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1. Introduction 
 

Wireless sensor networks are one of the first real-world examples of pervasive computing 
[1, 14, 24]. Small, smart, and cheap sensing devices will eventually permeate a certain 
environment and, suitably coordinated, will automatically recognize the present context 
and accordingly readjust their behavior. Smart environments represent the next 
evolutionary development step in building, utilities, industrial, home, shipboard, and 
transportation systems automation. Although this technology is still in its early days, the 
range of potential applications is mind-boggling – Robotics, health monitoring, defense 
systems, habitat monitoring etc. Sensor networks would greatly help monitor the 
environment and detect occurrences of natural calamities. For example, sensor networks 
that measure seismic activity from remote locations and provides tsunami warnings to 
coastal areas. However they present a range of challenges as they are closely coupled to 
the physical world with all its unpredictable variation, noise, and asynchrony; they 
involve many energy-constrained, resource-limited devices operating in concert; they 
must be largely self-organizing, adaptable to different environmental sensing applications 
and robust to sensor losses and failures.  
To meet these challenges, recently there has been increased research interest in systems 
composed of autonomous mobile robotic sensors exhibiting cooperative behavior [13]. 
Sensor mobility, in fact, holds out the hope to support self-configuration mechanisms [5], 
guaranteeing adaptability, scalability and optimal performance, since the best network 
configuration is usually time-varying and context dependent. An example of mobile 
wireless sensor network is a warehouse guarded by mobile robots constantly interacting 
with strategically placed ground sensors to keep the risk of fire, robbery, etc to a 
minimum, while reducing the personnel costs.  
In related literature, effective coordination strategies have been proposed to coordinate 
mobile robotic sensing units cooperating for a common goal. In decentralized coordination 
approach, the robots rely only on information about their local neighbors and the behavior 
of the overall network of robots emerges from the interactions of single units. In [4] and in 
[7] decentralized coordination algorithms for robots teams are proposed, to guarantee 
minimum exploration time and complete coverage respectively. In [10] a potential field 
approach to reach uniform deployment of sensors in an unstructured environment is 
proposed. It is implicitly assumed that the network cannot be configured for different 
missions apart from blanket coverage. [2, 3] propose behavior based formation control for 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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exploration purposes, but no specific performances can be guaranteed and changes in the 
mission plans are not straightforward. In all the before mentioned decentralized 
approaches, robots possess similar functionalities, perform similar tasks and just one 
mission at a time is usually implemented.  
To overcome the inherent limitations of decentralized approaches, supervisory 
(centralized) control techniques have been studied. In [8], a supervisory controller is 
proposed which reschedules the mission planning in response to uncontrollable events 
(node failures) using computationally efficient algorithms. Also the use of a centralized 
coordinator can ensure that the group possesses certain desired properties and remains 
within the bounds of pre-specified behavioral constraints. Some significant results in 
supervisory control have also been obtained using Petri nets [11]. Nevertheless the 
implementation of high-level mission specifications is not straightforward, the dynamical 
description of the system is incomplete and a new design stage, almost from scratch, is 
required if objectives or resources change. Summarizing, in related literature, there is a 
lack of supervisory control techniques which can sequence different missions according to 
the scenario (adaptability) and reformulate the missions if some of the robots fail (fault 
tolerance) in a predictable way and using a high-level interface.  
In this chapter we present a discrete-event controller (DEC) for the centralized 
coordination of cooperating heterogeneous wireless sensors, namely unattended ground 
sensors (UGSs) and mobile robots. The DEC sequences the most suitable tasks for each 
agent according to the current perception of the environment. Priority rules for efficiently 
dispatching shared resources and handling simultaneous missions can also be easily taken 
into account. A novel and easy to implement matrix formulation makes the assignment of 
the mission planning straightforward and easily adaptable if agents or applications 
change. It represents a complete dynamical description which allows one to simulate and 
implement the system with the same controller software, simplifying the implementation 
of a mobile WSN in real world scenarios (e.g. when hostile terrains and huge areas have to 
be monitored).  

