
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

 133

Supervisory Controller for Task Assignment
and Resource Dispatching in Mobile

Wireless Sensor Networks

Vincenzo Giordano, Frank Lewis, Prasanna Ballal & Biagio Turchiano

1. Introduction

Wireless sensor networks are one of the first real-world examples of pervasive computing
[1, 14, 24]. Small, smart, and cheap sensing devices will eventually permeate a certain
environment and, suitably coordinated, will automatically recognize the present context
and accordingly readjust their behavior. Smart environments represent the next
evolutionary development step in building, utilities, industrial, home, shipboard, and
transportation systems automation. Although this technology is still in its early days, the
range of potential applications is mind-boggling – Robotics, health monitoring, defense
systems, habitat monitoring etc. Sensor networks would greatly help monitor the
environment and detect occurrences of natural calamities. For example, sensor networks
that measure seismic activity from remote locations and provides tsunami warnings to
coastal areas. However they present a range of challenges as they are closely coupled to
the physical world with all its unpredictable variation, noise, and asynchrony; they
involve many energy-constrained, resource-limited devices operating in concert; they
must be largely self-organizing, adaptable to different environmental sensing applications
and robust to sensor losses and failures.
To meet these challenges, recently there has been increased research interest in systems
composed of autonomous mobile robotic sensors exhibiting cooperative behavior [13].
Sensor mobility, in fact, holds out the hope to support self-configuration mechanisms [5],
guaranteeing adaptability, scalability and optimal performance, since the best network
configuration is usually time-varying and context dependent. An example of mobile
wireless sensor network is a warehouse guarded by mobile robots constantly interacting
with strategically placed ground sensors to keep the risk of fire, robbery, etc to a
minimum, while reducing the personnel costs.
In related literature, effective coordination strategies have been proposed to coordinate
mobile robotic sensing units cooperating for a common goal. In decentralized coordination
approach, the robots rely only on information about their local neighbors and the behavior
of the overall network of robots emerges from the interactions of single units. In [4] and in
[7] decentralized coordination algorithms for robots teams are proposed, to guarantee
minimum exploration time and complete coverage respectively. In [10] a potential field
approach to reach uniform deployment of sensors in an unstructured environment is
proposed. It is implicitly assumed that the network cannot be configured for different
missions apart from blanket coverage. [2, 3] propose behavior based formation control for

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

 134

exploration purposes, but no specific performances can be guaranteed and changes in the
mission plans are not straightforward. In all the before mentioned decentralized
approaches, robots possess similar functionalities, perform similar tasks and just one
mission at a time is usually implemented.
To overcome the inherent limitations of decentralized approaches, supervisory
(centralized) control techniques have been studied. In [8], a supervisory controller is
proposed which reschedules the mission planning in response to uncontrollable events
(node failures) using computationally efficient algorithms. Also the use of a centralized
coordinator can ensure that the group possesses certain desired properties and remains
within the bounds of pre-specified behavioral constraints. Some significant results in
supervisory control have also been obtained using Petri nets [11]. Nevertheless the
implementation of high-level mission specifications is not straightforward, the dynamical
description of the system is incomplete and a new design stage, almost from scratch, is
required if objectives or resources change. Summarizing, in related literature, there is a
lack of supervisory control techniques which can sequence different missions according to
the scenario (adaptability) and reformulate the missions if some of the robots fail (fault
tolerance) in a predictable way and using a high-level interface.
In this chapter we present a discrete-event controller (DEC) for the centralized
coordination of cooperating heterogeneous wireless sensors, namely unattended ground
sensors (UGSs) and mobile robots. The DEC sequences the most suitable tasks for each
agent according to the current perception of the environment. Priority rules for efficiently
dispatching shared resources and handling simultaneous missions can also be easily taken
into account. A novel and easy to implement matrix formulation makes the assignment of
the mission planning straightforward and easily adaptable if agents or applications
change. It represents a complete dynamical description which allows one to simulate and
implement the system with the same controller software, simplifying the implementation
of a mobile WSN in real world scenarios (e.g. when hostile terrains and huge areas have to
be monitored).

2. Discrete Event Controller (DEC)

This section presents a matrix-based discrete event controller for modeling and analysis of
complex interconnected DE systems with shared resources and dynamic resource
management. Its matrix formulation gives a very direct and efficient technique for both
computer simulation and actual on-line supervisory control of DE systems. It provides a
rigorous, yet intuitive mathematical framework to represent the dynamic evolution of DE
systems according to linguistic if-then rules:

Rule i: If <conditionsi hold > then <consequencesi>
For coordination problems of multi-agent systems (e.g. mobile robots and wireless
sensors), we can write down a set of if-then rules to define the mission planning of the
sensor agents, such as:

Rule i: If <sensor1 has completed task1, robot2 is available and a chemical alert is
detected > then <robot 2 starts task4 and sensor 1 is released>
These linguistic rules can be easily represented in mathematical form using matrices. Let r
be the vector of resources used in the system (e.g. mobile robots and UGSs), v the vector of
tasks that the resources can perform (e.g. go to a prescribed location, take a measurement,
retrieve and deploy UGS), u the vector of input events (occurrence of sensor detection
events, node failures, etc.) and y the vector of completed missions (outputs). Finally, let x

 135

be the state logical vector of the rules of the DE controller, whose entry of ‘1’ in position i
denotes that rule i of the supervisory control policy is currently activated.
Then we can define two different sets of logical equations, one for checking the conditions
for the activation of rule i (matrix controller state equation), and one for defining the
consequences of the activation of rule i (matrix controller output equation). In the
following, all matrix operations are defined to be in the or/and algebra, where + denotes
logical or and ‘times’ denotes logical and.
The controller state equation is

 dudurv uFuFrFvFx +++= (1)

where x is the task or state logical vector, vF is the task sequencing matrix, rF is the

resource requirements matrix, uF is the input matrix. udF is the conflict resolution matrix

and du is the conflict resolution vector. They are used to avoid simultaneous activation of

conflicting rules, as will be shown later. The current status of the DE system includes task
vector v, whose entries of `1' represent `completed tasks', resource vector r, whose entries
of `1' represent `resources currently available’, and the input vector u, whose entry of 1
represent occurrence of a certain predefined event (fire alarm, intrusion etc.). The overbar
in equation (1) denotes logical negation so that tasks complete or resources released are
represented by ‘0’ entries.

