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Algebraic Algorithms for Image Tomographic
Reconstruction from Incomplete Projection Data

Nadiya Gubareni
Technical University of Czestochowa
Poland

1. Introduction

Technique of computerized tomography has a wide application not only in medicine but
also in different fields of technique. In many applications because of some reasons one
cannot obtain the full set of projection data of a reconstructed object, e.g. the projection data
are not available at each angle of view or they are very limited in number. Sometimes
because of the large size of objects and limitation in the size of the scanners it is not possible
to obtain the complete set of required projections. In these cases we deal with the problem of
image reconstruction from incomplete projection data. In particular, such kind of problems
arise in mineral industries and engineering geophysics connected with acid drainage, the
stability of mine workers, mineral exploration and others.

When the projection data available are not limited in number and complete, the transform
methods of reconstructions are usually used (Herman, 1980), (Natterer, 1986), (Kak &
Slaney, 1988). For incomplete projection data these methods cannot be used directly. In this
case there often used different kinds of algebraic iterative algorithms the most well-known
from which are algorithms of algebraic reconstruction technique (ART) (Gordon et al., 1970),
(Herman et al., 1973), (Eggermont et al., 1981). They are generally simple, flexible and
permit to use a priori knowledge of the object before its reconstruction that is very
important in many practical applications. Recently algebraic iterative algorithms are also
used in magnetic resonance imaging (MRI) (Liang & Lauterbur, 2000), (Harshbarger &
Twieg, 1999) and low-contrast 3D-cone-beam tomography (Mueller et al., 1997).

However the application of algebraic iterative algorithms to real practical problems has
some important obstacles. The main repellant for using these algorithms are their
significantly slow reconstruction speed and so a large time of computations for obtaining
the good results, and a large memory space required to store the reconstruction image,
projection data and the projection matrix. In order to avoid these difficulties there are often
used the algebraic algorithms which can be allowed to parallelize and can be realized on the
parallel computing systems (PCS). The main general types of parallel iterative algebraic
algorithms for computerized tomography were proposed by Y. Censor (Censor, 1988). The
efficient performance of some of the parallel algorithms were described in (De Pierro &
Iusem, 1985); (Chen & Lee, 1994); (Chen et al., 1990); (Laurent et al., 1996); (Gubareni, 1998a).
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One of the most perspective areas of parallel computations is an elaboration of
asynchronous realizations of iterative algorithms. The main characteristic of the
organization of asynchronous computations is that the solution is obtained during a non-
synchronous interaction of processor elements of a parallel structure. Each processor of this
PCS updates the values of corresponding components of the solution using available
information about other components of the solution, and it obtains this information from
local processors or shared memory without waiting their full update. The researches
showed that the asynchronous realizations of parallel algorithms are more efficient from the
point of view of their speed of convergence in many important cases (Kung, 1976);
(Bertsekas & Tsitsiklis, 1989; 1991); (Savari & Bertsekas, 1996). Note that the convergence of
asynchronous algorithms and their synchronous prototypes may be different. Some models
of asynchronous iterative methods for image reconstruction are considered in (Baudet,
1978); (Chazan & Miranker, 1969); (Bru et al., 1988); (Elsner et al., 1990); (Kaszkurewicz et al.,
1990). Some generalization of these models for image reconstruction were considered in
(Baran et al., 1996); (Gubareni et al., 1997b); (Gubareni, 1999).

This chapter is devoted to consider the problem of image reconstruction from incomplete
projection data for particular reconstruction systems which arise in engineering geophysics
and mineral industry. Besides the well-known algorithms such as ART and MART their
chaotic, parallel and block-parallel implementations are considered in this chapter. The use
of these algorithms to reconstruct high-contrast objects from incomplete data is examined.
The influence of various parameters of these algorithms, such as the relaxation coefficients,
the number of iterations, the number of projections, and noise in projection data on the
reconstruction quality for different schemes of reconstruction are investigated.

Numerical results of image reconstruction from incomplete projection data for some
modeling objects, comparing evaluations of errors and the rate of convergence of these
algorithms are presented and discussed. It is shown that for some choice of parameters one
can obtain a good quality of reconstruction with these algorithms under the noise and
incomplete data.

2. Problem of incomplete projection data

The main goal of computerized tomography is to recover an unknown density function
from its line integrals. Let f(x,y) be a density function which represents the spatial
distribution of a physical parameter. If L: /=xcos@+ ysiné is a line (ray) in the plane then

the line integral
+00 +00

pL= Jf(x,y)dL = j ff(x,y)&(l—xcos@—ysinﬁ)dxdy, (1)
L

—00 —00
which is called a projection, is usually obtained from physical measurements.
From mathematical point of view the problem of reconstruction from projection data is to
find an unknown function f(x,y) by means of a given set of projections p; for all L.

Theoretically it is possible to reconstruct the function f(x,y) from the set of projections p; by

means of the Radon inversion formula (Radon, 1917). The classical inversion formula of
Radon requires information of all the line integrals in order to recover the function f(x,y) in
each point. Unfortunately, this mathematical problem represents only an idealized
abstraction of problems which occur in real practical applications. In practice there is given
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only a discrete set of projection data that estimate p for a finite number of rays. Since
projection data are obtained by physical measurements with limited precision, they are
given with some errors. Therefore all these restrictions do not allow to use the Radon
inversion formula directly.

The projection data for computerized tomography is said to be complete if they are obtained
from every aspect of view angle. In many practical applications projections are often not
available at each direction and may be very limited in number. Moreover, because of the
large size of objects it is not possible to obtain the complete set of the required projection
data. In these cases one says that there is a problem of image reconstruction from incomplete
projection data. In particular, such kind of problems arise in mineral industries and
engineering geophysics connected with acid drainage, the stability of mine workers, mineral
exploration and others (Patella, 1997), (Williams, et al., 2004).