 

2. Discrete Event Controller (DEC) 
 

This section presents a matrix-based discrete event controller for modeling and analysis of 
complex interconnected DE systems with shared resources and dynamic resource 
management. Its matrix formulation gives a very direct and efficient technique for both 
computer simulation and actual on-line supervisory control of DE systems. It provides a 
rigorous, yet intuitive mathematical framework to represent the dynamic evolution of DE 
systems according to linguistic if-then rules: 

Rule i: If <conditionsi hold > then <consequencesi> 
For coordination problems of multi-agent systems (e.g. mobile robots and wireless 
sensors), we can write down a set of if-then rules to define the mission planning of the 
sensor agents, such as: 

Rule i: If <sensor1 has completed task1, robot2 is available and a chemical alert is 
detected > then <robot 2 starts task4 and sensor 1 is released> 
These linguistic rules can be easily represented in mathematical form using matrices. Let r 
be the vector of resources used in the system (e.g. mobile robots and UGSs), v the vector of 
tasks that the resources can perform (e.g. go to a prescribed location, take a measurement, 
retrieve and deploy UGS), u the vector of input events (occurrence of sensor detection 
events, node failures, etc.) and y the vector of completed missions (outputs). Finally, let x 
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be the state logical vector of the rules of the DE controller, whose entry of ‘1’ in position i 
denotes that rule i of the supervisory control policy is currently activated.  
Then we can define two different sets of logical equations, one for checking the conditions 
for the activation of rule i (matrix controller state equation), and one for defining the 
consequences of the activation of rule i (matrix controller output equation). In the 
following, all matrix operations are defined to be in the or/and algebra, where + denotes 
logical or and ‘times’ denotes logical and.  
The controller state equation is  
 

                                              dudurv uFuFrFvFx +++=  (1) 
 

where x  is the task or state logical vector, vF  is the task sequencing matrix, rF  is the 

resource requirements matrix, uF  is the input matrix. udF  is the conflict resolution matrix 

and du  is the conflict resolution vector. They are used to avoid simultaneous activation of 

conflicting rules, as will be shown later. The current status of the DE system includes task 
vector v, whose entries of `1' represent `completed tasks', resource vector r, whose entries 
of `1' represent `resources currently available’, and the input vector u, whose entry of 1 
represent occurrence of a certain predefined event (fire alarm, intrusion etc.). The overbar 
in equation (1) denotes logical negation so that tasks complete or resources released are 
represented by ‘0’ entries. 

Fv is the task sequencing matrix (used by Steward [22] and others in manufacturing), 
and has element (i,j) set to '1' if the completion of task vj is an immediate prerequisite for 
the activation of logic state xi. 
Fr is the resource requirements matrix (used by Kusiak [12] and others in manufacturing) 
and has element (i,j) set to '1' if the availability of resource j (robot or UGS) is an immediate 
prerequisite for the activation of logic state xi. 
On the ground of the current status of the DE system, equation 1 calculates the logical 
vector x, i.e. which rules are currently activated. The activated rules determine the 
commands that the DEC has to sequence in the next iteration, according to the following 
equations 
 

                                                               xSv vs =  (2) 

                                                               xSr rs =  (3) 

                                                               xSy y=  (4) 
 

Sv is the task start matrix and has element (i,j) set to '1' if logic state xj determines the 
activation of task i. 

Sr is the resource release matrix and has element (i,j) set to '1' if the activation of logic 
state xj determines the release of resource i. 

Sy is the output matrix and has element (i,j) set to '1' if the activation of logic state xj 
determines the completion of mission i. 
The task start equation (2) computes which tasks are activated and may be started, the 
resource release equation (3) computes which resources should be released (due to 
completed tasks) and the mission completion equation (4) computes which missions have 
been successfully completed.  
Vector vs, whose `1' entries denote which tasks are to be started, and vector rs, whose `1' 
entries denote which resources are to be released, represent the commands sent to the DE 
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system by the controller. ‘1’ entries in vector y denote which missions have been 
successfully completed. 
Equations 1-4 represent the rule-base of the supervisory control of the DE system. All the 
coefficient matrices are composed of Boolean elements and are sparse, so that real time 
computations are easy even for large interconnected DE systems. 
The task sequencing matrices (Fv and Sv) are direct to write down from the required 
operational task sequencing. On the other hand, the resource requirements matrices (Fr, Sr) 
are written down based on the resources needed to perform the tasks and are assigned 
independently of the task sequencing matrices. 
Given the presence of shared resources, simultaneous activation of conflicting rules may 
arise. Matrix Fud in equation (1) is used to resolve conflicts of shared resources, i.e. conflicts 
deriving by the simultaneous activation of rules which start different tasks requiring the 
same resource. Matrix Fud has as many columns as the number of tasks performed by 
shared resources. Element (i,j) is set to '1' if completion of shared task j is an immediate 
prerequisite for the activation of logic state xi. Then an entry of ‘1’ in position j in the 
conflict resolution vector ud, determines the inhibition of logic state xi (rule i cannot be 
fired). It results that, depending on the way one selects the conflict-resolution strategy to 
generate vector ud, different dispatching strategies can be selected, in order to avoid 
resource conflicts or deadlocks. 
In the conversion of linguistic rules into the matrix formulation of the DEC, the following 
assumptions must be considered: 
1. A resource cannot be removed from a task until it is complete. 
2. A single resource can be used for only one task at a time. 
3. A process holds the resource allocated to it until it has all the resources required to 