Fv is the task sequencing matrix (used by Steward [22] and others in manufacturing),
and has element (i,j) set to '1' if the completion of task vj is an immediate prerequisite for
the activation of logic state xi.
Fr is the resource requirements matrix (used by Kusiak [12] and others in manufacturing)
and has element (i,j) set to '1' if the availability of resource j (robot or UGS) is an immediate
prerequisite for the activation of logic state xi.
On the ground of the current status of the DE system, equation 1 calculates the logical
vector x, i.e. which rules are currently activated. The activated rules determine the
commands that the DEC has to sequence in the next iteration, according to the following
equations

 xSv vs = (2)

 xSr rs = (3)

 xSy y= (4)

Sv is the task start matrix and has element (i,j) set to '1' if logic state xj determines the
activation of task i.

Sr is the resource release matrix and has element (i,j) set to '1' if the activation of logic
state xj determines the release of resource i.

Sy is the output matrix and has element (i,j) set to '1' if the activation of logic state xj
determines the completion of mission i.
The task start equation (2) computes which tasks are activated and may be started, the
resource release equation (3) computes which resources should be released (due to
completed tasks) and the mission completion equation (4) computes which missions have
been successfully completed.
Vector vs, whose `1' entries denote which tasks are to be started, and vector rs, whose `1'
entries denote which resources are to be released, represent the commands sent to the DE

 136

system by the controller. ‘1’ entries in vector y denote which missions have been
successfully completed.
Equations 1-4 represent the rule-base of the supervisory control of the DE system. All the
coefficient matrices are composed of Boolean elements and are sparse, so that real time
computations are easy even for large interconnected DE systems.
The task sequencing matrices (Fv and Sv) are direct to write down from the required
operational task sequencing. On the other hand, the resource requirements matrices (Fr, Sr)
are written down based on the resources needed to perform the tasks and are assigned
independently of the task sequencing matrices.
Given the presence of shared resources, simultaneous activation of conflicting rules may
arise. Matrix Fud in equation (1) is used to resolve conflicts of shared resources, i.e. conflicts
deriving by the simultaneous activation of rules which start different tasks requiring the
same resource. Matrix Fud has as many columns as the number of tasks performed by
shared resources. Element (i,j) is set to '1' if completion of shared task j is an immediate
prerequisite for the activation of logic state xi. Then an entry of ‘1’ in position j in the
conflict resolution vector ud, determines the inhibition of logic state xi (rule i cannot be
fired). It results that, depending on the way one selects the conflict-resolution strategy to
generate vector ud, different dispatching strategies can be selected, in order to avoid
resource conflicts or deadlocks.
In the conversion of linguistic rules into the matrix formulation of the DEC, the following
assumptions must be considered:
1. A resource cannot be removed from a task until it is complete.
2. A single resource can be used for only one task at a time.
3. A process holds the resource allocated to it until it has all the resources required to

perform a task.
4. Resource is released immediately after it has executed its task.

3. Control Architecture

To use the DEC as a Supervisory Controller for task assignment and resource dispatching
in mobile wireless sensor networks, we need to have an architecture that is modular,
flexible and adaptable. It consists of three layers [20] with distinct functionalities, namely
agent control layer, network control layer and supervisor control layer (figure 1). In this
way improvements and updates on one layer results in minor changes in the other layers.
The first layer (agent control level) deals with the control of each agent (being either a UGS
or a mobile robot), keeping into account its peculiar functionalities. At this level we define
the processing capabilities of the UGSs (e.g. signal processing) and the control algorithms
for the behavior of each robot (e.g. reach the target, follow another robot etc.).
The second layer (network control level) deals with the implementation of communication
protocols for energy efficient data transmission between the UGS, robots and the
supervisor.
The third layer (supervisor control level) consists of the matrix-based DE supervisory
controller whose matrix formulation allows one to employ a high-level human interface to
define the mission planning, the resource allocation and the dispatching rules. The
supervisor is in charge of sequencing the tasks each agent has to perform according to the
perception of the environment, assuming that the agent level controllers correctly perform
the assigned tasks and that the communication protocol for each agent perfectly works.
The feedback information about the evolution of the scenario is provided by the “sensor to
context mapping” modules (e.g. see [25]), constituted by sensor fusion and decision

 137

making algorithms implemented on some (or all) of the agents. In order to keep track of
the dynamic behavior of the network, the supervisor also receives notification from each
agent about the completed tasks and the released resources.

Figure 1. Complete control architecture

Thus, using this architecture, a complex system can be decomposed into missions, tasks
and rules for task sequencing, resource dispatching and conflict resolution (figure 2a).
This block diagram can be represented using block matrices in the framework of our DEC.
Suppose that we have m resources rj

 j=1…m (mobile robots and stationary sensors) each
one capable of performing pj tasks, and define n different missions, each one composed of

qi tasks. For each mission, we define the corresponding set of matrices
i

vF ,
i

rF ,
i

vS ,
i

rS which

represent the coordination rules of the agents in the execution of the tasks. In order to take
into account the priority among missions, we derive the global conflict resolution matrix
Fud according to the following procedure. After assigning a priority order k to each

mission, we calculate, for every resource j and every mission i, a matrix (()j

i

ud rF), creating

a new column for every ‘1’ appearing in the jth column of
i

rF . Then we construct the global

conflict resolution matrix of resource rj (()jud rF) inserting each ()j

i

ud rF matrix in position

(i,k).
As shown in figure 2b, the matrix formulation of the overall environment monitoring
operation is then obtained by stacking the set of matrices together. The correspondence
between figure 2a and 2b is straightforward.

