We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Assisted form filling

Y ukasz Bownik, Wojciech Gérka and Adam Piasecki
Centre EMAG
Poland

1. Introduction

Semantic technologies that form the basis of the idea of the Semantic Web (Berners-Lee et al.
2001) are currently one of the most popular points of interest in the field of computer
science. The main emphasis here is on issues related to the logical layer of semantic
applications, that is exploring the methods of machine reasoning within an ever wider range
of logic, and the issues of data exploration and integration. This article features a practical
application of semantic technologies for solving problems more closely affecting an average
computer user. We present a solution to the issue of accelerating the filling of electronic
forms based on previous achievements in this field, which combines the capabilities of
inference engines with the expressiveness of ontologies stored in OWL (Web Ontology
Language) (OWL Guide 2004) and flexibility of data stored in RDF (Resource Description
Language) (RDF Primer 2004). The article assumes that the reader has a basic knowledge on
the construction and use of the RDF and OWL languages.

1.1. Objective of the article

The objective of this article is to describe ways to facilitate electronic form filling. At the
beginning we described the issue and the requirements placed on the solution. Then we
described the solution. We characterized the reasons for the selection of specific techniques
and architecture of the proposed solution, as well as two alternative approaches to the
interaction with the user. Finally, we presented the investigated results of the acceleration of
assisted form filling, which was compared with other existing solutions of the stated issue.

1.2. The Issue

The basic issue associated with the concept of public services is the need to fill the forms
containing repeated data. Most forms require entering the same data, similar data sets or
data dependent on other data contained in another part of the form. This causes
psychological discomfort associated with repeated, from the user’s perspective, contents.
Such an approach is not only unproductive but also increases the risk of errors. Errors in the
completed forms, if not detected during the interaction with the system, may have serious
and far-reaching consequences, including legal ones. A mechanism capable of assisting in
the process of electronic form filling would not only result in a positive acceleration of the
process but could also potentially reduce the risk of errors.

www.intechopen.com

42 Engineering the Computer Science and IT

1.3. Requirements
The proposed solution of the stated issue is to assist the user in the process of filling in any
electronic form through the automatic and pseudo-intelligent filling of the form fields with
information available to the system. The basic assumptions that guided the search for
solutions were:
e modularity of the developed software that will allow integration with a broad class
of information systems;
e independence from the domain of the form which will minimize the number of
assumptions about the meaning and format of processed data;
e minimization of interactions with the user that is both a target and measure of the
quality of the resulting solution.
The result of research is a portable Java library that implements assisted electronic form
filling processes. Later in the article we will present the results of the work and a description
of the architecture and operation of the developed software, hereinafter referred to as "the
forms module”.

1.4. Other solutions

Similar solutions have been proposed, inter alia in the projects "RoboForm" and "Mojo
Navigator"2 however they focus primarily on the functionality of a portfolio of passwords
integrated with a web browser with an additional history of the field values associated with
the forms available on the Internet. They also lack the dynamics associated with the
automatic acquisition of data, which is presented by the described solution. On the market
there are a lot of other solutions based on a dialogue form of form filling but most of them
are firmly based on the dialogue recorded on a particular form (the wizards). Finally, it
should be noted that a simple form of field values suggestion is available directly in
browsers. However, it is characterized by a very small degree of ergonomics both with
regard to the interaction with the user, who must enter the desired values prefixes, and the
lack of contextuality, which makes it impossible to fill the whole form at once.

L http:/ /www.roboform.com, 2009-01
2 http:/ /www.mozilla.org/ projects/ui/ communicator/browser/formfill, 2009-01

www.intechopen.com

Assisted form filling 43

2. Design

The following section describes the design of the forms module along with the reasons for
selecting particular data representation and architecture.

2.1. Data representation

The main idea of assisted form filling is pseudo-intelligent matching of existing data to form
fields. For this purpose, it is necessary to identify the meaning of the fields and sections of
the form and find an adequate available data set. The data for assisted filling may come
from the user’s ontoprofile, whose task is to accumulate the data from the completed forms,
or from an external system. In the case when the data are not available (as it will be the case
with every new user), assisted filling will not be available either.