There exist two fundamentally different approaches for solving the image reconstruction
problem. In the first approach the problem is formulated for continuous functions f and p
and the inversion formula is derived in this continuous model. This method is called the
transform method approach (Censor & Zenios, 1997). The second approach is connected
with the discretization of functions / and p at the outset. So the object f and measurements p
become the vectors in the finite dimensional Euclidean space. In this case the methods of
linear algebra and optimization theory are used for solving the problem of image
reconstruction. This approach is called the fully discretized model (Censor & Zenios, 1997).
If the projection data can be obtained from every aspect of view angle and their number can
be obtained large enough (in medicine, for example), then it is more preferred to use the
transform method approach, e.g. the convolution back projection (CBP) algorithm
(Ramachandran & Lakhshminarayanan, 1970) or direct Fourier technique.

In dependence on the obtaining system of projections there are many image reconstruction
schemes, the main of them are parallel and beam schemes in the two-dimensional space.
Both of them are represented in Figure 1.

Fig. 1. Parallel and beam schemes of obtaining projection data in image reconstruction. 1-
sources; 2- detectors; 3 - projections; 4 - a research object

In some practical problems, in engineering for example, it is impossible to obtain projections
from all directions because of the existence of some important reasons (such as situation,
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size or impossibility of an access to a research object). This situation arises, for example, in
the coal bed working. During the preparing process for working in this coal bed the access
to longwalls may be very difficult or impossible at all in dependence on the scheme of
obtaining projection data. Sometimes it is impossible to access to one or two sides of
longwalls, and sometimes it is impossible only to access to the basis but all the longwalls are
accessible. Each this situation has its own scheme of obtaining information.

Some examples of the schemes for obtaining projection data is shown in Figure 2. In the first
case there is an access to a research object from only two opposite sides. Therefore the sources
of rays can be situated only on one side and the detectors are situated on the opposite side of
the research part of a coal bed. This scheme will be called the system (1 x 1). And in the second
case there is an access to all four sides of an object. Therefore the sources can be situated, for
example, onto two neighboring sides, and the detectors can be situated on the opposite sides.
So the projections can be obtained from two pairs of the opposite sides.

1
Fig. 2. Schemes for obtaining projections data. 1 - sources of rays; 2- a research object; 3 -

rays; 4 - detectors.

3. Algebraic iterative algorithms

The numerical solution of equation (1) using ART requires the discretization of the cross-
section of an object. To construct a discretized model, a reconstructed domain D < R? is
included into a rectangle E and divided into n small elements (pixels). The full discrete
model of the problem of image reconstruction is based on the main principal that a research
object has the constant distribution inside each pixel. So for any i-th pixel one can
correspond an unknown x;. Secondly, one can assume that sources and detectors are points
and the rays between them are lines. Denote by a; the length of the intersection of the i-th
ray with j-th pixel. The length a; represents the contribution of the j-th pixel to the total
attenuation along the i-th ray. Thus, the discretized model of the problem of image
reconstruction is reduced to a system of linear algebraic equations:

A-x =p, )
where:

A =(a;) e R™" is the matrix of coefficients,

X =(x,%2,...,%,)] € R"is the image vector,
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o p=(P1,P2s>Pnm )T € R™ is the measurement vector of projection data.

This system has a few characteristics: it is a rectangular as a rule and it has a very large
dimension. For solving this system it is often used different kinds of algebraic iterative
algorithms the most well-known of which are the additive algorithm ART (Herman, el. al.,
1973), (Herman, 1975), (Herman, 1980), (Eggermont, el. al., 1981). These algorithms are very
flexible and allow to apply different a priory information about object before its
reconstruction that is especially very important when we have incomplete projection data.
Denote

P =x -0 P ®
ai
P,” =(1- o)l + wP;, (4)

where a’ is the i-th row of the matrix A, and wis a relaxation parameter.

Algorithm 1 (ART-1).

1. xY eR” isan arbitrary vector;
2. The k-th iteration is calculated in accordance with the following scheme:

) —cpx®  (i=1.2,...,m), ©)

where P/’ are operators defined by (4), @, are relaxation parameters, C is a constraining

operator, and i(k) = k(modm)+1.

This algorithm was proposed by Kaczmarz (Kaczmarz, 1937) and independently discovered
and investigated by G.T.Herman, A.Lent, S.Rowland in (Herman, el. al., 1973). It was used
successfully in application of computerized tomography in medicine. This algorithm runs
through all equations cyclically with modification of the present estimate x&) in such a way
that the present equation with index i is fulfilled.

The multiplicative variant of ART, the algorithm MART, is given by the following form.

Algorithm 2 (MART).

1. x'9 e R” is an arbitrary vector and x©>0.
2. The k+1-th iteration is calculated by the following way:

a’zi“z/
ey _[ P *)
Yoo = [ (ai(k)’x(k))] X) (6)

where
e ai is the i-th row of the matrix A,
e o} is a relaxation parameter,

e p; is the i-th coordinate of the projection vector p,
o i(k) =k (mod m) +1.
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This algorithm was invented and reinvented in several fields. It was shown that it is
convergent if 0 < a),iaij <1 for all i, k, j, and its solution gives the solution of the linearly
constrained entropy optimization problem (Lent, 1977), (De Pierro, 1990), (Censor & Zenios,
1997).

In practice the vector of projection data is given as a rule with some error. Therefore instead
of a system of linear equations (2) there results a system of linear inequalities:

p-e<A-x <p +e (7)

where e = {¢1, &, ..., &, } is a non-negative vector. And one can consider that the vector e is
given a priory and defines the errors of projection data.
Introduce the following projection operator:

P.(x)=x— ((ai,x)—pi —&)" .—(ZPi —&i ~(a’,x)* al, )
al
where
s if s >0;
a {O, otherwise
and

P, =(1- o)l + oP;, )

where a’ is the i-th row of a matrix A, and o is a relaxation parameter.
In this case there results the following additive algorithm which is analogous to the algorithm 1.