 138

Environment monitoring operation

Mission 1 Mission i Mission n

…

… …

Task sequencing rules

Fv

Priority rules

Fud

Task1
1(r

1..m) Task1
q1(r

1..m) Taskn
qm(r1..m) Taskn

1(r
1..m).. ..

Resource assignment rules

Fr

Fv
1

Fr
1

Fv
n

Fr
n

(a)

[])()...()...(
1 mudjududud rFrFrFF =

 ni qqq
1

 m

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n

v

i

v

v

F

F

F

F
V

...

...

1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n

r

i

r

r

r

F

F

F

F

...

...

1

(b)
Figure 2. Decomposition of the environment monitoring operation (a) and its matrix representation (b)

4. Dec for Mobile Wireless Sensor Networks

Differently from manufacturing systems where discrete event controllers have been
already successfully applied, the implementation of a DEC for a mobile WSN is indeed
much more challenging. In fact a WSN has in general a variable topology, is composed of
heterogeneous resources and operates in highly unstructured environments. An efficient
centralized control policy has to guarantee efficient and automatic responses to changes in
the operating conditions (adaptability) and to changes in the dimension of the mobile
WSN (scalability). In particular, to accomplish mission goals and to guarantee optimal
performances, the supervisory controller must be able to automatically reschedule
missions, reassign resources to tasks and redefine the mission priorities as long as the
WSN topology and the surrounding environment evolve. In the following, we will show
how these issues can be efficiently tackled using our matrix-based DEC.

4.1 Adaptability

Adaptability is the ability of an agent team to change its behavior according to the
dynamical evolution of the environment. In the following, we provide some ideas to make
the system adaptable using our DEC.

 139

Implementation of distributed algorithms
In related literature, coordination of teams of robots through the implementation of
distributed algorithm is a common strategy, because it guarantees robustness to
environment uncertainties and disturbances. Every robotic agent performs a certain task
relying on local information only (e.g. keep a certain distance from the neighbors), in such
a way that a predefined aggregate objective (e.g. complete environment coverage) is
achieved. In the framework of the DEC, these operations can be considered as a generic
(fully decentralized) mission i (or part of it) with a certain goal composed of simultaneous
tasks. Enhanced adaptability can be obtained deciding, at the supervisor level (on the
ground of the present situation), which decentralized mission (optimal sensor placement
for environmental monitoring, search and recovery operations etc.) has the priority

(changing
i

udF) and which resources should be used (changing
i

rF and
i

rS).

Combining multiple plans for the same mission
In certain circumstances, different sequences of tasks can be used to implement the same
mission. A computationally efficient algorithm has been recently proposed to combine the
plans together and derive one single compact matrix representation for the DEC [9]. In this
way, the DEC automatically sequences the most suitable succession of tasks to achieve a
certain goal, depending on the current available resources.

Dynamic reallocation of resources
A dynamic reallocation of the agents to missions can be performed by rearranging the ‘1’

relative to similar resources in the matrices rF and rS when new missions (or new agents)

are added. Due to the matrix representation of the mission plans, these objectives can be
pursued using computationally efficient algorithms.
In figure 3 we have reported an example of reallocation of resources (r1, r2 and r3) to the
tasks of two missions. The number of tasks each resource has to perform is equal to the
number of ‘1’ in the corresponding column. After the reallocation, the resources have a
more balanced workload, i.e. they perform a similar number of tasks.

 r1 r2 r3 r1 r2 r3

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

...101

...110

...001

...101

...100

...001

...100

...001

...100

...100

)(tFr

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=+

...101

...110

...001

...011

...010

...001

...010

...001

...100

...100

)1(tFr

Figure 3. Reallocation of resources through matrix operations

Mission1

Mission2

 140

Priority among missions
In order to further tailor the WSN to the present control scenario, the set of mission
priority rules can be made adaptable.
For example, suppose that resource r1 is shared among three different missions whose
priority rank is 3, 1, 2. After defining the conflict resolution matrix of r1 for each mission

()(
1

1 rFud ,)(
1

2 rFud ,)(
1

3 rFud), the overall conflict resolution matrix of r1 ()(
1

rFud) is built as

 priority1 priority2 priority3

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00)1(

)1(00

0)1(0

)(
3

2

1

3

2

1

1

rF

rF

rF

mission

mission

mission

rF

ud

ud

ud

ud

If the priority of the missions change in 2, 3, 1 then we have

 priority1 priority2 priority3

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0)(0

00)(

)(00

)(

1

3

1

2

1

1

3

2

1

1

rF

rF

rF

mission

mission

mission

rF

ud

ud

ud

ud

Thus, a change of priority results in a simple permutation of the block matrices
i

udF for

each resource.

4.2 Scalability

Scalability is the ability of an agent team to reorganize its overall behavior in response to a
change in the number of the agents. We can use the DEC to tackle scalability at the
supervisor level, updating the matrix based representation of the missions to take into
account the failure of agents as well as the adding of new ones.