perform a task. 
4. Resource is released immediately after it has executed its task. 

 

3. Control Architecture 
 

To use the DEC as a Supervisory Controller for task assignment and resource dispatching 
in mobile wireless sensor networks, we need to have an architecture that is modular, 
flexible and adaptable. It consists of three layers [20] with distinct functionalities, namely 
agent control layer, network control layer and supervisor control layer (figure 1). In this 
way improvements and updates on one layer results in minor changes in the other layers.  
The first layer (agent control level) deals with the control of each agent (being either a UGS 
or a mobile robot), keeping into account its peculiar functionalities. At this level we define 
the processing capabilities of the UGSs (e.g. signal processing) and the control algorithms 
for the behavior of each robot (e.g. reach the target, follow another robot etc.).  
The second layer (network control level) deals with the implementation of communication 
protocols for energy efficient data transmission between the UGS, robots and the 
supervisor.  
The third layer (supervisor control level) consists of the matrix-based DE supervisory 
controller whose matrix formulation allows one to employ a high-level human interface to 
define the mission planning, the resource allocation and the dispatching rules. The 
supervisor is in charge of sequencing the tasks each agent has to perform according to the 
perception of the environment, assuming that the agent level controllers correctly perform 
the assigned tasks and that the communication protocol for each agent perfectly works. 
The feedback information about the evolution of the scenario is provided by the “sensor to 
context mapping” modules (e.g. see [25]), constituted by sensor fusion and decision 
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making algorithms implemented on some (or all) of the agents. In order to keep track of 
the dynamic behavior of the network, the supervisor also receives notification from each 
agent about the completed tasks and the released resources. 

 
Figure 1.  Complete control architecture 

 
Thus, using this architecture, a complex system can be decomposed into missions, tasks 
and rules for task sequencing, resource dispatching and conflict resolution (figure 2a). 
This block diagram can be represented using block matrices in the framework of our DEC. 
Suppose that we have m resources rj

 j=1…m (mobile robots and stationary sensors) each 
one capable of performing pj tasks, and define n different missions, each one composed of 

qi tasks. For each mission, we define the corresponding set of matrices
i

vF ,
i

rF ,
i

vS ,
i

rS  which 

represent the coordination rules of the agents in the execution of the tasks. In order to take 
into account the priority among missions, we derive the global conflict resolution matrix 
Fud according to the following procedure. After assigning a priority order k to each 

mission, we calculate, for every resource j and every mission i, a matrix ( ( )j

i

ud rF ), creating 

a new column for every ‘1’ appearing in the jth column of
i

rF . Then we construct the global 

conflict resolution matrix of resource rj ( ( )jud rF ) inserting each ( )j

i

ud rF  matrix in position 

(i,k). 
As shown in figure 2b, the matrix formulation of the overall environment monitoring 
operation is then obtained by stacking the set of matrices together. The correspondence 
between figure 2a and 2b is straightforward. 
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(b) 
Figure 2.  Decomposition of the environment monitoring operation (a) and its matrix representation (b) 

 

4. Dec for Mobile Wireless Sensor Networks 
 

Differently from manufacturing systems where discrete event controllers have been 
already successfully applied, the implementation of a DEC for a mobile WSN is indeed 
much more challenging. In fact a WSN has in general a variable topology, is composed of 
heterogeneous resources and operates in highly unstructured environments. An efficient 
centralized control policy has to guarantee efficient and automatic responses to changes in 
the operating conditions (adaptability) and to changes in the dimension of the mobile 
WSN (scalability). In particular, to accomplish mission goals and to guarantee optimal 
performances, the supervisory controller must be able to automatically reschedule 
missions, reassign resources to tasks and redefine the mission priorities as long as the 
WSN topology and the surrounding environment evolve. In the following, we will show 
how these issues can be efficiently tackled using our matrix-based DEC.  
 