Algorithm 3 (ART-3).

1. xX¥ eR” isan arbitrary vector.
2. The k+1-th iteration is calculated by the following way:

x*¥V —cp@x®  (i=12,...m), (10)

where P are operators defined by (8) and (9), @; are relaxation parameters,

i(k) = k(modm)+1, and C is a constraining operator.

This algorithm was investigated by G.T. Herman (Herman, 1975), and it was used
successfully in medicine.

4. Block-parallel iterative algorithms

The convergence rate of algebraic iterative algorithms considered in the previous section is
very slow and a lot of iterations should be made to obtain a good reconstruction. It is more
efficient to apply the algorithms which use simultaneously all equations (or inequalities) of
system (2) (or (3)) at each step of iteration process. The examples of these algorithms are the
generalized algorithms of the Cimmino type (Censor, 1988) which can be related to the class
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of parallel algorithms. Following Y. Censor (Censor, 1988), the iterative algorithm is
considered to be parallel if it can be represented in the following form:

yk’i = Ri(x(k)’ai’pi) (11)
k+1 ki

where R; is an operator of the row type, S is an algorithmic operator which uses
simultaneously information obtained while solving all equations (inequalities) of system (2)
(or (7)) and generalizes them, J={1,2,...,m}, k is the number of iteration.

Consider the operator S from R" to R" in the following form:

Syt |, )= S Byt (13)

i=1
m
where Bf-( are nxn-matrices with real nonnegative elements and Zch =E (E is the
i=1
identity matrix).
Consider the following class of parallel iterative algorithms.

Algorithm 4 (PART).

1. xY eR” isan arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

yoi=pPx ) (i=12,..m), (14)
m .
x**V = S Blyk | (15)
i=1
where P/’* are operators defined by (9), @, are relaxation parameters, C is a constraining

operator and B¥ are matrices of dimension nxn with real nonnegative elements and

& ok ik
>.B; =E, 2B I<1, (16)
i=1 i=1

forall k € N.

Remark 1. Let BfC 2(75‘/‘)7:1 be a diagonal matrix with elements 0 < yj-j <1.1If ;/j-j =y, for

eachje J,iel w,=1,C =1, then there results the Cimmino algorithm (Censor, 1978). If

7;/- =1/mforeachje J,iel, w =1, C =1, then there results the von Neumann algorithm

(Censor, 1978).
The study of different variants of this class of parallel algorithms by analyzing their

convergence was conducted by many authors, e.g. (Censor, 1978), (De Pierro & lusem,
1985a, 1985b), (Censor & Zenious, 1997), (Gubareni, 1997).
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For many practical applications x > 0, the elements of a matrix A= (a;}) are nonnegative real
numbers and p; > 0 for all i € I. In this case one may consider the following parallel
multiplicative algorithm for solving system of linear inequalities (7) (Censor, 1974), (De
Pierro, 1990).

Algorithm 5 (MARTP).

1. xY eR" and x© >0.
2. The k+1-th iteration is calculated in accordance with the following scheme:

K+l Ty ki
x§-+):x§. )1_[1yj’, (17)
i=
where
, viay
ki _ i
" _((ai,x(k))] | "

(i=1,2,.., m; =1,2,.., n), 7/,5‘- are positive real numbers for every j, k.

These algorithms may be realized on parallel computing structure consisted of m elementary
processors and one central processor. On each (k+1)-th step of iteration every i-th
elementary processor computes the coordinates of the vector y*in accordance with formula
(14) or (18) and then the central processor computes the (k+1)-th iteration of the image
vector x in accordance with formula (15) or (17).

The main defect of parallel algorithms considered above is their practical realization on
parallel computational structures because it needs a lot of local processors in an MPCS. In
order to reduce the number of required local processors consider block-iterative additive
and multiplicative algorithms considered in (Elfving, 1980), (Eggermont et al. 1981),
(Censor, 1988), (Gubareni, 1997).

For this purpose decompose the matrix A and the projection vector p into M subsets in
accordance with a decomposition

{1,2,,m}=HluH2 UUHM, (19)
where

Ht = {mt_1+1, mt_1+2, veey My }, (20)
O=mo<m;<...< mpy=m, 1<t <M.

Algorithm 6 (BPART).

1. XY eR” isan arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

xkD — Z B/P*y, (1)
ieHp(k)
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where #(k) = k(mod M) +1, P/ are operators defined by (9), 0<a@; <2 are relaxation

parameters, C is a constraining operator and BY are matrices of dimension nxn with real

nonnegative elements and

Rk Rk
ZBI :Ea ZHBI ||S1’ (22)
l'EHt(k) iEHt(k)

forall k e N.

The parallel implementation of this algorithm can be described as follows:
yk’i = Piwk X(k) (l (S Hl(k) ),

m ,
X(k+1) :C ZBf‘(yk’I,
iEHt(k)

The block-iterative algorithms represent examples of sequential-parallel algorithms. They
may be considered as intermediate version between sequential algorithms and full parallel
ones. In each step of an iterative process the block-iterative algorithm uses simultaneously
information about all equations concerning to a given block.

Block-iterative algorithms may be also considered in the case of multiplicative algorithms.
In this case there results the following algorithm.

Algorithm 7 (BMART).

1. xXQ eR” and x© > 0.
2. The k+1-th iteration is calculated in accordance with the following scheme:

) 7hay

k+1 k j

x§~+):=x§-) I [71. lk J , (23)
iEHt(k) (a 5X )

where ;/g are positive real numbers such that

0< Yazrs <1 (24)
iEHt(k)

for every j, k; Hip are defined in accordance with (20) and f(k) is almost cycle control
sequence.