If a new agent is added to the system, a new column is added in the matrices Fr and
'

rS (Sr

transpose). Then, dispatching algorithms (based on matrix operations) can be applied to
rearrange the tasks among resources. In a similar fashion, an agent failure can be tackled
rearranging the tasks among the resources so that the columns relative to the failed
resources in Fr and Sr’ are null. Just to give an idea, in the following example, we describe
a simple algorithm for reallocating (off-line, i.e. when no missions are in progress)
resources after agent failure. The mission planning is revised in such a way that
predefined back-up agents execute the tasks of the failed agents. In the matrix formulation

this is equivalent to move the elements equal to one in the matrices i
rF and

i

rS from the

column of the failed resource to the column of the back-up resource. This can be achieved

through a simple linear combination of the columns of
i

rF and
i

rS respectively. We have

ioldi

r

newi

r BFF ⋅= ,,

ioldi

r

newi

r BSS ⋅= ,,

 141

where Bi is a square matrix of dimension equal to the number of the resources of the
system. The diagonal elements of Bi (aj) are parameters which are equal to 1 if resource rj is
working properly and 0 otherwise. On row j the element (j,j) is equal to aj and the element

(j,k) is equal to 1- aj, where k is the column of matrix
i

rF corresponding to the back-up

resource of agent j for mission i. If aj =0, the jth column of
newi

rF ,
 will be null (meaning that

agent j is not supposed to perform any task) and the kth column will have ‘1’s in
correspondence of the tasks for which resource j was required. If no failure occurs, Bi is the
identity matrix and mission plans are not changed. Clearly, in the definition of the matrix
Bi we have to make sure that each back-up agent does not perform any simultaneous task
with the resource they are supposed to substitute. For example, suppose we have three
agents, and that, for a certain mission i, the resource requirement matrix and the back-up
matrix Bi are

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

100

110

001
,oldi

rF

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
=

33

2

11

01

00

01

aa

a

aa

B i

The Bi matrix corresponds to the case where, in mission i, agent 2 is the backup of agent 1,
agent 2 has no back-up and agent 1 is the back up of agent 3. If agent 1 fails (a1=0) whereas
agent 2 and 3 work properly (a2=a3=1), we get

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

100

010

010
iB

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

100

110

010
,newi

rF

i.e., in mission i, agent 1 has been replaced by agent 2.
A more effective alternative to cope with agent failure is to introduce routing resources
[17], which allow one to define a priori a set of multiple resource choices for certain critical
tasks. The routing resources automatically assign to the task the first available resource of
the corresponding set providing redundancy and robustness against agent failures. In the
case of WSN, they are logical, fictitious resources and can be considered as local
dispatchers. Our matrix formulation supports task routing efficiently, since there is no
need to distinguish between physical and logical resources.

4.3 Complete Dynamical Description

It is well known that a matrix approach can be used to describe the marking transitions of
a Petri Net [18] using the PN transition equation

)()()()1(txFStmtm ⋅′−+=+ (5)

where S and F are the output and input incidence matrix respectively. This equation gives
a useful insight on the dynamics of discrete event systems but does not provide a complete
dynamical description of DE systems.
If we observe that the vector x in equation (5) is the same as in equation (1), then we may
identify x as the vector associated with the PN transitions and u, v, r, ud as associated with
the places. Then it follows that [23]

 142

[]')'(,)'(,)'(,)'()(tutrtvtutm d=

[]'',',',',' yurvu SSSSSS
d

=

[]'',',',',' yurvu FFFFFF
d

=

Therefore, we can use equation (1) to generate the allowable firing vector to trigger
transitions in equation (5). That is, the combination of the DEC (1) and the PN marking
transition equation provides a complete dynamical description of the system.
In order to take into account the time durations of the tasks and the time required for
resource releases, we can split m(t) into two vectors, one representing available resources

and current finished tasks ()(tma) and the other representing the tasks in progress and

idle resources ()(tmp)

)()()(tmtmtm pa += (6)

This is equivalent to introducing timed places in a Petri net and to dividing each place into
two parts, one relative to the pending states (task in progress, resource idle) and the other
relative to the steady states (task completed and resource available). As a consequence, we
can also split equation (5) into two equations

)()()1(txFtmtm aa ⋅′−=+ (7)

)()()1(txStmtm pp ⋅+=+ (8)

When a transition fires a token is moved from)(tmp to)(tma where it may be used to fire

subsequent transitions. Therefore equations (1), (7) and (8) represent a complete
description of the dynamical behavior of the discrete event system and can be
implemented for the purposes of computer simulations using any programming language
(e.g. Matlab® or C). In the case of a mobile wireless sensor network, where experiments on
wide and hostile areas can be really complex and challenging, it allows one to perform
extensive simulations of the control strategies and then test experimentally only those
which guarantee the most promising results.
A network consisting of two mobile robots and five wireless sensors is considered as
experimental scenario. Two different missions have been implemented to show the
potentialities of the proposed DEC. In the first mission, after one of the sensors launches a
chemical alert, the network automatically reconfigures its topology to further investigate
the phenomenon. In the second mission, considering that power constraints are a very
serious concern in a WSN, one of the mobile robots is employed to charge the batteries of
one of the UGSs.
The procedure for implementing the supervisory control policy consists of three different
steps.
First of all we define the vector of resources r present in the system and the tasks they can
perform. In our test-bed we have two robots (R1 and R2), each one able of performing
certain number of tasks, and five stationary sensors (UGS1, UGS2, UGS3, UGS4, UGS5), each
one able of performing one task (i.e. taking measurement). The resource vector is r=[R1, R2,
UGS1, UGS2, UGS3, UGS4, UGS5].
Then for each mission i, we define the vector of inputs ui, of outputs yi and of tasks vi, and
the task sequence of each mission (refer table I and II for mission 1 and mission 2), and
write down the if-then rules representing the supervisory coordination strategy to