Identification of the meaning of data requires their explicit tagging with metadata. For this
reason, we need data representation that supports their binding to the metadata. The binary
representation and simple text representation, for example in the csv format, do not allow to
record the metadata and therefore are not useful. For this purpose, the most suitable are the
relational data model (in whose case the metadata consist of names of relations and fields)
and languages like XML (eXtensible Markup Language) (XML 2006) and RDF.

The objective of this work was to develop software with a minimum number of assumptions
about the meaning and format of the processed data. In the relational data model the
meaning and format of data is contained in the database schema that can be subjected to a
variety of analyses performed by the software. The relational database schemas have,
however, two significant drawbacks. First, the producers of databases quite freely
implement the DDL language standard and extend it with many product-specific features.
Such diversity results in considerable difficulty in automatic analyzing of database
structures. Second, solving the issue of assisted form filling requires maximum flexibility of
data representation. The relational database model does not satisfy this condition as it
assumes constant or slowly changing structure of the database. Application of the
representation of data based on this model would be a very hard assumption regarding the
meaning and format of data in a particular installation (e.g. installing a module with respect
to a database which describes the forms of medical service appointments would allow to fill
only this type of forms). For this reason, the relational data model has been rejected as a
representation of the processed data.

Rejection of the relational model narrowed the choice of data representations to those based
on XML and RDF. Data stored in these languages are very dynamic in their structure
defined by XML schemas and ontologies that can be dynamically loaded and analyzed by
an application. XML requires that all data have a tree structure. This structure does not fully
correspond with the "natural" structure of data which more often resembles graphs. For this
and other less significant reasons, the RDF language was chosen because it allows very
natural data recording in the form of graphs and a flexible description of their structure by
means of ontologies stored in OWL. An additional advantage is the possibility of using
machine-based inference with ontologies and rules which allowed the development of
pseudo-intelligent software by means of very expressive logic programs.

www.intechopen.com

44 Engineering the Computer Science and IT

2.2. Structure

Data structures on which the module operates are defined by means of ontologies written in
OWL. In order to understand the operations of the dialogue module, it is necessary to grasp
the data ontology and the form ontology (a kind of data ontology) ideas which lie at the
basis of the process.

2.2.1. Data ontologies

Data ontologies define the vocabulary (concepts) used in the course of data exchange
between systems. A data ontology is not meant to organize knowledge (which is the case of
expert systems) but to determine concepts describing the data which can be understood by
many systems. In terms of their concept, data ontologies correspond with XML diagrams
and are their functional equivalents.

upper
ontology

upper
ontology

ontology ontology ontology ontology

Layer 2

form form
ontology ontology

Fig. 1. Layered-tree ontology structure [own].

form

ontology Layer 3

Data ontologies are naturally arranged in a tree-layer structure shown in Figure 1.

The first and highest level contains definitions of the most general vocabulary (concepts)
commonly used by many IT systems (e.g. person, age, name, family name). The concepts
defined at this level are the basis for the definitions of more specialized concepts placed at
lower levels of abstraction. General ontologies should not (must not, to be precise) impose
any restrictions (e.g. in the form of limits as to the format of field value or number of fields
in the form) on the defined concepts because each restriction placed at this level of
generalization will diminish the universal force of the defined vocabulary and will raise the
probability of conflicts with restrictions defined at lower levels (redundant or contrary
restrictions). General ontologies must have total horizontal coherence, i.e. mutual coherence
within the entire level of abstraction.

www.intechopen.com

Assisted form filling 45

The second, middle level contains definitions of concepts shared by IT systems which
operate within a given domain (e.g. medicine). These ontologies should use, to the highest
possible extent, the concepts defined at a higher level of abstraction (i.e. they should not
define their own concepts indicating, for example, family name) as well as add the concepts
from this very domain (e.g. clinic, doctor, vaccine). At this level of abstraction only most
obvious restrictions should be defined, i.e. the restrictions which will be forced by all
existing and future IT systems operating within a given domain. If it is not possible to
explicitly define such restrictions, one should not define them at all because, as it is the case
with general ontologies, they may provoke conflicts between ontologies. Domain ontologies
must have horizontal coherence within a certain domain, i.e. mutual coherence within each
domain at this level of abstraction as well as coherence with general ontologies.