4.1 Adaptability 
 

Adaptability is the ability of an agent team to change its behavior according to the 
dynamical evolution of the environment. In the following, we provide some ideas to make 
the system adaptable using our DEC. 
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Implementation of distributed algorithms 
In related literature, coordination of teams of robots through the implementation of 
distributed algorithm is a common strategy, because it guarantees robustness to 
environment uncertainties and disturbances. Every robotic agent performs a certain task 
relying on local information only (e.g. keep a certain distance from the neighbors), in such 
a way that a predefined aggregate objective (e.g. complete environment coverage) is 
achieved. In the framework of the DEC, these operations can be considered as a generic 
(fully decentralized) mission i (or part of it) with a certain goal composed of simultaneous 
tasks. Enhanced adaptability can be obtained deciding, at the supervisor level (on the 
ground of the present situation), which decentralized mission (optimal sensor placement 
for environmental monitoring, search and recovery operations etc.) has the priority 

(changing
i

udF ) and which resources should be used (changing 
i

rF  and
i

rS ). 
 

Combining multiple plans for the same mission  
In certain circumstances, different sequences of tasks can be used to implement the same 
mission. A computationally efficient algorithm has been recently proposed to combine the 
plans together and derive one single compact matrix representation for the DEC [9]. In this 
way, the DEC automatically sequences the most suitable succession of tasks to achieve a 
certain goal, depending on the current available resources. 
 

Dynamic reallocation of resources 
A dynamic reallocation of the agents to missions can be performed by rearranging the ‘1’ 

relative to similar resources in the matrices rF  and rS  when new missions (or new agents) 

are added. Due to the matrix representation of the mission plans, these objectives can be 
pursued using computationally efficient algorithms.  
In figure 3 we have reported an example of reallocation of resources (r1, r2 and r3) to the 
tasks of two missions. The number of tasks each resource has to perform is equal to the 
number of ‘1’ in the corresponding column. After the reallocation, the resources have a 
more balanced workload, i.e. they perform a similar number of tasks. 
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Figure 3.  Reallocation of resources through matrix operations 
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Priority among missions 
In order to further tailor the WSN to the present control scenario, the set of mission 
priority rules can be made adaptable. 
For example, suppose that resource r1 is shared among three different missions whose 
priority rank is 3, 1, 2. After defining the conflict resolution matrix of r1 for each mission 

( )(
1

1 rFud , )(
1

2 rFud , )(
1

3 rFud ), the overall conflict resolution matrix of r1 ( )(
1

rFud ) is built as 

 
 priority1    priority2    priority3 
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If the priority of the missions change in 2, 3, 1 then we have 
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Thus, a change of priority results in a simple permutation of the block matrices
i

udF  for 

each resource. 
 
4.2 Scalability 
 

Scalability is the ability of an agent team to reorganize its overall behavior in response to a 
change in the number of the agents. We can use the DEC to tackle scalability at the 
supervisor level, updating the matrix based representation of the missions to take into 
account the failure of agents as well as the adding of new ones. 

If a new agent is added to the system, a new column is added in the matrices Fr and 
'

rS  (Sr 

transpose). Then, dispatching algorithms (based on matrix operations) can be applied to 
rearrange the tasks among resources. In a similar fashion, an agent failure can be tackled 
rearranging the tasks among the resources so that the columns relative to the failed 
resources in Fr and Sr’ are null. Just to give an idea, in the following example, we describe 
a simple algorithm for reallocating (off-line, i.e. when no missions are in progress) 
resources after agent failure. The mission planning is revised in such a way that 
predefined back-up agents execute the tasks of the failed agents. In the matrix formulation 

this is equivalent to move the elements equal to one in the matrices i
rF  and 

i

rS  from the 

column of the failed resource to the column of the back-up resource. This can be achieved 

through a simple linear combination of the columns of 
i

rF  and 
i

rS  respectively. We have 
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where Bi is a square matrix of dimension equal to the number of the resources of the 
system. The diagonal elements of Bi (aj) are parameters which are equal to 1 if resource rj is 
working properly and 0 otherwise. On row j the element (j,j) is equal to aj and the element 