 143

sequence the programmed missions (table III and table IV). In the definition of the rule
bases particular attention has to be devoted to the definition of consecutive tasks
performed by the same resources. If the consecutive tasks are interdependent (e.g. go to
sensor 2 and retrieve sensor2), the corresponding resource should be released just at the end
of the last of the consecutive tasks. This is the case of the task groups (R1gS2, R1rS2) and
(R1gS1, R1dS2, R1m) in mission1 and of (R1gS3 and R1cS3) in mission2. Instead, if the
tasks are not interdependent, before starting the new consecutive task, the DEC releases
the corresponding resource and makes sure that no other missions are waiting for it. If
after a predetermined period of time no other missions request that resource, the previous
mission can continue. This is the function of the “Robot 1 listens for interrupts” task in
mission 1.
Finally we translate the linguistic description of the coordination rules into a more
convenient matrix representation, suitable for mathematical analysis and computer
implementation.
As an example, in the following we derive the matrix formulation of mission 1 from the

rule-base reported in table III. We can easily write down the
1

vF and
1

rF matrices

considering that),(1 jiFv is ‘1’ if task j is required as an immediate precursor to rule i and

),(1 jiFr is ‘1’ if resource j is required as an immediate precursor to rule i (see figure 4). For

example, the conditions for firing rule 6 (
1

6
x), are the completion of tasks R2m1 and R1gS11

(task 7 and 8 respectively, see table I). We therefore have two ‘1’ entries in position (6,7)

and (6,8) in matrix
1

vF . Resource 1 is required for the execution of the two macro-tasks

defined previously, which start when rules 2 and 5 respectively are triggered. Therefore,

as shown in figure 4b, we have two ‘1’ in position (2,1) and (5,1) of
1

rF .

An analysis of matrix
1

rF reveals that only robot 1 and robot 2 are shared resources (due to

multiple ‘1’s in the corresponding column of
1

rF), therefore we need to calculate just

)1(1 RFud and)2(1 RFud (figure 4c).

Table 1. Mission1- Task sequence

mission1 notation description
Input 1 u1 UGS1 launches chemical alert
Task 1 S4m1 UGS4 takes measurement
Task 2 S5m1 UGS5 takes measurement
Task 3 R1gS21 R1 goes to UGS2
Task 4 R2gA1 R2 goes to location A
Task 5 R1rS21 R1 retrieves UGS2
Task 6 R1lis1 R1 listens for interrupts
Task 7 R1gS11 R1 gores to UGS1
Task 8 R2m1 R2 takes measurement
Task 9 R1dS21 R1 deploys UGS2

Task 10 R1m1 R1 takes measurement
Task 11 S2m1 S2 takes measurement

output y1 Mission 1 completed

 144

Table 2. Mission 2-Task sequence

Table 3. Mission 1-Rule-base

The
1

vS matrix (figure 5a) is built considering which tasks should be executed after a rule

fires. For example, after robot1 listens for interrupts (this fires rule 5), R1 should go to
UGS1 (R1gS1, task 7) and R2 should start taking measurements with its onboard sensors

(R2m, task 8). Accordingly, the elements of
1

vS in position (7,5) and (8,5) are equal to 1.

Mission2 notation description
input u2 UGS3 batteries are low
Task 1 S1m2 UGS1 takes measurement
Task 2 R1g S32 R1 goes to UGS3
Task 3 R1cS32 R1 charges UGS3
Task 4 S3m2 UGS3 takes measurement
Task 5 R1dC2 R1 docks the charger
output y2 Mission 2 completed

Mission1-operation sequence

Rule1 1

1x If u1occurs and S4 available and S5available then start S4m1 and S5m1

Rule2 1

2x If S4m1 and S5m1 completed and R1 and R2 available then start

R1gS21 and R2gA1 and release S4 and S5

Rule3 1

3x If R1gs21 and R2gA1 competed then start R1rS21 and release R2

Rule4 1

4x If R1rS21 completed then start R1lis1 and release R1

Rule5 1

5x If R1lis1 completed and R1 and R2 available then start R2m1 and

R1gS11

Rule6 1

6x If R1gS11 and R2m1 completed then start R1dS21 and release R2

Rule7 1

7x If R1dS21 completed then start R1m1

Rule8 1

8x If R1m1 completed and S2 available then start S2m1 and release R1

Rule9 1

9x If S2m1 completed then release S2 and terminate mission1 y1

 145

The
1

rS matrix (figure 5b) is built considering that
1

rS (i,j) is 1 if resource i has to be

released after rule j has been fired. For example, since the firing of rules 4 and 8 releases

robot1 (resource1), we have entries of 1 in positions (1,4), and (1,8) in matrix
1

rS .

Table 4. Mission 2-Rule-base

 S5m R2gA R1rS2 R2m S2m
 S4m R1gS2 R1lis R1gS1 R1dS2 R1m R1 R2 S1 S2 S3 S4 S5

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

10000000000

01000000000

00100000000

00011000000

00000100000

00000010000

00000001100

00000000011

00000000000

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

x

x

x

x

x

x

x

x

x

Fv
 (a)

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0000000

0001000

0000000

0000000

0000011

0000000

0000000

0000011

1100000

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

x

x

x

x

x

x

x

x

x

Fr
(b)

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

==

00

00

00

00

10

00

00

01

00

)2()1(

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

11

x

x

x

x

x

x

x

x

x

RFRF udud
(c)

Figure 4. Mission1- job sequencing matrix
1

vF (a), resource requirement matrix
1

rF (b) and conflict

resolution matrix
1

udF (c)