The third and lowest level contains definitions of forms, i.e. specific data packages
exchanged between IT systems. A form is a structure of data exchanged between two IT
systems. The structure may, but does not have to, be related to the form filled by the system
user. Each form there should have a form ontology describing its structure. The ontologies
of the form should use, to the highest possible extent, the concepts defined at higher levels
of abstraction and define only such new concepts which are specific to a given form and
cannot be shared with other forms. The form ontology should define all necessary
restrictions which will ensure logical coherence and correctness of the form required by the
specifications of the IT system. Since for each form there are different rules (restrictions)
which determine its coherence and correctness (e.g. one form requires an ID number, the
other does not), it is not advisable to define restrictions at higher levels of abstraction. The
form ontologies do not have to demonstrate any horizontal coherence (it is practically
impossible to provide it). A logical error resulting from horizontal incoherence will never
occur because there is separate processing of each ontology in each processing path in the IT
system, which was depicted in Figure 2. The form ontologies must be coherent with the
applied domain ontologies and general ontologies.

form
ontology 3

form
ontology 2

form
ontology 1

——data-p| operation 1 {—data»| operation 2 |-datap{ operation 3 |—data—p-

execution path >

Fig. 2. Physical separation of processing of form ontologies within a single processing path
[own].

www.intechopen.com

46 Engineering the Computer Science and IT

firstName) String

surNam
e\A String

Person
birthDate Male
Date /
sex type
/ Female
type’
type

T~ Unidentified

type

Unknown

Fig. 3. Example of data ontology [own].

Figure 3 shows a sample ontology describing personal data.

2.2.2. Form ontologies

Form ontologies define the structure as well as coherence and correctness rules of data
contained in the described form. A form ontology describes a specific set of data exchanged
between IT systems.

The process of constructing a form ontology begins from building the main form class which
will lie at the roots of the whole structure. The main class of the form must be marked with
the appropriate property isFormRoot. Thanks to this assumption, it is possible to
automatically detect the root of the form. The definition of the successive sections of the
form is carried out by defining separate classes (e.g. Person class or Address class) linked with
object properties to form a tree structure. The definitions of data fields are carried out with
the use of data-type properties of classes which make up the sections of the form.

As the form ontology is based on concepts defined in data ontologies which may be much
more extensive than the form requires, the isRequired and isOptional properties were
defined. They connect the desired properties with the classes being the sections of the form
(see Fig. 4). In order to force the order of processing sections and fields of the form, it is
necessary to define the processing order for each pair of properties, representing these
sections, by means of the askBefore property (see Fig. 4).

www.intechopen.com

Assisted form filling 47

isRequired askBefore

isRequired

isRequired

Applicant askBefore

isRequired

askBefore
isOptional isOptignal

askBefore ‘
Reason

Fig. 4. An example of form ontology[own].

In order to define the desired restrictions, it is necessary to determine new concepts due to
the fact that the built-in cardinality concepts have their own defined semantics which does
not suit the issue to be solved (OWL Guide 2004).

Form ontologies can contain rules (Horn clauses ((Horn 1951) that extend the functionality
of the OWL language. In order to secure logical non-contradiction, the rules must belong to
the “DL-safe” set (Grosof et al. 2003). The most frequent application of the rules is the
structure of section labels (enabling, for example, creation of a section label for personal data
on the basis of the entered name and surname) and automatic assigning of values to certain
fields based on the values of other fields.

2.3. The operating principle
The operating principle of the module is based on the fact that a form makes up a tree
structure in which successive embedded sections make branches, while fields - leaves of the
tree. Thus it is possible to process a form with the use of tree-searching algorithms. To fulfill
this task the depth-first search algorithm was selected. This algorithm is the most compliant
with the way people fill real forms. The functioning principle of the dialogue module is
presented below in a simplified way. While analyzing successive steps one should
remember about the iteration-recurrent nature of the algorithm.
1. At the beginning of each dialogue, the forms module detects a proper form class in
the form ontology and creates its instance.
2. The newly created instance becomes a currently processed node and, at the same
time, the top of the tree.

www.intechopen.com

48 Engineering the Computer Science and IT

3. For the currently processed node, all required and optional properties are found
and sorted according to the arrangement determined in the ontology. Then the
successively found properties are processed.