If }/l-ljc- =y; for all kj and 0 < a; <1, > y;=1, then there results the block-iterative
iEHt(k)

multiplicative algorithm proposed in (De Pierro & Iusem, 1985).
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5. Chaotic and asynchronous algorithms

First chaotic and asynchronous algorithms for image reconstruction were proposed and
studied in (Bru et al., 1988), (Elsner et al., 1990). These algorithms are based on the methods
of asynchronous iterations introduced first by Chasan and Miranker (Chazan & Miranker,
1969). The further development of these methods and their generalizations for the case of
non-linear operators was obtained by Baudet (Baudet, 1978).

Recall some important notions of the theory of chaotic and asynchronous iterations (Chazan
& Miranker, 1969), (Baudet, 1978), Bertsekas D.P. (1983), (Bertsekas & Tsitsiklis, 1989),
(Bertsekas & Tsitsiklis, 1991).

Definition 1. A sequence of nonempty subsets / = {I X }20:0 of the set {1,2..., m} is a sequence

of chaotic sets if
limsup/;, ={1,2,...,m} (25)

k—o0
(another words, if each integer ;e {l,2,...,m} appears in this sequence an infinite number of
times).
For the first time such sequences were used by Baudet (Baudet, 1978).

Definition 2. If any subset of a sequence of chaotic sets I has the form [, ={j;} , where

Jr €{1,2,...,m} (i.e. each set consists of only one element), then the sequence I is called

acceptable (or admissible).

Suppose that PCS (Parallel Computing System) consists of m processors working local
independently. In this case the notion of the sequence of chaotic sets has a simple
interpretation: it sets the time diagram of work of each processor during non-synchronous
work of PCS. So the subset Ii is the set of the numbers of those processors which access the
central processor at the same time.

Note, that the definition of the sequence of chaotic sets can be given in the following
equivalent form:

Lemma 1. Let /= {I X }fzo be a sequence of nonempty subsets of the set {1,2..., m}. Then the

following conditions are equivalent:
1) limsup /), ={1,2,...,m}

k—
2) theset {k | i€ I} is unlimited for eachi=1,2..., m.
3) for each j e N there exists p(j) e N such that the following condition satisfies:
J+p())
Uz ={1,2,....m}. (26)

i=j+1

For any sequence of chaotic sets the numbers p(;j) depends on a number j. In practice and
for researching the convergence of asynchronous implementations of iterative processes
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there are more important sequences of chaotic sets, for which these numbers do not depend
on number j.

Definition 3. If for a sequence of chaotic sets 7 = {I X }fzo the numbers p(j) defined by (26)

do not depend on the choice of number j, i.e. p(j)=T =const for each jeN, then this

sequence is called regular, and the number T is called the number of regularity of the
sequence .

Note, that this definition coincides with a concept of a regular sequence, introduced in (El
Tarazi, 1984) for the case of an admissible sequence. In this work El Tarazi obtained
important results introducing the obvious model for the class of a synchronous algorithms
and giving the first correct conditions of convergence in the non-linear case of contraining
operators.

Other important concept in the theory of an asynchronous iterations is the concept of a
sequence of delays.

Definition 4. A sequence J = {d(k)}f:1 of m-dimensional vectors o (k) = {o,(k), 0, (k)....,0,,(k)}
with integer coordinates, satisfying the following conditions:

1) 0<o;(k)<k-1; (27)
2) klim o;(k)=oo, (28)

foreach i=1,2..,mand k €N, is called a sequence of delays.
In the case, when instead of condition 2) it holds the following condition:
2’) there exists a fixed number L € N such that

k—o;(k)<L (29)
for each ke N and i = 1,2...,m, the sequence is called a sequence with limited delays and
the number L is called a delay, or an asynchronous measure.

The sequence of delays determines the numbers of using iterations by each fixed processor,
and the number L shows a depth of used iterations and actually reflects possibilities of the
concrete computing system. For synchronous implementation of the iterative process the
difference k —o;(k) is equal to O for Vi=1,2.., mand keN.

Consider the definition of some generalized model of asynchronous computational process
(Robert, et al., 1975), (Baran et al., 1996), (Gubareni et al., 1997Db).

Definition 5. Let there exist a set of nonlinear operators Ti: R* — R, ie{l,2,..,m} and an

initial valuex'” eR”. A generalized model of asynchronous iterations with limited
delays for the set of operators T;, i=1,2,...,m is called a method of building the sequence of

vectors {x(k ) }?:0 , which is given recursively by the following scheme:
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ki Tl-x(ai(k)), ifiel

yk L otherwise (30)

) S(x(k—l), {yk,i}ielk l

where 7={I, }le is a sequence of chaotic sets such that 7, < {1,2,...,.m} and J; = {Ji(k)};;

are sequences of limited delays (i=1,2,...,m).

Apply the generalized model of asynchronous iterations for an implementation of the ART
algorithm on a non-synchronous computer structure. In this case there results the following
asynchronous algorithm, where the numbers of operators are chosen by a chaotic way.

Algorithm 8.

1. xY eR” isan arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

k,i

yor, otherwise (31)
D - SR, (210,m)
ielk

where P/’* are operators defined by (9), @, are relaxation parameters, ;/,»k are positive real

numbers for each keN, [= {I k }le is a sequence of chaotic sets such that 7, c{1.2,....m},

J;= {ai (k)}‘:=1 are sequences of delays.
The convergence of this algorithm is given by the following theorem:

Theorem 1. Let system (2) be consistent, I={I, }le a regular sequence of chaotic sets

I, < {l,2,...,m} with a number of regularity T, {O‘i (k)}f:1 sequences with limited delays and

O'j- (k)=o0,(k), and let a delay be equal to T. If 0<a@; <2, yl»k are positive real numbers with

property 3 yi =1, then for every point xV eR” the sequence {xk }f:o defined by the

iEIk
algorithm 8 converges to some point x e H , which is a fixed point of orthogonal projection

operators P; (i=1,2,...,m).