Mission2- operation sequence

Rule1 2
1x If u2 occurs and S1 available then start S1m2

Rule2 2
2x If S1m2 completed and R1 available then start R1gS32 and release S1

Rule3 2
3x If R1gS32 completed then start R1cS32

Rule4 2
4x If R1cS32 completed and S3 available then start S3m2and release R1

Rule5 2
5x If S3m2 completed and R1 available then start R1dC2 and release S3

Rule6 2
6x If R1dC2 completed then release R1 and terminate mission2 y2

 146

 1

1x 1

2x 1

3x 1

4x 1

5x 1

6x 1

7x 1

8x 1

9x 1

1x 1

2x 1

3x 1

4x 1

5x 1

6x 1

7x 1

8x 1

9x

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

010000000

001000000

000100000

000010000

000010000

000001000

000000100

000000010

000000010

000000001

000000001

1

2

21

2

11

21

1

2

21

5

4

1

mR

mS

dSR

mR

gSR

rSR

lisR

gXR

gSR

mS

mS

Sv
(a)

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

000000010

000000010

000000000

100000000

000000000

000100100

010001000

5

4

3

2

1

2

1

1

S

S

S

S

S

R

R

S r (b)

Figure 5. Mission1- Task start matrix
1

vS
 (a) and resource release matrix

1

rS
 (b)

 S1m R1cS3 R1dC
 R1gS3 S3m R1 R2 S1 S2 S3 S4 S5

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

10000

01000

00100

00010

00001

00000

2

6

2

5

2

4

2

3

2

2

2

1

2

x

x

x

x

x

x

Fv a)

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0000000

0000001

0010000

0000000

0000001

0000100

2

6

2

5

2

4

2

3

2

2

2

1

2

x

x

x

x

x

x

Fr b)

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

00

00

10

00

01

00

)1(

2

6

2

5

2

4

2

3

2

2

2

1

2

x

x

x

x

x

x

RFud c)

Figure 6. Mission2- Task sequencing matrix
2

vF
 (a), resource requirement matrix

2

rF
 (b) and conflict

resolution matrix
)1(2 RFud (c)

 2

1x 2

2x 2

3x 2

4x 2

5x 2

6x 2

1x 2

2x 2

3x 2

4x 2

5x 2

6x

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

010000

001000

000100

000010

000001

1

3

31

31

1

2

dCR

mS

cSR

gSR

mS

Sv
a)

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

000000

000000

010000

000000

000010

000000

101000

5

4

3

2

1

2

1

2

S

S

S

S

S

R

R

Sr b)

Figure 7. Mission2- Task start matrix
2

vS
(a) and resource release matrix

2

rS
 (b)

 147

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

2

1

0

0

v

v

v F

F

x

x
F ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

1

2

1

r

r

r F

F

x

x
F

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

2

1

0

0

v

v

v S

S

v

v
S ()21

rrr SSrS =

 R1 R2

() ()
() ⎥

⎦

⎤
⎢
⎣

⎡
=

00

0

1

2

2

1

1

1

RF

RFRF
F

ud

udud

ud

Figure 8. Overall monitoring operation- Matrix formulation

In the same way, the set of matrices relative to mission 2 can be built (figure 6 and 7). Then
the matrix formulation of the overall monitoring operation is easily obtained by stacking
together the matrices of mission 1 and mission 2 (figure 8). Also, as stated before, this
matrix formulation can be used to represent a Petri Net. Therefore, for the sake of clarity,
in figure 9 we have reported the Petri Net which corresponds to the matrix description of
the two implemented missions.

R1gS1

R1lis R1m

X
2

1 X
2

2 X
2

3 X
2

4 X
2

5 X
2

6

X
1

5 X
1

6 X
1

7 X
1

8 X
1

9S5m

R2gA

R1rS2

R2m

R1dS2 S2m

UGS2

UGS1

R1

u
1

u
2

R1gS3 S1m R1cS3 S3m R1dC

y2

Mission2 result

y1

Mission1 result

UGS3

R1gS2

S4m

X
1

4

X
1

3X
1

2

X
1

1

UGS4

UGS5 R2

Figure 9. Petri net representation of the implemented missions, corresponding to the matrixes Fv, Fr, Sv, Sr

5. Simulation Results

Simulation of this system for the given missions using equations 1, 7 and 8 can be done
using Matlab®. Figure 10, shows the utilization time trace of the resources and the
execution time trace of the tasks. In these time traces, busy resources and tasks not in
progress are denoted by low level, whereas idle resources and tasks in progress are
denoted by high level. At time instants 5s and 15s the events u2 (UGS3 has low batteries)
and u1 (UGS1 detects a chemical agent) occur respectively and mission 2 and mission 1 are
triggered. Since mission 1 has a lower priority, after the first two tasks are completed
(S4m1 and S5m1), the mission is temporarily interrupted because resource R1 is assigned to
mission2 for the execution of task R1gS3. At time instant 75 s, R1, after listening for
interrupts (task 6, mission1), is reassigned to mission 2 which can then come to an end
with the execution of task R1dC2. Finally, mission 1 can be successfully terminated. From
the time traces of figure 10, it is interesting to note that whenever possible, the missions
are executed simultaneously, and the shared resources are alternatively assigned to the
two missions.

 148

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

10

20

30

40

50

60

70
1S4m
1S5m
1R1gS2
1R2gA
1R1rS2
1R1lis
1R2m
1R1gS1
1R1dS2
1R1m
1S2m

2S1m
2R1gS3
2R1cS3
2S3m
2R1dC

R1
R2
UGS1
UGS2
UGS3
UGS4
UGS5

Time [s]

mobile wireless sensor network DE simulation priority 2-->1

R
e
so

u
rc

e
s

 M

is
si

o
n
2

M

is
si

o
n
 1

u2

u1

Figure 10. Event time trace simulation results of the WSN

If we change the priority order of the two missions, permuting the block matrices
1

udF and
2

udF , we get the utilization time trace of figure 11. Mission 2 is executed more

fragmentarily, since resource 1 is preferentially assigned to mission1. To further increase
the priority of mission1 we could eliminate the listening task R1lis, reducing the
possibilities of mission 2 to get resource 1 while mission1 is active.