4. If the currently processed property points at a section of the form, the section is
then processed recursively.

In the course of processing the successive properties of the node, the dialogue module tries
to detect, in the set of input data, the best adjustments both for the single fields of the form
and for the whole sections. The dialogue module asks the user questions only in situations
when the desired values do not exist or when it is possible to adjust more than one value to
one field or section.

Find form root
class and create
its instance

v

current instance = root instance

|

get all required and opional
properties of a class

S UrSiVg=——=

current instance = value

A

Y

A 4
get next property |€——N

value is an objec
instance ?

find a suitable
property value

actual property is
last?

Fig. 5. A simplified version of the algorithm. [own].

During the subsequent processing of the properties of the node the software tries to find in
the collection of input data the best match of both the individual form fields as well as the

www.intechopen.com

Assisted form filling 49

entire section of the form. The forms module communicates with the user only in situations
where the desired values do not exist or if it is possible to fit more than one value into
onefield or section. A simplified version of the algorithm is presented in Figure 5.

2.4. The reasoning

The proposed machine reasoning is mainly based on the OWL language but is limited in its
expressiveness to a subset called DLP (Description Logic Programs) (Grosof et al. 2003). DLP
is a logic system that is a subset of a description logic, on which the OWL language is based,
that can be expressed by means of Horn clauses (Horn 1951). DLP provides the key
inference capabilities found in OWL necessary for the implementation of assisted form
filling, that is the reasoning with class hierarchies and properties. In addition, it allows
flexible extension of specific rules for the process itself or even for a specific form.

Applying an inference engine brought a significant simplification of the code responsible for
retrieving the data with required meaning through moving a significant computing burden
into a logic program which contains the rules of logical inference. This way, the matching
algorithm is limited to the search of resources belonging to the respective classes or values
of the respective properties.

2.5. Architecture

The architecture of the proposed solution is briefly described below. The basic elements of
the forms module are responsible for performing assisted filling process logic, and storing
the data gathered during filling forms. The user interface and data access layers have been
omitted.

2.5.1. The form processor
The forms module is composed of four basic parts:

e RDF storage providing access to RDF data and ontologies?;

e aforward inference engine based on the RETE algorithm (Forgy 1979);

e amodule that controls the process of form filling developed as a result of the work
(implemented in Java), which, together with two previous elements, makes up a
forms processor;

e an ontoprofile allowing the storage of the data collected during form filling
processes

Figure 6 presents a layered structure of the forms module.

3 Jena - A Semantic Web Framework for Java. http:/ /jena.sourceforge.net, 2009-01

www.intechopen.com

50 Engineering the Computer Science and IT

Form Processor

Form filling
controller

<@—»] Ontoprofile

Reasoning engine

RDF storage

Fig. 6. The forms module structure [own].

Effectiveness of the module depends on the input data stored in the user profile.

2.5.2. The ontoprofile

The ontoprofile is used to store data collected during the assisted form filling processes
which are used to support the filling of successive forms. Its main task is to integrate data
coming from completed forms with the data collected so far and to make these data
accessible to the successive forms. Proper integration is driven by the integration policy
which determines what should be integrated and how. The data contained in the ontoprofile
are stored in the form of RDF graphs. A physical way in which they are stored is not
important but for the prototype installation a relational database has been used.

3. Prototypes

The following describes the two prototypes built during the experimental work. We
described the way of interaction with each of the prototypes and the reason for the rejection
of one of them.

3.1. The dialogue version

The first prototype of the forms module assumes a dialogue based interaction between the
user and the computer in the form of a sequence of questions and answers, which recalls the
manner of interaction with the wizard. The questions are asked by the software, and the
answers are provided by the user. The forms module operates as a filter of information.
With a set of input data (may be empty) and ontologies, the forms module "tries to" fill in
the form with input data and data supplied by the user. Filling the form takes on a dialogue
with the user while maintaining the principle of minimal interaction which assumes that the
user is queried only in such cases where the data are unavailable or inconclusive. The
usefulness of the forms module, as measured by the number of interactions with the user
(the fewer the better), increases with the amount of input data available in the system.

www.intechopen.com

Assisted form filling 51

In order to illustrate the functioning of the dialogue module let us check how the module
works with a simple form. We assume that it is necessary to fill the form as follows:

Form:
Personal data of the user:
Name;
Surname;
Address:
City;
Street;
House No;
Purpose of submitting the form;

When the process of filling the form is invoked for the first time, the dialogue with the user
will look as follows:

System: Enter "Name".