Consider the particular case of the algorithm 8 when there are no delays and the sequence of
chaotic sets is acceptable.

Algorithm 9 (CHART).

1. x© e R” is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:
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yo= .

yrb otherwise (32)
e 12,

iely

where P are operators defined by (9), w, are relaxation parameters, 7K are positive real

numbers for each keN, [ ={I k }20:1 is an acceptable sequence of chaotic sets such that

I, c{l,2,...,m} and C is a constraining operator.
The convergence of the algorithm 9 is given by the following theorem.

Theorem 2. Let system (2) be consistent, / = {1 3 }le be an acceptable sequence of chaotic sets

I c{1,2,...m} . If 0<aw, <2, ;/ik are positive real numbers with property 3 i =1, then for
iE[k

every point x” eR” the sequence {xk }fzo defined by the algorithm 9 converges to some

solution of this system.

6. Block-parallel asynchronous algorithms for computer tomography

Block-parallel asynchronous algorithms with application to tomographic reconstruction
from incomplete data were studied by Elsner, Koltracht and Neumann in (Elsner et al. 1990).
In this section the generalized model of asynchronous iterations is applied for an
implementation of the algorithm BPART on a non-synchronous computer structure. In this
case there results the following algorithm, where the numbers of operators are chosen by the
chaotic way:

Algorithm 10.

1. xY ¢R” isan arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

<kl _ o ZBiFPiwkx(O'l(k)) ) (33)
iEH,(k)

where P/’* are operators defined by (9), @, are relaxation parameters, C is a constraining

operator, t(k) = I, I=1I; }20:() is a sequence of chaotic sets such that 7, < {1,2,...,M} and BY

are matrices of dimension nxn with real nonnegative elements which satisfy conditions

(22), J; = {Ji(k)}kil are sequences of delays.

Theorem 3. Let system (2) be consistent, I=1{I, }fzo a regular sequence of chaotic sets

I < {1,2,...,M} with a number of regularity T, J; = {ai (l’c)}:=1 sequences with limited delays
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and O'j- (k) =o;(k) , and let the number of delay be equal to T. Then for every point x» eR”

the sequence {x*)}7_, defined by the algorithm 10 converges to some point x* € H, which is

a fixed point of orthogonal projection operators P; (i =1,2,..., M).
Let the particular case of algorithm 10 when there are no delays and the sequence of chaotic
sets is acceptable. Decompose the matrix A and the projection vector p into M subsets in

accordance with decomposition (13) and (20). Consider s,=|H,|=m,—m,_1 be the

cardinality of H, .

Algorithm 11 (CHBP).

1. x© € R” is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

M .
<kl = CzBfgy(kH),z ) (34)
i=1
where
y(k+1),i :Qixk:
Q; :Pi,si Pi,s,~—1~'-Pi,1>

a)M k .
P j=P; .ZIB“ Jelic,
i=

P/’ are operators defined by (9), @ is a relaxation parameter, C is a constraining operator,

1= {Il-(k) }le is a sequence of chaotic sets such that 7, < {mi1+1, mia+2,..., m; }=H; and Bff

are matrices of dimension nxn with real nonnegative elements which satisfy conditions
(22) for each k € N.

Remark 2. If operator P; is defined by (3), algorithm CHART, PART, BPART, CHBP will be
called CHART-1, PART-1, BPART-1, CHBP-1 respectively, and if P; is defined by (8) these
algorithms will be called by CHART-3, PART-3, BPART-3, CHBP-3 respectively.

7. Computer simulation and numerical results

In this section there are presented some numerical results of applying the different
algorithms considered in the previous sections for reconstruction of high contrast objects
from incomplete projection data in the case when they are not available at each angle of
view and they are a few-number limited. There are also studied the influence of various
parameters of these algorithms such as a pixel initialization, relaxation parameters, number
of iterations and noise in the projection data on reconstruction quality and convergence of
these algorithms (Gubareni, 1998a), (Gubareni & Pleszczynski, 2007), (Gubareni &
Pleszczynski, 2008).

In order to evaluate the goodness of the computer reconstruction of a high-construct image
there were tested different kinds of geometric figures and reconstruction schemes. In this
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chapter the results of image reconstruction are presented for two different schemes of
obtaining projection data (1 x 1) and (1 x 1, 1 x 1), which are described above.

An important factor in the simulation process of image reconstruction is the choice of
modeling objects which describe the density distribution of research objects. In a coal bed,
where one searches the reservoirs of compressed gas or interlayers of a barren rock, the
density distribution may be considered discrete and the density difference of three
environments (coal, compressed gas and barren rock) is significant. Therefore for illustration
of the implementation of the algorithms working with incomplete data there were chosen
the discrete functions with a high contrast.

The first discrete function fi(x,y) is given in the following form:

1, (x,y)eDcECRz,

(35)
0, otherwise

A(xy)= {
where E is a square E ={(x,y):—-1<x,y <1}, and D is a subset of E of the following form:

D=[-0.4,-0.2] x [-0.5,0.5] U [-0.2,0.2] x[0.3,0.5]\U [-0.2,0.2] x[-0.1,0.1] U [0,0.2] x [0.1,0.3]. (36)

The second discrete function f;(x,y) is given in the following form:

1, (x,y)eD,cEcR?,
2, (x,y)eD,cEcR?,
fr(x,y)=143, (x,¥)e Dy c EcR?, (37)
4, (x,y)eD4<:EcR2,
0, otherwise

where E is a square E ={(x,y):-1<x,y <1}, and D; are subsets of E of the following form:
D; =[-0.7,-0.4] x [-0.5,0.2], D»= [-0.2,0.2] % [-0.1,0.1],

D3 =1[-0.2,0.2] x [0.3,0.5], D, =[0.4,0.7] x [0.4,0.7].
The three-dimensional view of the plots of these functions are given in Figure 3.

