 Equation of a physical system

Beams are used to support and strengthen structures ranging from silos to bridges to
towering skyscrapers. In this section we explore the shape optimization problem associated
with the static deformation of beams. The strategy is to mathematically describe the
quantities that affect the deformation of a beam, and to relate these quantities through
differential equations that describe the bending of a beam. Then using the method based on
the Pontryagin maximum principle, we show how to choose the beam’s cross-section in
order to assure minimum deflection at the end point of a beam.

Consider a single span beam with rectangular cross-section working under self-weight (fig.
1). The statics of the beam can be described using the following equation

d )|
e {El(é; i }— u(¢), (18)

where £¢[0,/], u(&)=yh(&), (&) represents vertical displacement of the beam along the
interval [0,/], / stands for the length of the beam, b is the width of the beam’s cross-section,

h is the height of the cross-section, E is the Young’s module, /(£) is the moment of inertia
of the cross-section, y is the volume mass density of the beam material.

h() i

I

»

Yy

Fig. 1. Single span beam under self-weight

For state notation of the equation (18) we introduce the vector
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192 Modelling, Simulation and Optimization
H(§)=lal¢) w() xE) xEl, (19)
where
x($)= ()
X2 (f ) = dg(j) ,
d2
wle)= el @
A | &)
o) o e )|
_bulg)
16)==5— @y
and additionally we define the vector
[ %(2) |
125¢)
£(x(g)u()= Ebu{ff (22)
x, (& )
| -ul9) |
Then our system can be written shortly in the classical form
dx
S ristehate), @
with the boundary conditions
x1(0)=x(0) = x;(1) = x4(1)=0. (24)

The boundary condition x,(0)=0 says that the base of the beam (at the wall) does not

experience any deflection. We also assume that the beam at the wall is horizontal, so that the
derivative of the deflection function is zero at that point, i.e. x,(0)=0. The boundary

condition x;(/)=0 models the assumption that there is no bending moment at the free end

of the cantilever. The boundary condition x,(/)=0 models the assumption that there is no

shearing force acting at the free end of the beam (see also Laskowski, 2006). It should be
noted that the values x;(0), x,(0), x,(/) and x,(/) are unknown. Side conditions concerning

strength constraints and geometry are imposed on the dimensions of the cross-section, so

that

www.intechopen.com
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The deflection at the end point of the beam is the optimality criterion

Jlu)=x(0). 27)
The cost function (27) can be also expressed in the following form

!

J)=x,0)= [x, (&) (28)
0
We want to determine such u eU,_,, which minimizes the functional (28) and satisfies the

state equations (23) with the boundary conditions (24).
In order to solve the formulated problem, we use the Pontryagin maximum principle.
Therefore we introduce the Hamiltonian

12x
Ho(‘/’,xr”jo):%xz+W2ﬁ+§”3x4_%”4“_ﬂoxzf (29)

where the variable 4, >0 and the function w(&)=[y;(£) w,(E) ws(&) w, (&) satisfies the
equation

dy(¢)

d—SZ:—VxHo(‘//(f)rx(é:);”(f)’/lo)r (30)
itis
- 0 -
d A~ (5 )
e e
= Ebu(ey
& (95 )
The transversality conditions lead to the following boundary values
w3(0)=0, y,(0)=0, (32)
‘//1(1)20’ l//z(l):()' (33)

According to the Pontryagin maximum principle for the optimal control «~ there is

Ho(w*,x*,u*,ﬂ%)=rp;;JxHo(w*,x*,v,ﬂE)- (34)
The optimal control #* can be obtained from the condition 6H,/du =0 with the help of the

system of the adjoint equations (31) and the boundary conditions (32), (33).
We assume that A,=1. Then from (31) we can obtain

vi(6)=0, w,(&)=1-¢. (35)

Invoking the condition 0H,/0u =0 we have the equation
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194 Modelling, Simulation and Optimization

u(¢)-= \/(cf 1) 2:’;((% 6)

from which we shall obtain the optimal control #" . In the formulated optimization problem
the constraints (26) cause that not the whole space is an admissible region. Because

36x5,(¢) _
e i
lim \/(5 1)22X\6 ) 36x3(¢) -0, (38)
Eb‘//4(§)

then the optimal solution has the final form

H,, for £€[0,¢,]

- 36x;(&)
u'(¢)= 4\/(5 D) o €< dl (39)

H,, for §e(§b,l]
The optimal control (39) has a purely formal character because we do not know the
functions x;(¢) , w,(£) and the ranges [0,§a], (fa,fb], (;‘b,l] in which the individual

relations (39) hold. These unknowns can be found in a numerical way.