User: John

S: Enter "Surname".

U: Brown

S: Enter "City".

U: London

S: Enter "Street".

U: Portland Place

S: Enter "House No".

U: 47

S: Enter "Purpose of submitting the form".
U: Application for the permission to use a company car

After filling and accepting the form, the data from the form are stored in the user’s
ontoprofile. At the next interaction between the user and the module, the dialogue will look
as follows:

S: I have found personal data for "John Brown, Portland Place 47, London". Shall I
apply them (Y/N)?

uy

S: Enter "Purpose of submitting the form".

U: Application to access financial data.

As one can see in the above successive filling of the form, the number of necessary
interactions with the user is 6 times smaller. The reduction was possible due to the fact that
the forms module was able to automatically fill the fields with available personal data.
Asking the question about the field “Purpose of submitting the form” results from the
updating policy of the user’s profile - this issue, however, is beyond the scope of the paper.
Please note that the functioning of the module is based on the real meaning of data defined

www.intechopen.com

52 Engineering the Computer Science and IT

in an ontology which allows to move data between different forms using common concepts
defined in the shared data ontologies.

3.2. The form view based version

The dialogue based version of the forms module described in the previous chapter is an
initial prototype that enabled to verify the validity of the approach and demonstrated the
ability to achieve the stated goals. From the point of view of ergonomics, however, the use
of the prototype proved to be inadequate. The assisted form filling based on a dialogue
which involves asking the user about the values of consecutive fields turned out to be
uncomfortable. The user was constantly losing context in which the currently filled field
existed. He/she was also unable to determine at what stage of the process he/she currently
is and when the process will be completed. In addition, the inability to go back in the
process of form filling made the solution unacceptable.

These problems resulted in a departure from the dialogue based approach to a more natural
way, based on the form view, in which the user can freely choose the order in which he/she
completes the form, and freely modify the contents of already completed parts. In this
prototype the software tries to pre-fill the largest possible part of the form, at the same time
giving the user the right to accept or change the suggested values. This approach has
significantly increased the comfort of working with the software, which no longer imposes
the schema of work with the form and brings its action to the role of an assistant. It should
be noted that the change in the interaction has not changed the idea of the forms module
and its architecture.

The operation rules of the assisted filling based on the form view will be described by
examples. The following is a series of screenshots of a working forms module.

Address Form

A form to enter pour new address.

Applicant®

First name™*
Last name*
Birth date

Address*

Town*

House number®

[“send |
Fig. 7. An empty form.

www.intechopen.com

Assisted form filling 53

Figure 7 presents a blank form at the first run. The form is used to update the address of a
system user. A user profile does not contain any data yet because no form has been
completed so far, so all fields are empty.

Figure 8 shows the same form after the introduction of sample data. After submitting the
form to the system, the data will be saved in the user’s ontoprofile. Their meaning will be
stored as metadata that will come from the form fields from which they originate.

Figure 9 shows a re-run of the forms module. In this case, the software was able to retrieve
data from ontoprofile and attribute it to the form according to their meaning. As you can
see, it is so accurate that the form no longer requires any interaction with the user. In
addition, the software was able to create objects representing labels of the identity and
address data and place them in dropdown boxes located below the sections headers. This
enables the user to select alternative proposals. The lists also allow to select an empty
position which deletes the contents of each field in the section.

Figure 10 represents a situation in which the user has deleted the contents of the form fields
and introduced the new values of personal data. In an attempt to minimize the number of
necessary interactions, the software suggests him/her an existing address value stored from
a previous interaction. The user can choose the proposed address or enter new values.

Address Form

A form to epter pour new address.