Fig. 3. The original functions f|(x,y) (on the left side) and f,(x,y) (on the right side).
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As was shown earlier (see, e.g. (Eggermont, el. al.,, 1981), (Herman, 1980)), the image
reconstruction of such objects from complete data gives a good enough results after 6-7 full
iterations.
The main criteria which are used to evaluate the quality of reconstruction are the following
reconstruction errors: the maximal absolute error, the mean root square error, the maximum
relative error, the mean absolute error, the absolute error.
In this paper the convergence characteristics of image reconstruction are presented in a view
of plots for the following measures of errors:

e the absolute error:

5(x,p) = f(x,0)~ [ (%)

e the maximal absolute error:

A=max| ;-7 |
1
e the maximal relative error
max fi— f,|
oy =———-100%,
max | f; |

1
e the mean absolute error

1
5 =—¥

1

fi—1;

where f; is the value of a given modeling function in the center of the i-th pixel and f; is the
value of the reconstructed function in the i-th pixel.
In all considered computer simulations it was assumed that C= C; C,, where
a, if x;<a;
(Cl[x])l. =<x;, if a<x; <b; (38)
b, if x; > b;

0, if p,=0and a;; #0;
(€[, = { h TR (39)
X, otherwise
From the conducted research it follows that the optimal value of a relaxation parameter o is
equal to 1.1 for the system (1 x1, 1 x1) and it is equal to 1.3 for the system (1 x 1) in the case
where there is no noise in projections. In the case when there is a noise in the projection data
the optimal value of @wis changed in dependence on the value of the noise.
In all presented numerical results it was assumed, that
e 1 -is the number of pixels, i.e. the number of variables,
e m-is the number of rays, i.e. the number of equations,
e M -is the number of blocks,
e iter - is the number of full iterations.

In all experiments it was also assumes that
e Mis equal to the number of detectors;
e the sequence of chaotic sets /; has the form { & }, where &, is an integer random
variable in the interval [1,m] with uniform distribution.
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e the reconstruction domain E ={(x,y):-1<x,y <1} was divided into » = 20 x 20
pixels.

e the number of projections m in the system (1 x 1) is equal to 788, and in the system
(1x1,1x1) the number m= 644.

7.1 Reconstruction with algorithms ART-3 and MART-3
The reconstruction of f;(x,y) with ART-3 after 15 iterations in the scheme (1 x 1,1 x 1) is

presented in Figure 4. The plot of the reconstruction function is shown on the left side, and
the plot of the absolute errors for this image reconstruction is shown on the right side.

Fig. 4. Reconstruction and the the absolute error &x,y) of f(x,y) with ART-3 for n=20 x20,
m= 644, iter=15 in the scheme (1 x 1,1 x 1).

For comparison this function fi(x,y) was reconstructed with the multiplicative algorithm
MART-3 for the same parameters and ®=6.9 and the plots, which are presented in Figure 5,
illustrate the dependence of the maximum relative error 4 and the mean absolute error &
on number of iterations with ART-3 and MART-3 in the system (1 x 1,1 x 1).

5] aj
14, ’ 5. b}
12f
| ! + LET 0.004 b
10} 4 ART
=] 0
¥ # - MART
£ w ; % - MART
| e, [ *
a1 * * ke
| * *oox * t : *
3l ‘ * - L R *
T4 iter e, .
G 2] 10 12 14 I e T ------_.5—;-1—-‘---%&5-& iter

Fig. 5. Dependence of the maximum relative error 6 (on the left side) and the mean absolute
error & (on the right side) on the number of iterations for image reconstruction of f;(x,y)

with ART-3 and MART-3 for n=400, m= 644 in the system (1 x 1, 1 x 1).
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The same function f{(x,y) was also reconstructed in the system (1 x 1). The result of this

reconstruction with ART-3 for n = 400, m = 788 and 100 iterations is shown in Figure 6.

Fig. 6. Reconstruction of fi(x,y) and the absolute error &(x,y) obtained with algorithm ART
for n=400, m=788, iter=100 in the system (1 x 1).

The plots, which are presented in Figure 7, illustrate the dependence of the maximum
relative error & and the mean absolute error & on the number of iterations of image
reconstruction of f(x,y) with ART-3 in the systems (1 x1,1 x 1) and (1 x 1).

3 =) 3, b)
100 t:._‘: . (1x1) A
S 0.121 *
800 xw © g ld * (1x1)
* (1x1, 1x1) o.1%
60 ey o.pal o
A T Y x (1x1, 1x1)
an! . 0.06! *
a0 HﬂH**‘ a. I,I-n: "
201 g 0.04} . “-—;h 7
N * | '*H""mir
LI D.02] * A S N S
----- R e S Rt | *
2 10 15 20 25 } - *ild{Fr*t*l*r****_p_ri-ityrr iter
al . a £ Faga

Fig. 7. Dependence of the maximum relative error ¢ (on the left side) and the mean absolute
error & (on the right side) on the number of iterations of image reconstruction of f(x,y) in

the systems (1 x1,1 x 1) and (1 x 1).

The analogous reconstructions were obtained for the function f,(x,y). The result of

reconstruction of the function f,(x,y) in the system (1 x 1) is shown in Figure 8.
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Fig. 8. Reconstruction and the absolute error &x,y) of f,(x,y) obtained with algorithm
ART-3 for n=400, m=788, iter=25 in the system (1 x 1).

The plots presented in Figure 9 illustrate the dependence of the maximum relative error &
and the mean absolute error & on the number of iterations of image reconstruction
of f5(x,y) with ART-3 in the systems (1 x1,1 x 1) and (1 x 1).