4.2 Solution method
To find effectively the optimal control u*(£), it is necessary to solve the system which

consists of nonlinear ordinary differential equations of the first-order with the boundary
conditions defined at initial and end points. The solution of this system is possible only in a
numerical way. The following algorithm has been implemented in the MATLAB/Simulink
environment. The algorithm for numerical solution of the shape optimization problem for
the single span beam with rectangular cross-section uses simple shooting method (see for
example Keller, 1971; Roberts & Shipman, 1972; Matauek, 1973; Lastman, 1974). Interesting
results regarding solution methods of boundary value problems can be found in (Mufti et
al., 1969; Miele et al., 1972; Meyer, 1973; Laporte & Le Tallec, 2003).

e  Assumptions
The system (19), (22), (23), (24) has a solution and the optimal control exists.
e Stepl
For arbitrarily chosen values x;(0) and x,(0) solve the problem in the interval

[0,§a] using the model created in Simulink. In this model time works as

geometrical variable & . Then find &, such that ' (&, )= H, using the equation (36).

e Step2
Based on the results from the previous step determine the end conditions x(.;‘:a).

They will be used as initial conditions in the next step.
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e Step3
Find &, such that u"(&,)= H, using the equation (36).
o Step4

Solve the problem in the interval (fa,ﬁb] using the model created in Simulink and
determine the end conditions x(&, ). These values will be used as initial conditions

in the next step.

e Stepb
Solve the problem in the interval (&,,/] using the model created in Simulink.
e Stepb6

Calculate the norm |x3(11 + |x4 (l ] and compare it with 0. First approximation for

the optimal control u*(£) can be obtained from (39).
e Step7
Based on the norm |x3(l] +|x4(l)| recalculate the points x(0) and x,(0) using the
(

Nelder-Mead simplex (direct search) method (fmins function included in
MATLAB).
e Step8

The steps 1-8 are repeated many times until |x3 (1 X + |x4 (1 )| <eg.

The algorithm uses the MATLAB/Simulink environment to represent and solve the system
(see fig. 2). State variable formulation allows the use of a wide variety of fixed step and
variable step integration algorithms from Simulink. Simulation results can be displayed on
Simulink scopes while the simulation is running or sent to workspace or disk file. The user
can access a variety of MATLAB functions for processing and plotting of waveforms stored
in the MATLAB workspace. It should be noted that time step integration methods are used
to solve the mechanical system. In other words, one-dimensional computational domain
related to beam's geometry is represented by time domain.
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» 1
S
Integratoré Gains
P x 3
To Workspace7

Fig. 2. Model of the system in Simulink environment

4.3 Numerical simulation results
Simulation effects are shown in figs. 3-8. Fig. 3 presents the optimal height 4(£) of the cross-
section. Fig. 4 presents the optimal shape of the beam. Figs. 5 and 6 illustrate the state
variables x,(£), x,(£), x3(£) and x,(£) along the interval [0,/]. Figs. 7 and 8 show the set of
adjoint functions v;, i=1,2,3,4. Calculations were made for the following data:

Hl =0.1 [m],

1=2.0 [m],
7 =76500 [N/m?].
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Fig. 3. The height of the cross-section, &, =0.99 [m], & =1.47 [m]

Fig. 4. Optimal shape of the beam
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@%@

Fig. 5. The state variables x, (&), x,(£)

£ [m]

x4(§)

),

3

(

Fig. 6. The state variables x;
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i (8 (8

Fig. 8. The adjoint functions (&), v,(£)

4.4 Study of the existence of local minimum

The Pontryagin maximum principle gives a necessary condition for an optimum. It does not
assure that the solution of the problem really exists and is unique. A general proof of
existence, uniqueness and stability is usually impossible. This needs an extensive study and
will not be provided in this paper. However, these issues are important from theoretical
point of view. Some attempts have been made by (Skruch, 2001; Skruch & Mitkowski, 2008)
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how to handle this numerically. In some neighbourhood of the candidate for optimal shape
KO (see fig. 9) we choose other shapes K1, K2, K3 and K4 . These shapes are described

by the following equations:

K1: y(&)=-0.7576¢ +0.9606 (40)
K2: y(&)=0.5628&" -0.3606, (41)
K3: y(&)=0.2398&72-0.0379, (42)
K4: y(&)=0.1252£7 +0.0664 . (43)

Then for every shape we need to calculate the cost function J that is the deflection at the
end point of the beam. Fig. 10 presents results of this calculation; for the shapes in the
neighbourhood of the candidate for optimal shape KO we obtain worse values of the cost

function J .

0.4

0.38

0.36 -

h(E) [m]

0.34

0.32r

0.3F

0.281

0.26 -

0.24

0.22+

0.2

0.75 0.8 0.85 0.9 0.95 1 1.05

g[m]

Fig. 9. The candidate for optimal shape KO and the shapes in neighbourhood K1, K2, K3

and K4
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1.3139 T T

1.3138} : : : 1

1.3138
]

T
L

= 1.3137

1.3137} f : : 1

1.3136

o o

1.3136 i ; ; i i i ;
K4 K3 Ko K1 K2

Fig. 10. The cost function J in the neighbourhood of the candidate for optimal control KO

Other neighbourhood of the candidate for optimal shape is presented in fig. 11. The
candidate for optimal shape is depicted using bold line. The neighbourhood contains shapes
in the form of straight lines with different points &£, and § (thin lines). Then for every shape
we calculated the deflection of the beam at the end point. The results of these calculations
are shown in fig. 12. For the shapes in the neighbourhood we obtain worse values of the cost
function J than for the shape KO.