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120

10

20

30

40

50

60

70
1S4m
1S5m
1R1gS2
1R2gA
1R1rS2
1R1lis
1R2m
1R1gS1
1R1dS2
1R1m
1S2m

2S1m
2R1gS3
2R1cS3
2S3m
2R1dC

R1
R2
UGS1
UGS2
UGS3
UGS4
UGS5

Time [s]

mobile wireless sensor network DE simulation priority1-->2

R
e
so

u
rc

e
s

M

is
si

o
n
2

 M

is
si

o
n
1

u1

u2

Figure 11. Event time trace simulation results of the WSN after changing the priority order between the two
missions

6. Experimental Results

After performing extensive simulations, we can implement the control system directly on
the WSN test-bed. Figure 12 shows the actual experimental utilization time trace of the
agents, assigning higher priority to mission 2. Notice that the time duration of the real
WSN runs in terms of discrete-event intervals, whereas the simulation results shown in
figure 10 is in terms of time. It is interesting to note the similarity and fidelity of the
dispatching sequences in both the simulation and experimental cases. This is a key result
since it shows that the DEC allows one to perform a “simulate and experiment” approach
for a WSN, with noticeable benefits in terms of cost, time and performance.

 149

Figure 12. Utilization time trace of the WSN- Experimental results

In figure 13, for the sake of clarity, we have depicted the configuration of the agents in the
environment, showing how the topology of the network evolves along time (13a) and
finally reaches the configuration shown in figure (13b). In figure 14 and 15, the same
results are proposed showing a panoramic view of the mobile WSN.

 (a) (b)

Figure 13. Starting configuration and trajectory followed by the mobile robots (a) - Final configuration after
execution of mission 1 and 2 (b)

Figure 14. Panoramic view of the configuration of the mobile WSN during real-world experiments

S4m

R1gS2

R1rS2

R2m

R1dS2

S2m

R1gS3

S3m

S5m

R2gA

R1lis

R1gS1

R1m

S1m

R1cS3

R1dC

 150

Figure 15. Panoramic view of the final configuration of the mobile WSN

Reassignment of resources
Since the topology of a mobile WSN evolves with time, it is necessary to adapt the mission
planning to the changed operating conditions. We want to show now how the matrix
formulation of the DEC allows one to easily reconfigure the dispatching rules of the
system. Suppose that robot 2 has the same functionalities of robot1 and that mission 2 is
triggered after the completion of mission 1 (figure 16a). Since at the end of mission1, robot
2 is actually closer to UGS3, we might consider employing robot2 for mission 2 instead of
robot 1 (figure 16b). This change in mission planning would result in simple matrix
operations. The ‘1’s relative to the tasks of mission2 are shifted from column 1 to column 2

of matrix
2

rF and from row 1 to row 2 of matrix
2

rS (i.e. tasks are shifted from resource1 to

resource2). udF is changed redefining the conflict resolution matrix of each resource for

each mission (in this case we have to define ()
2

2 RFud whereas ()
1

2 RFud becomes null) and

accordingly reassembling the block matrices in udF (figure 17).

 (a) (b)

Figure 16. Execution of mission1 (a), change of plans and execution of mission2 b)

 R1 R2

() ()
() ⎥

⎦

⎤
⎢
⎣

⎡
=

00

0

1

2

2

1

1

1

RF

RFRF
F

ud

udud

ud a)

 R1 R2

() ()
() ⎥

⎦

⎤
⎢
⎣

⎡
=

00

0

2

2

2

1

1

1

RF

RFRF
F

ud

udud

ud b)

Figure 17. Conflict resolution matrix when resource1 (a) or resource 2 (b) are assigned to execute mission2

 151

7. Conclusions

In this chapter we have presented a discrete-event coordination scheme for sensor
networks composed of both mobile and stationary nodes. This architecture supports high-
level planning for multiple heterogeneous agents with multiple concurrent goals in
dynamic environment. The proposed formulation of the DEC represents a complete
dynamical description that allows efficient computer simulation of the WSN prior to
implementing a given DE coordination scheme on the actual system. The similarity
between simulation and experimental results shows the effectiveness of the DEC for
simulation analysis. The obtained results also prove the striking potentialities of the matrix
formulation of the DEC, namely: straightforward implementation of missions on the
ground of intuitive linguistic descriptions; possibility to tackle adaptability and scalability
issues at a centralized level using simple matrix operations; guaranteed performances,
since the DEC is a mathematical framework which constraints the behaviour of the single
agents in a predictable way. Future research will be devoted to the development of high-
level decision making algorithms for the dynamic updates of the matrices of the DEC, in
order to automatically reformulate the missions on-line according to the current topology
of the network and the current perception of the environment.