(j,k) is equal to 1- aj, where k is the column of matrix 
i

rF  corresponding to the back-up 

resource of agent j for mission i. If aj =0, the jth column of 
newi

rF ,
 will be null (meaning that 

agent j is not supposed to perform any task) and the kth column will have ‘1’s in 
correspondence of the tasks for which resource j was required. If no failure occurs, Bi is the 
identity matrix and mission plans are not changed. Clearly, in the definition of the matrix 
Bi we have to make sure that each back-up agent does not perform any simultaneous task 
with the resource they are supposed to substitute. For example, suppose we have three 
agents, and that, for a certain mission i, the resource requirement matrix and the back-up 
matrix Bi are 
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The Bi matrix corresponds to the case where, in mission i, agent 2 is the backup of agent 1, 
agent 2 has no back-up and agent 1 is the back up of agent 3. If agent 1 fails (a1=0) whereas 
agent 2 and 3 work properly (a2=a3=1), we get 
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i.e., in mission i, agent 1 has been replaced by agent 2.  
A more effective alternative to cope with agent failure is to introduce routing resources 
[17], which allow one to define a priori a set of multiple resource choices for certain critical 
tasks. The routing resources automatically assign to the task the first available resource of 
the corresponding set providing redundancy and robustness against agent failures. In the 
case of WSN, they are logical, fictitious resources and can be considered as local 
dispatchers. Our matrix formulation supports task routing efficiently, since there is no 
need to distinguish between physical and logical resources. 
 
4.3 Complete Dynamical Description 
 

It is well known that a matrix approach can be used to describe the marking transitions of 
a Petri Net [18] using the PN transition equation 
 

                                             )()()()1( txFStmtm ⋅′−+=+  (5) 
 

where S and F are the output and input incidence matrix respectively. This equation gives 
a useful insight on the dynamics of discrete event systems but does not provide a complete 
dynamical description of DE systems. 
If we observe that the vector x in equation (5) is the same as in equation (1), then we may 
identify x as the vector associated with the PN transitions and u, v, r, ud as associated with 
the places. Then it follows that [23] 
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[ ]')'(,)'(,)'(,)'()( tutrtvtutm d=  

[ ]'',',',',' yurvu SSSSSS
d

=  

[ ]'',',',',' yurvu FFFFFF
d

=  
 

Therefore, we can use equation (1) to generate the allowable firing vector to trigger 
transitions in equation (5). That is, the combination of the DEC (1) and the PN marking 
transition equation provides a complete dynamical description of the system.  
In order to take into account the time durations of the tasks and the time required for 
resource releases, we can split m(t) into two vectors, one representing available resources 

and current finished tasks ( )(tma ) and the other representing the tasks in progress and 

idle resources ( )(tmp ) 
 

                                                           )()()( tmtmtm pa +=  (6) 
 

This is equivalent to introducing timed places in a Petri net and to dividing each place into 
two parts, one relative to the pending states (task in progress, resource idle) and the other 
relative to the steady states (task completed and resource available). As a consequence, we 
can also split equation (5) into two equations 
 

                                                     )()()1( txFtmtm aa ⋅′−=+  (7) 

                                                      )()()1( txStmtm pp ⋅+=+  (8) 
 

When a transition fires a token is moved from )(tmp  to )(tma  where it may be used to fire 