Applicant*
First narme®*
Johin

Last narme®
Brown

Birth date
1977-01-03

Address*

Tawn®*
London

Street®

Downing Street

House number®

10

[“cancer | sens |

Fig. 8.A fully filled form.

www.intechopen.com

54

Engineering the Computer Science and IT

Address Form

A Form to enter pour new address.

Applicant*
John Brown

First narme®

|Jnhn

||Jnhn

Last name®

|Ermﬁn

||Ermﬁn

Birth date

1977-01-03

| 1977-01-03

Address*

Town®

|Lundnn Downing Street 10

|Lnndun

||Lnndnn

Street®

|anning Street

|| Downing Street

House nurmber®

10

10

Fig. 9. Second run of the forms module.

Address Form

A Form to enter pour new address.

Applicant*®

First name®*

‘hﬂary

<]

Last name®

Srith

<]

Birth date

1981-10-12

Address*

| London Downing Street 10

<]

Street®

<]

House number®

<]

Fig. 10. Changing the data during a second run of the forms module.

www.intechopen.com

Assisted form filling 55

Address Form

A Form to enter pour new address.
Applicant®

&
John Brown
M_a_ ¢ Sm_iih

Birth date

Address*

London Downing Street 10 [0
Town*

London London

<

Downing Street Downing Street

K

House nurmber®

10 10

<]

[“Sana |
Fig. 11. The third launch of the form module.

Figure 11 demonstrates the third launch of the form module. In this case, the software found
two objects with the meaning matching to the "Applicant", and therefore allowed the user to
select from two proposals.

Internal Application

Applicant*

John Brown
hary Smith
Reason of application™

[sena
Fig. 12. Matching data to a different form.

In Figure 12 there is a different form launched for the first time. The user’s ontoprofile
already includes data gathered during the processing of earlier forms, which can be used in
assisted filling. It should be noted that although the form shown in Figure 12 is different
from the one you saw in the previous figures, the semantic description of the data and forms
made it possible to match the correct data to the corresponding fields and sections of the
form. Such a solution makes it possible to transfer data between forms if only they are
assigned the same meaning.

www.intechopen.com

56 Engineering the Computer Science and IT

4. The acceleration measurements of assisted form filling processes

The measurements of acceleration of assisted form filling processes were made on the two
forms shown earlier and on a more complex form shown in Figure 13. The measurements
allowed to estimate the degree of acceleration of the process of assisted form filling in
relation to the time required to fill out the forms without support.

Application for copy of Birth Act

Applicant*

First narme®

Last name™*
Address®*
City

House number®

Concerns copy*
Concerns act*

Concerns born person®

First name®*

Last narne®

Mother's data*

First name®*

Father's data*

First narne®

Birth date®

[“ancer | senc |

Fig. 13. A complex form [own].

www.intechopen.com

Assisted form filling 57

4.1. The estimation of maximal acceleration

To estimate the maximum acceleration it was required to construct test scenarios involving
the best (fastest) and worst (the most interaction intensive) processes of filling in the forms.
For this purpose, we constructed the following test cases:

e T1 - the user manually completes all fields (the ontoprofile is empty) - requires a
large amount of interactions (key presses) because, due to the lack of data, the
assisted filling functionality is not available;

e T2 - the user accepts all proposed values of the fields making up only those which
are missing - this case is optimal;

e T3 - the user deletes all proposed fields and brings his/her own values - the worst
case because, apart from entering the data, it is necessary to delete already
suggested values;

e T4 - for each section the user selects a proposed value from the list - it is an almost
optimal case but most often it appears while using a module.

Before we began to measure real acceleration of assisted form filling processes we had
estimated the maximum possible accelerations. The estimates were made by counting the
number of interactions (clicks and key presses) required to fill each form. This quantity was
obtained by counting all actions (filling in the fields, selecting a value from the list, etc.)
necessary to complete the case at the optimal test conditions, and then by multiplying them
by the appropriate weight of each action. We defined the following actions:

e approval of the form = 1 interaction (a mouse-click on the button);

e selecting a proposed field or section value from the list = 2 interactions (a click on a
dropdown list unroll button and a click on the selected item);

e filling in a field = 7 interactions (6 key presses corresponding to the average length
of words in the Polish language and a tab key press to make a transition to the next

field).
Test case Number of interactions
Internal Address | Application for copy
Application Form of Birth Act

T1 22 43 78
T2 8 1 1
T3 24 45 82
T4 10 3 12

Average

acceleration 2,59 29,33 43,33

Table 1. Estimated maximum acceleration of the process of filling in the forms using the
forms module [own].