81 a :I E' ]:l :I
250 -\ + [1x1) L \ |
[ \ (1x=1) | \ 1 4
nnl i 0.05 * * (1xl)
< » 3 »
l': “ * (11, 1x1) 0,04t ‘ * (1x1, 1xl1}
o Y | .
I *e " .03 .
10} % e, E o
ISV 0.02| e,
5 * s S 0.01| * ‘*‘144_,‘_‘

* o

TRk ke ; ‘4

* . . - , o )

cee S TERWEEERA AN RARAR [ pop | FhA Ak ke ke hk ke khhdk (o
4] 10 15 20 25 5 10 15 20 aE =

>
Fig. 9. The dependence of the maximum relative error &1 (on the left side) and the mean
absolute error & (on the right side) of image reconstruction of f5(x,y) in the systems (1 x 1,

1x1)and (1 x1).

. Farpal

Note that the analogous results were obtained for ART-1, MART-1 and MART-3. For the
multiplicative algorithms MART-1 and MART-3 the velocity of convergence is considerably
less by comparison with the additive algorithms ART-1 and ART-3.

7.2 Reconstruction with chaotic algorithm CHART-1
In this section there are represented some numerical results of reconstructions of the
function fi(x,y) with the chaotic algorithm CHART-1 using the same parameters as in the

case of ART-3. The reconstruction result of the function f(x,y) with CHART-1 after 100

iterations in the system (1 x 1, 1 x 1) is shown in Figure 10.
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Fig. 10. Reconstruction and the absolute error &x,y) of f;(x,y) obtained with CHART-1 for
n=20 x20, m= 788, iter=100 in the system (1 x 1).

The plots, which are presented in Figure 11, illustrate the dependence of the mean absolute
error ¢ on the number of iterations for image reconstruction of f(x,y) with ART-1 and

CHART-1 in the systems (1 x 1,1 x 1) and (1 x 1).

&z
0D.004
| 4 LRT-1
0.003 *
I : *  CHART-1
D.o0z .
0.001 Y
- "'-.__'
........ * e =
2 -'ltg*g 10712 14 iter

—
=¥ “* jter

Fig. 11. Dependence of the mean absolute error & on the number of iterations for image
reconstruction of f{(x,y) with ART-1 and CHART-1 in the system (1 x 1, 1 x 1) (on the left

side) and in the system (1 x 1) (on the right side).

The result of image reconstruction of the function f;(x,y) with CHART-1 after 25 iterations

in the system (1 x 1) is shown in Figure 12.
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Fig. 12. Reconstruction and the absolute error &x,y) of f5(x,y) obtained with chaotic
algorithm CHART-1 for n=20 x20, m= 788, iter=25 in the system (1 x 1).

Table 1 (resp. Table 2) shows the dependence of the maximum absolute error A on the
number of iterations for ART-1 and CHART-1 for the system (1 x 1) (resp., the system (1 x 1,
1 x 1)) and the same set of parameters which were chosen above.

iter | ART-1 CHART-1
100 | 0.0306 0.0073

200 | 0.00201 0.0001

500 | 1.209 x 106 | 4.098 x 10~
1000 | 6.435 x 1012 | 6.328 x 1015
2000 | 5.44 x 1015 | 6.106 x 1015

Table 1. The dependence of the maximum absolute error A on the number of iterations for
ART-1 and CHART-1 in the system (1 x 1).

iter | ART-1 CHART-1
10 | 0.0077 0.00002

20 | 9.83 x 106 | 3.568 x 109
40 | 3.12x 101 | 1.221 x 1015
50 | 3.98 x10-4 | 1.11 x 1015
100 | 8.88 x 10-16 | 8.88 x 10-1¢

Table 2. The dependence of the maximum absolute error A on the number of iterations for
ART-1 and CHART-1 in the system (1 x 1,1 x 1).

The plots, which are presented in Figure 13, illustrates the dependence of the mean absolute
error on the number of iterations of image reconstruction of f,(x,y) with ART-1 and

CHART-1 in the system (1 x 1).
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Fig. 13. Comparison between the mean absolute error ¢, for image reconstruction of
Jf>(x,y) with ART-1 and CHART-1 in the system (1 x 1).

7.3 Reconstruction with block-parallel algorithms
In this section there are represented some numerical results of reconstructions of the
function f;(x,y) with the block-parallel algorithm BPART-3 and the chaotic block-parallel

algorithm CHBP-3. The reconstruction result of the function f,(x,y) with BPART-3 and

CHBP-3 after 75 iterations in the system (1 x 1, 1 x 1) is shown in Figure 14 and Figure 15,
respectively.
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0.008 4 AL LIRS
0.006 A 4 Neoo, 7~::i"7'..:.
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ay,
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Fig. 14. Reconstruction and the absolute error &x,y) of f2(x,y) obtained with algorithm
BPART-3 for n =20 x 20, m=644, M=36, iter=75 in the system (1 x 1, 1 x 1).
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Fig. 15. Reconstruction and the absolute error &x,y) of f2(x,y) obtained with CHBP-3 for
n =20 x 20, m=644, M=36, iter=75 in the system (1 x 1, 1 x 1).

The plots, which are presented in Figure 16, illustrate the dependence of the maximum

relative error and the mean absolute error on the number of iterations of image
reconstruction of f>(x,y) with BPART-3 and CHBP-3 in the system (1 x 1, 1 x 1):
3 E 0. J_ |
I #— BPART-3 by #+— EPART-3
Eo D.08f ¥
200\ * . CHEP-3 Q.08p % .- CHEP-3
15 D.04) % *
10} Ny W ; N,
I - 0. 02t . _*
5| o S . iy
S _1_* ol iteaetr | - _-*d*__*'— e O A RN =
10 20 30 40 50 eb -oF 10 20 30 40 50 80 ~°=F

Fig. 16. Dependence of the maximum relative error 6; and the mean absolute error &, on the
number of iterations for image reconstruction of f,(x,y) with BPART-3 and CHBP-3 in the
system (1 x1,1x1).