subsequent transitions. Therefore equations (1), (7) and (8) represent a complete 
description of the dynamical behavior of the discrete event system and can be 
implemented for the purposes of computer simulations using any programming language 
(e.g. Matlab® or C). In the case of a mobile wireless sensor network, where experiments on 
wide and hostile areas can be really complex and challenging, it allows one to perform 
extensive simulations of the control strategies and then test experimentally only those 
which guarantee the most promising results.  
A network consisting of two mobile robots and five wireless sensors is considered as 
experimental scenario. Two different missions have been implemented to show the 
potentialities of the proposed DEC. In the first mission, after one of the sensors launches a 
chemical alert, the network automatically reconfigures its topology to further investigate 
the phenomenon. In the second mission, considering that power constraints are a very 
serious concern in a WSN, one of the mobile robots is employed to charge the batteries of 
one of the UGSs. 
The procedure for implementing the supervisory control policy consists of three different 
steps. 
First of all we define the vector of resources r present in the system and the tasks they can 
perform. In our test-bed we have two robots (R1 and R2), each one able of performing 
certain number of tasks, and five stationary sensors (UGS1, UGS2, UGS3, UGS4, UGS5), each 
one able of performing one task (i.e. taking measurement). The resource vector is r=[R1, R2, 
UGS1, UGS2, UGS3, UGS4, UGS5].  
Then for each mission i, we define the vector of inputs ui, of outputs yi and of tasks vi, and 
the task sequence of each mission (refer table I and II for mission 1 and mission 2), and 
write down the if-then rules representing the supervisory coordination strategy to 
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sequence the programmed missions (table III and table IV). In the definition of the rule 
bases particular attention has to be devoted to the definition of consecutive tasks 
performed by the same resources. If the consecutive tasks are interdependent (e.g. go to 
sensor 2 and retrieve sensor2), the corresponding resource should be released just at the end 
of the last of the consecutive tasks. This is the case of the task groups (R1gS2, R1rS2) and 
(R1gS1, R1dS2, R1m) in mission1 and of (R1gS3 and R1cS3) in mission2. Instead, if the 
tasks are not interdependent, before starting the new consecutive task, the DEC releases 
the corresponding resource and makes sure that no other missions are waiting for it. If 
after a predetermined period of time no other missions request that resource, the previous 
mission can continue. This is the function of the “Robot 1 listens for interrupts” task in 
mission 1.  
Finally we translate the linguistic description of the coordination rules into a more 
convenient matrix representation, suitable for mathematical analysis and computer 
implementation.  
As an example, in the following we derive the matrix formulation of mission 1 from the 

rule-base reported in table III. We can easily write down the 
1

vF  and 
1

rF  matrices 

considering that ),(1 jiFv  is ‘1’ if task j is required as an immediate precursor to rule i and 

),(1 jiFr  is ‘1’ if resource j is required as an immediate precursor to rule i (see figure 4). For 

example, the conditions for firing rule 6 (
1

6
x ), are the completion of tasks R2m1 and R1gS11 

(task 7 and 8 respectively, see table I). We therefore have two ‘1’ entries in position (6,7) 

and (6,8) in matrix 
1

vF . Resource 1 is required for the execution of the two macro-tasks 

defined previously, which start when rules 2 and 5 respectively are triggered. Therefore, 

as shown in figure 4b, we have two ‘1’ in position (2,1) and (5,1) of 
1

rF . 

An analysis of matrix 
1

rF  reveals that only robot 1 and robot 2 are shared resources (due to 

multiple ‘1’s in the corresponding column of
1

rF ), therefore we need to calculate just 

)1(1 RFud  and )2(1 RFud  (figure 4c). 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.  Mission1- Task sequence 

 

mission1 notation description 
Input 1 u1 UGS1 launches chemical alert 
Task 1 S4m1 UGS4 takes measurement 
Task 2 S5m1 UGS5 takes measurement 
Task 3 R1gS21 R1 goes to UGS2 
Task 4 R2gA1 R2 goes to location A 
Task 5 R1rS21 R1 retrieves UGS2 
Task 6 R1lis1 R1 listens for interrupts 
Task 7 R1gS11 R1 gores to UGS1 
Task 8 R2m1 R2 takes measurement 
Task 9 R1dS21 R1 deploys UGS2 

Task 10 R1m1 R1 takes measurement 
Task 11 S2m1 S2 takes measurement 

output y1 Mission 1 completed 
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Table 2. Mission 2-Task sequence 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. Mission 1-Rule-base 

 

The 
1

vS  matrix (figure 5a) is built considering which tasks should be executed after a rule 

fires. For example, after robot1 listens for interrupts (this fires rule 5), R1 should go to 
UGS1 (R1gS1, task 7) and R2 should start taking measurements with its onboard sensors 

(R2m, task 8). Accordingly, the elements of 
1

vS  in position (7,5) and (8,5) are equal to 1. 