Table 1 presents the estimated peak acceleration of the form filling processes. As you can

see, these estimates are very high and the most complex form called Application for copy of
Birth Act can be traced up to even 40-times here. In addition, it can be seen that the

www.intechopen.com

58 Engineering the Computer Science and IT

acceleration increases with the complexity of the form (Figure 14). This is due to the fact that
with an increase in the nesting of sections of a form the efficiency of the process increases
too, because it is possible to suggest values of the whole form tree branches.

50
45

35
30

25 P
20

15
10

¥

Internal Application ~ Address Form Application for
copy of Birth Act

Estimated acceleration ratio

Fig. 14. Estimated acceleration of the process of filling in the form in relation to the degree of
complexity, with the use of the module forms [own].

To highlight the difference of the solution, we estimated the acceleration of the processes of
filling the same forms with the use of the functionality available in the Firefox 3 browser. In
this case, the following events were recognized as actions:

e approval of the form =1 interaction (a mouse-click on the button);

e selecting the proposed value for a field = 3 interactions (typing the first letter which
activates the auto complete option, a click of the mouse selecting a proposed value,
transition to the next field with a tab key press);

e filling in a field = 7 interactions (6 presses of the keys corresponding to the average
length of words in the Polish language and a tab key press to make the transition to
the next field).

Table 2 presents the results of the calculation of the estimated acceleration for specific test
cases. The acceleration growth as a function of the complexity of a form is indicated in
figure 15.

www.intechopen.com

Assisted form filling 59

Test case Number of interactions
Address | Application for copy of
Internal Application Form Birth Act
T1 22 43 78
T2 10 19 34
T3 22 45 82
T4 10 19 34
Average
acceleration 2,20 2,32 2,35

Table 2. Estimated maximum acceleration of the process of filling in the forms using the
mechanism available in the Firefox 3 browser [own].

2,40
2,35 A
- —
2,95

2,20 /

2,15

Estimated acceleration ratio

2,10 :
Internal Application Address Form Application for copy of
Birth Act

Fig. 15. Estimated acceleration of the process of filling in the form in relation to the degree
of complexity, using the mechanism available in the Firefox 3 browser [own].

As you can see, the difference between the estimated acceleration offered by the forms
module as compared to the one offered by Firefox is dramatic as the former exceeds the
latter 20-times. In addition, it should be noted that the solution offered in the browser does
not show a significant growth of acceleration with the increasing degree of complexity of the
form (only about 5%).

In the following section we present the results of tests performed on the acceleration of
assisted form filling with the users” participation. The results will verify the above estimates.

4.2. Acceleration measurements with the users’ participation
After having estimated the maximum acceleration of the forms completion, actual
measurements were made with test users. The group consisted of four people. The first

www.intechopen.com

60 Engineering the Computer Science and IT

three had no previous contact with the tested software, while the fourth was one of its
developers, thus an advanced user. The scenario was to perform four test cases described
earlier for each of the three sample forms. To reduce the size of the table we changed the
names of the forms to:

e F1-Internal Application

e F2- Address Form

e F3- Application for Copy of Birth Act.
We measured the time the users took to fill out the forms in the specific test cases. The
acceleration of the form filling processes has been defined as the average ratio of the best to
the worst cases. The acceleration was calculated using the formula below, where a is the
acceleration of the process of filling a specific form, and t,, is the time of completion of the n-
th test case.

(tTl +tT1 +tT3+tT3)/4

tT2 tT4 tT2 tT4

a

Then we calculated the average acceleration for each user (Table 3). At this point, you may
notice a significant difference between the acceleration achieved by the new users and the
value of acceleration achieved by the advanced user (User 4) which was two times higher.
For this reason, the fourth user’s samples were considered abnormal and excluded from
further calculations.

Finally, the arithmetic means of accelerations were calculated for each form (on the basis of
the results of users 1, 2 and 3) as well as the arithmetic mean of acceleration for all forms
which is 3.36 times.