8. References

Akyldiz I., Su W., Sankarasubramaniam Y, Cayirci E., “A survey on sensor networks”,
IEEE Communications magazine, August 2002

Balch T., Hybinette M., “Social potentials for scalable multi-robot formations”,
Proceedings of the International Conference of Robotics and Automation, April 2000

Balch T., Arkin R., “Behavior-based formation control for multirobot teams”, IEEE
Transactions on Robotics and Automation, vol. 14, no.6, December 1998

Burgard, W.; Moors, M.; Fox, D.; Simmons, R.; Thrun, S.; “Collaborative multi-robot
exploration”, Proceedings of the IEEE International Conference on Robotics and
Automation, 2000, vol. 1 , 24-28 April 2000 Pages:476 - 481

Butler Z., Rus D., “Event-based motion control for mobile-sensor network”, IEEE
Transactions. on Pervasive Computing, vol.2 issue 4, October-December 2003

Christensen T., Noergaard M., Madsen C., Hoover A., “Sensor networked mobile
robotics”, Proceedings of the IEEE International Conference on Computer Vision and
Pattern Recognition, June 2000

Cortes J., Martinez S., Karatas T., Bullo F., “Coverage control for mobile sensing network”,
IEEE Trans. on Robotics and Automation, vol.20, no.2, April 2004

Gordon-Spears A., Kiriakidis K., “Reconfigurable robot teams: modeling and supervisory
control”, IEEE Transactions on control system technology, vol. 12, no. 5, September
2004

Harris B., Lewis F., Cook D., “Machine planning for manufacturing: dynamic resource
allocation and on-line supervisory control”, Journal of Intelligent Manufacturing, pp.
413-430, vol. 9, 1998

Howard, A.; Mataric, M.J.; Sukhatme, G.S.; “An incremental deployment algorithm for
mobile robot teams”, Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and System, vol.30, Pages:2849 – 2854, October 2002

King J., Pretty R., Gosine R., “Coordinated execution of tasks in multiagent environment”,
IEEE transactions on Systems, man and cybernetics- Part A: Systems and Humans,
vol. 33, no.5, September 2003

 152

Kusiak A. Intelligent scheduling of automated machining systems. In Intelligent design
and Manufacturing. A. Kusiak (ed.) Wiley, New York (1992)

Lee J., Hashimoto H, “Controlling mobile robots in distributed intelligent sensor
network”, IEEE Transactions on Industrial Electronics, vol.50, no.5, October 2003

Lewis F., “Wireless sensor networks”, Smart environments: technologies, protocols, and
applications, ed. D. J. Cook and S. K. Das, John Wiley, New York, 2004.

McMickell M., Goodwine B., Montestruque L., “MICAbot: a robotic platform for large-
scale distributed robotics”, Proceedings of the International conference of robotics
and automation, September 2003

Mireles J., Lewis F., “Intelligent material handling: development and implementation of a
matrix-based discrete event controller IEEE Transactions on Industrial Electronics, ,
vol. 48 , Issue: 6 , Dec. 2001 Pages:1087 – 1097

Mireles J., Lewis F., “Deadlock analysis and routing on free-choice multipart reentrant
flow lines using a matrix-based discrete event controller” Proceedings of the IEEE
International conference on Decision and Control, December 2002

Murata, T. “Petri nets: properties, analysis and applications.” Proceedings of the IEEE,
vol.77, no.4, April 1989, pp.541-80

Petriu E., Whalen T.,Abielmona R., Stewart A., “Robotic sensor agents: a new generation
of intelligent agents for complex environment monitoring”, IEEE Magazine on
Instrumentation and Measurement, vol.7 issue 3, September 2004

Saridis G., “Intelligent robotic control”, IEEE Transactions on Robotics & Automation, vol.
28, no.5, May 1983

Sibley G., Rahimi M., Sukhatme G., “Robomote: a tiny mobile platform for large-scale ad-
hoc sensor networks”, Proceedings of the International conference of robotics and
automation, May 2002

Steward D. V., “The design structure system: a method for managing the design of
complex systems”, IEEE Transactions on Engineering Management, pp. 45-54, Aug.
1981

Tacconi D., Lewis F., “A new matrix model for discrete event systems: application to
simulation”, IEEE Control System Magazine

Tilak S., Abu-Ghazaleh N., Heinzelman W., "A taxonomy of wireless micro-sensor
network models," ACM Mobile Computing and Communications Review, Vol. 6, No.
2,pp. 28-36, 2002

Wu H., Siegel M., Stiefelhagen R., Yang J., “Sensor fusion using Dempster-Shafer theory”,
Proceedings of IEEE Instrumentation and Measurement Technology Conference,May

Cutting Edge Robotics

Edited by Vedran Kordic, Aleksandar Lazinica and Munir Merdan

ISBN 3-86611-038-3

Hard cover, 784 pages

Publisher Pro Literatur Verlag, Germany

Published online 01, July, 2005

Published in print edition July, 2005

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is the result of inspirations and contributions from many researchers worldwide. It presents a

collection of wide range research results of robotics scientific community. Various aspects of current research

in robotics area are explored and discussed. The book begins with researches in robot modelling & design, in

which different approaches in kinematical, dynamical and other design issues of mobile robots are discussed.

Second chapter deals with various sensor systems, but the major part of the chapter is devoted to robotic

vision systems. Chapter III is devoted to robot navigation and presents different navigation architectures. The

chapter IV is devoted to research on adaptive and learning systems in mobile robots area. The chapter V

speaks about different application areas of multi-robot systems. Other emerging field is discussed in chapter VI

- the human- robot interaction. Chapter VII gives a great tutorial on legged robot systems and one research

overview on design of a humanoid robot.The different examples of service robots are showed in chapter VIII.

Chapter IX is oriented to industrial robots, i.e. robot manipulators. Different mechatronic systems oriented on

robotics are explored in the last chapter of the book.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Vincenzo Giordano, Frank Lewis, Prasanna Ballal and Biagio Turchiano (2005). Supervisory Controller for

Task Assignment and Resource Dispatching in Mobile Wireless Sensor Networks, Cutting Edge Robotics,

Vedran Kordic, Aleksandar Lazinica and Munir Merdan (Ed.), ISBN: 3-86611-038-3, InTech, Available from:

http://www.intechopen.com/books/cutting_edge_robotics/supervisory_controller_for_task_assignment_and_re

source_dispatching_in_mobile_wireless_sensor_networ

© 2005 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