Mission2 notation description 
input u2 UGS3 batteries are low 
Task 1 S1m2 UGS1 takes measurement 
Task 2 R1g S32 R1 goes to UGS3 
Task 3 R1cS32 R1 charges UGS3 
Task 4 S3m2 UGS3 takes measurement 
Task 5 R1dC2 R1 docks the charger 
output y2 Mission 2 completed 

Mission1-operation sequence 

Rule1 1

1x  If u1occurs and S4 available and S5available then start S4m1 and S5m1 

Rule2 1

2x  If S4m1 and S5m1 completed and R1 and R2 available then start 

R1gS21 and R2gA1 and release S4 and S5 

Rule3 1

3x  If R1gs21 and R2gA1 competed then start R1rS21 and release R2 

Rule4 1

4x  If R1rS21 completed then start R1lis1 and release R1 

Rule5 1

5x  If R1lis1  completed and R1 and R2 available then start R2m1 and 

R1gS11 

Rule6 1

6x  If R1gS11 and R2m1 completed then start R1dS21 and release R2 

Rule7 1

7x  If R1dS21 completed then start R1m1 

Rule8 1

8x  If R1m1 completed and S2 available then start S2m1 and release R1 

Rule9 1

9x  If S2m1 completed then release S2 and terminate mission1 y1 
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The 
1

rS  matrix (figure 5b) is built considering that 
1

rS (i,j) is 1 if resource i has to be 

released after rule j has been fired. For example, since the firing of rules 4 and 8 releases 

robot1 (resource1), we have entries of 1 in positions (1,4), and (1,8) in matrix 
1

rS . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4. Mission 2-Rule-base 
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Figure 4. Mission1- job sequencing matrix 
1

vF  (a), resource requirement matrix 
1

rF  (b) and conflict 

resolution matrix 
1

udF  (c) 

 

Mission2- operation sequence 

Rule1 2
1x  If u2 occurs and S1 available then start S1m2 

Rule2 2
2x  If S1m2 completed and R1 available then start R1gS32 and release S1 

Rule3 2
3x  If R1gS32 completed then start R1cS32 

Rule4 2
4x  If R1cS32 completed and S3 available then start S3m2and release R1 

Rule5 2
5x  If S3m2 completed and R1 available then start R1dC2 and release S3 

Rule6 2
6x  If R1dC2  completed then release R1 and terminate mission2 y2 
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Figure 5. Mission1- Task start matrix
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vS
 (a) and resource release matrix 
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rS
 (b) 
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Figure 6.  Mission2- Task sequencing matrix 
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Figure 8. Overall monitoring operation- Matrix formulation 

 
In the same way, the set of matrices relative to mission 2 can be built (figure 6 and 7). Then 
the matrix formulation of the overall monitoring operation is easily obtained by stacking 
together the matrices of mission 1 and mission 2 (figure 8). Also, as stated before, this 
matrix formulation can be used to represent a Petri Net. Therefore, for the sake of clarity, 
in figure 9 we have reported the Petri Net which corresponds to the matrix description of 
the two implemented missions. 
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Figure 9. Petri net representation of the implemented missions, corresponding to the matrixes Fv, Fr, Sv, Sr 

 

5. Simulation Results 
 

Simulation of this system for the given missions using equations 1, 7 and 8 can be done 
using Matlab®. Figure 10, shows the utilization time trace of the resources and the 
execution time trace of the tasks. In these time traces, busy resources and tasks not in 
progress are denoted by low level, whereas idle resources and tasks in progress are 
denoted by high level. At time instants 5s and 15s the events u2 (UGS3 has low batteries) 
and u1 (UGS1 detects a chemical agent) occur respectively and mission 2 and mission 1 are 
triggered. Since mission 1 has a lower priority, after the first two tasks are completed 
(S4m1 and S5m1), the mission is temporarily interrupted because resource R1 is assigned to 
mission2 for the execution of task R1gS3. At time instant 75 s, R1, after listening for 
interrupts (task 6, mission1), is reassigned to mission 2 which can then come to an end 
with the execution of task R1dC2. Finally, mission 1 can be successfully terminated. From 
the time traces of figure 10, it is interesting to note that whenever possible, the missions 
are executed simultaneously, and the shared resources are alternatively assigned to the 
two missions. 
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Figure 10. Event time trace simulation results of the WSN 