0.5
0.45F
0.4 "
" ?‘\‘\
::E‘

0.3

0251

0.2}

Qo 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

Fig. 11. The neighbourhood of the candidate for optimal shape
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x 10 by

&, [m] 0 o g, [m]

Fig. 12. The cost function J in the neighbourhood of the candidate for optimal shape

5. Optimal design of a single span beam with | cross-section

5.1 Equation of a physical system

The methodology presented in section 3 can be used for solving other types of shape
optimization problems. Also the algorithm presented in section 4 can be easily adapted to
other types of problems.

Consider for example a single span beam with I cross-section working under self-weight

(fig. 13).

NONONNNNN
v"\w
]
iy

v )

Fig. 13. Single span beam with I cross-section

The statics of the beam can be described using the following equation

=== f(x(&)u(g)), (44)
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where x(£)=[x,(&) x,(&) x(&) x, (&), ulé)=m(Eh, £<[0,1], and

3 2
gh h gp

_E&M o _opg |2 8 46

TE ¢ gp(z 2] (46)

Here x,(&) represents vertical displacement of the beam along the interval [0,/], x,(¢)

indicates the slope of the beam at &, x;(£) can measure in physical terms the bending
moment of the beam at &, x,(£) can measure the shearing force on the beam at &, / stands

for the length of the beam, b(£) is the width of the beam’s cross-section, # is the height of
the cross-section, E is the Young’s module, y is the volume mass density of the beam

material. The static beam equation is fourth-order (it has a fourth derivative) and the
mechanism for supporting the beam gives rise to four boundary conditions

x1(0)=x,(0)=x3(7) = x4(1)=0. (47)
For the control variable # we introduce geometrical and strength constraints that define a
set of admissible controls

U,q = {u e PC([0,/]R):u(é)e U}, (48)
U={veR:H <v<H, H <H,}, H,H,€R.. (49)

The cost function denotes the deflection at the end point of the beam and it is defined by the
functional

J(w)=x(0). (50)
We want to determine €U which minimizes the functional (50) and satisfies the state
equation (44) with the boundary conditions (47).

5.2 Solution method

In order to solve the formulated problem we can use the Pontryagin maximum principle
and follow the method presented in sections 3 and 4. The Hamiltonian constructed for this
case together with the system of adjoint equations lead to the conditions which determine
the candidate for the optimal control. The constraints appearing in this problem are identical
as in the problem from section 4, therefore the complete analysis for the optimal control is
very similar.
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5.3 Numerical simulation results

The numerical solution of the formulated problem has been carried out using the program
designed in MATLAB/Simulink environment. Fig. 14 presents optimal design of the single
span beam with I cross-section. Calculations were made for the following data: /=2.0 [m],

h=02[m], H,=02[m], H,=04[m], E=21-10" [N/m?], »=76500[N/m?%],
g, =0.002[m], g, =0.0013 [m].

Fig. 14. Optimal shape of the beam with I cross-section

6. Optimal design of a clamped beam with rectangular cross-section

6.1 Equation of a physical system
Consider a clamped beam with rectangular cross-section (fig. 15).

o h(¢)
Z

Y V

Fig. 15. Clamped beam with rectangular cross-section

The state equation describing statics of the beam has the form
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S st g
where x(£)=[x,(&) x,(&) (&) x, ()], ulé)=mwh(£), £€0.1], and
5
S(x(&)ulé))= Ebug))?’ : (52)
| —ulé) |

All parameters have the same meaning as for the single span beam with rectangular cross-
section working under self weight. The beam cannot experience deflection neither at the left-
hand nor at right-hand support, therefore x,(0)=0 and x;(2/)=0. The beam does not

experience also any torque what means that x,(0)=0 and x;(2/)=0. The boundary

conditions can be rewritten equivalently to the form

3(0)=x,(1)=x3(0) = x,(1)=0. (53)
Strength constraints and geometry are imposed on the dimensions of the cross-section
defining the set of admissible controls

U.g :{u ePC([O,l],R):u(f)e U}, (54)

U={veR:H,<v<H,H <H,), H,H,eR. (55)

The deflection at the middle point of the beam can be the optimality criterion

J(u)=x0). (56)
We want to determine €U which minimizes the functional (56) and satisfies the state
equation (51) with the boundary conditions (53).

6.2 Solution method
In order to solve the formulated problem we can use the Pontryagin maximum principle
and follow the method presented in sections 3 and 4.

6.3 Numerical simulation results
Fig. 16 presents optimal shape of the clamped beam with rectangular cross-section.
Calculations were made for the following data: /=2.0 [m], 5=0.05 [m], H;=0.25[m],

H, =05 [m], E=21-10" [N/m?], y =22000 [N/m?].
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Fig. 16. Optimal shape of the clamped beam

7. Conclusions

We have investigated a shape optimization problem. As it has been shown the problem is
not always trivial and the general proof can be very difficult. By using effective Pontryagin’s
method of optimization, the numerical algorithm has been designed and implemented. The
simulation results show the effectiveness of the proposed method.
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