Table 3 shows the dependence of the maximum absolute error A on the number of iterations
for BPART-3 and CHBP-3 in the system (1 x 1, 1 x 1).

iter | BPART-3 | CHBP-3
10 0.4640 0.2112
20 0.1973 0.0478
40 0.0293 0.0054
50 0.0113 0.0018
100 | 0.0001 0.000001

Table 3. Dependence of the maximum absolute error A on the number of iterations for

BPART-3 and CHBP-3 in the system (1 x 1, 1 x 1).
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The analogous results were obtained for reconstruction of the function f»(x,yy) with BPART-3
and CHBP-3 in the system (1 x 1). The plots presented in Figure 17 illustrate the dependence
of the maximum relative error and the mean absolute error on the number of iterations of
image reconstruction of f>(x,y) with BPART-3 and CHBP-3 in the system (1 x 1):

81 al ﬁ_‘_ b}
A0 :
| O.04r 4% , _
23 o #— BPART-3 R ¢— BPART-3
sol | 0.03} 4
15 - * - CHEP-3 0.0zl \ * * - CHEP-3
Lok ) - U. Ve L
10} » l | | .
N 0.01] 3,
51 7""'"0—-‘»-;_ & s | ’ ‘.'g_-— Sy
: t*t*******}'**' | :‘**II:::‘:: iter
e S Rk k k ki ko hk_ iter 100 200 300 400 5007
100 200 300 4010 A00

Fig. 17. Dependence of the maximum relative error §; and the mean absolute error §; on the
number of iterations for image reconstruction of f(x,y) with BPART-3 and CHBP-3 in the
system (1 x 1).

Remark 3. The parallel reconstruction algorithms BPART and CHBP were implemented in a
simulated parallel environment on a sequential machine. Calculations of all elementary
processors that could be run in parallel were times together and the results were stored in
temporary arrays. The results of all such calculations were updated into global arrays while
all computations were completed.

7.4 Reconstruction with noisy projection data

It is very important for the research of reconstruction quality to consider the effect of noise
in projection data on a reconstructed image. For this purpose the various levels of Gaussian
(normal) noise are added to projections. The noise model was proposed by Herman
(Herman, 1975). In this model the noisy data are simulated by the addition of Gaussian
noise. Here each projection is multiplied by a Gaussian distributed random number with
mean 1.0 and standard deviation s. Usually the noise level is taken less that 10% in
computed tomography for non-medical imaging application. In considered experiments the
noise level was in the interval from 1% to 5%.

The plots of image reconstruction of the function fi(x,y) with ART-1 after 10 iterations in

the system (1 x 1, 1 x 1) and the normal noise of projection data s=2% and s=5% are given in
Figure 18.
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Fig. 18. Reconstruction of f(x,y) obtained with ART-1 after 10 iterations in the system (1 x

1,1 x 1) and the normal noise of projection data s= 2% (on the left side) and s=5% (on the
right side).

Analogous results were obtained for the algorithm CHART-1. The plots of image
reconstruction of the function f(x,y) with CHART-1 after 10 iterations in the system (1 x 1,

1 x 1) and the normal noise of projection data s=2% and s=5% are given in Figure 19.

Fig. 19. Reconstruction of f{(x,y) obtained with CHART-1 after 10 iterations in the system

(1 x1,1 x 1) and the normal noise of projection data s= 2% (on the left side) and s=5% (on
the right side).

The plots, which are represented in Figure 20, show dependence of the mean absolute error
0 on the number of iterations for image reconstruction of f;(x,y) with ART-1 (on the left

side) and algorithm CHART-1 (on the right side) in the system (1 x 1, 1 x 1) and the normal
noise in projections s= 0% and s= 2%. These results show that both algorithms are stable
with regard to noise in projections and they have the same robustness.
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Fig. 20. Dependence of the mean absolute error & on the number of iterations for image
reconstruction of f(x,y) with ART-1 (on the left side) and CHART-1 (on the right side) in

the system (1 x 1, 1 x 1) and the normal noise of projection data s = 0% and s=2%.

Remark 4. All algorithms were implemented on IBM/PC (procesor AMD Duron XP, 1600
MHz) by means of C++ and MATHEMATICA 5.1. For reconstruction of examples with
small number of pixels (n=20 x20 and m < 800) one iteration by means of Mathematica 5.1
was implemented approximately 0.5s for all algorithms, and in C++ one iteration for all
algorithms is implemented in a real time (< 0.1s).

8. Conclusion

The aim of this paper was to represent and study the different iterative algebraic algorithms
for reconstruction of high-contrast objects from incomplete projection data. There were
studied the quality and convergence of these algorithms by simulation on a sequential
computer.

For each considered system of reconstruction there exist the parameters which allow to
obtain a good quality of reconstruction after some number of iterations but this number is
considerably larger than for reconstruction with the complete projection data. This number
of iterations is approximately 10 times more for the scheme (1 x 1, 1 x 1) by comparison with
the case of the complete data.

The obtained results show also that for obtaining the good reconstruction quality (with & <
1% and & < 0.001) by means of the chaotic algorithm CHART-1 it suffices 4-6 iterations in
the system (1 x 1, 1 x 1) and 20-30 iterations in the system (1 x 1). These results are much
better by comparison with algorithm ART-1. The results of reconstruction also show that the
chaotic algorithm CHBP-3 gives better results with comparing the block-parallel algorithm
BPART-3.

All experimental results show that the errors of reconstruction of considered objects from
limited projection data with all considered algorithms are constantly reduced with
increasing the number of iterations. It was also shown that all considered algorithms are
stable with regard to noise (< 5%) in projections.

It should be note that the parallel and block-parallel algorithms were implemented only on
simulated parallel environment on sequential machine. Their implementation on real
parallel structure may give some other results. So it will be very interesting to conduct the
simulation of these algorithms on such parallel structures.
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