 

If we change the priority order of the two missions, permuting the block matrices 
1

udF  and 
2

udF , we get the utilization time trace of figure 11. Mission 2 is executed more 

fragmentarily, since resource 1 is preferentially assigned to mission1. To further increase 
the priority of mission1 we could eliminate the listening task R1lis, reducing the 
possibilities of mission 2 to get resource 1 while mission1 is active. 
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Figure 11.  Event time trace simulation results of the WSN after changing the priority order between the two 
missions 

 

6. Experimental Results 
 

After performing extensive simulations, we can implement the control system directly on 
the WSN test-bed. Figure 12 shows the actual experimental utilization time trace of the 
agents, assigning higher priority to mission 2. Notice that the time duration of the real 
WSN runs in terms of discrete-event intervals, whereas the simulation results shown in 
figure 10 is in terms of time. It is interesting to note the similarity and fidelity of the 
dispatching sequences in both the simulation and experimental cases. This is a key result 
since it shows that the DEC allows one to perform a “simulate and experiment” approach 
for a WSN, with noticeable benefits in terms of cost, time and performance.  
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Figure 12.  Utilization time trace of the WSN- Experimental results 

 
In figure 13, for the sake of clarity, we have depicted the configuration of the agents in the 
environment, showing how the topology of the network evolves along time (13a) and 
finally reaches the configuration shown in figure (13b). In figure 14 and 15, the same 
results are proposed showing a panoramic view of the mobile WSN. 

 

 (a)    (b) 

Figure 13.  Starting configuration and trajectory followed by the mobile robots (a) - Final configuration after 
execution of mission 1 and 2 (b) 

 

  

Figure 14.  Panoramic view of the configuration of the mobile WSN during real-world experiments 
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Figure 15.  Panoramic view of the final configuration of the mobile WSN 
 

Reassignment of resources 
Since the topology of a mobile WSN evolves with time, it is necessary to adapt the mission 
planning to the changed operating conditions. We want to show now how the matrix 
formulation of the DEC allows one to easily reconfigure the dispatching rules of the 
system. Suppose that robot 2 has the same functionalities of robot1 and that mission 2 is 
triggered after the completion of mission 1 (figure 16a). Since at the end of mission1, robot 
2 is actually closer to UGS3, we might consider employing robot2 for mission 2 instead of 
robot 1 (figure 16b). This change in mission planning would result in simple matrix 
operations. The ‘1’s relative to the tasks of mission2 are shifted from column 1 to column 2 

of matrix 
2

rF  and from row 1 to row 2 of matrix 
2

rS  (i.e. tasks are shifted from resource1 to 

resource2). udF  is changed redefining the conflict resolution matrix of each resource for 

each mission (in this case we have to define ( )
2

2 RFud  whereas ( )
1

2 RFud becomes null) and 

accordingly reassembling the block matrices in udF (figure 17). 

 

 (a)   (b) 

Figure 16.  Execution of mission1 (a), change of plans and execution of mission2 b) 
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Figure 17.  Conflict resolution matrix when resource1 (a) or resource 2 (b) are assigned to execute mission2 
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7. Conclusions 
 

In this chapter we have presented a discrete-event coordination scheme for sensor 
networks composed of both mobile and stationary nodes. This architecture supports high-
level planning for multiple heterogeneous agents with multiple concurrent goals in 
dynamic environment. The proposed formulation of the DEC represents a complete 
dynamical description that allows efficient computer simulation of the WSN prior to 
implementing a given DE coordination scheme on the actual system. The similarity 
between simulation and experimental results shows the effectiveness of the DEC for 
simulation analysis. The obtained results also prove the striking potentialities of the matrix 
formulation of the DEC, namely: straightforward implementation of missions on the 
ground of intuitive linguistic descriptions; possibility to tackle adaptability and scalability 
issues at a centralized level using simple matrix operations; guaranteed performances, 
since the DEC is a mathematical framework which constraints the behaviour of the single 
agents in a predictable way. Future research will be devoted to the development of high-
level decision making algorithms for the dynamic updates of the matrices of the DEC, in 
order to automatically reformulate the missions on-line according to the current topology 
of the network and the current perception of the environment.  
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