Then we measured the accelerations of form filling processes using mechanisms available in
Firefox 3. Because of a different mechanism, the test cases T3 and T4 have become
synonymous with cases T1 and T2 (the same scenario of interaction) and therefore have
been omitted. The results of the measurements can be found in Table 4.

Then we calculated the arithmetic means of the acceleration for each form, and the
arithmetic mean for all forms, which was 1.13 times.

www.intechopen.com

wo2 usdoyoaiul' Mmm

Time needed to fill in a form(in seconds)

User 1 User 2 User 3 Us
Scenario
Acceleration Acceleration Acceleration A
Time Time Time Time |——
Average Average Average
F1-T1 12 46 25 10
F1-T2 10 24 14 6
F1-T3 17 23 55 14
F1-T4 7 1,76 23 1,47 14 2,86 8 1,7
F2-T1 22 51 35 18
F2-T2 4 16 11 1
F2-T3 31 46 62 23
F2-T4 5 5,96 10 3,94 15 3,82 15 10,¢
F3-T1 54 110 68 49
F3-T2 16 38 24 5
F3-T3 65 131 78 52
F3-T4 17 3,61 3,78 28 3,74 3,05 23 3,11 3,26 11 7,3

Table 3. The results of the measurements of acceleration of the assisted form filling using the forms n

wo2 usdoyoaiul' Mmm

Time needed to fill in a form(in seconds)

Scenario User 1 User 2 User 3 U
Time Acc. Avg. | Time | Acc. Avg.. Time Acc. Avg. Time i

F1-T1 12 46 25 10
F1-T2 10 1,20 51 0,90 22 1,14 7 1

F2-T1 22 51 35 18
F2-T2 18 1,22 46 1,11 33 1,06 17 1

F3-T1 54 110 68 49
F3-T2 49 1,10 1,17 99 1,11 1,04 61 1,11 1,10 43 1

Table 4. The measurements of acceleration using a form-filling mechanism for Firefox 3[own].

Assisted form filling 63

4.3. Analysis of results

The analysis of estimates let us assume that the acceleration processes of assisted form
filling will grow more or less linearly with the increase of the forms complexity. This fact
has not been confirmed by the results of tests presented in Figure 16.

5,00
4,50 /‘\

4,00

3,50 / \
3,00 /

2,50 /

2,00 | /

Measured acceleration ratio

1,50

1,00

0,50

0,00
F1 - Internal F2 - Address Form F3 - Application for
Application Copy of Birth Act

Fig. 16. The measured average acceleration of the process of assisted form filling in relation
to the degree of complexity of forms [own].

The dramatic difference between the estimated and the measured acceleration comes from
the time the users spent on analyzing the structure and meaning of forms being filled, which
was not included in the estimates. The time needed to analyze the meaning and structure of
forms is also responsible for the noticeable decline of acceleration of processes with the
increase in the form complexity, which was depicted in the figure 16. It is reasonable to
assume that the two trends are going to cancel each other out resulting in roughly constant
acceleration. However, it is necessary to perform tests with more users and more diverse
forms to determine which trend has a dominating influence on the final value of the
acceleration.

Despite the need for further research we can already predict some consequences. In case of
users with well-developed motor skills the dominant factor will be the time they spend on
the analyzing the meaning of the form. In such cases, the benefit associated with
accelerating the process of form filling will be small, and the usefulness of this solution will
be considered only in terms of easy use.

Another extremely different group will consist of people with low motor skills, for whom
the main concern will be to type in the field values using the keyboard. They can be both
disabled people and novice computer users who have not yet dealt with rapid typing. For
such people the dominant factor will be the time taken to fill in individual fields. In such
cases, the mechanism of assisted form filling will provide a significant time benefit and a
significant increase in the convenience of the software use.

www.intechopen.com

64 Engineering the Computer Science and IT

However, the largest group of users will probably be represented by those with the average
motor skills for whom the acceleration of the form filling processes in the order of three to
four times is sufficiently good.

In addition, it should be noted that, despite the difference between the estimated and the
measured acceleration of assisted form filling processes, the solution presented by the forms
module obtains significantly better results (by order of magnitude) than the mechanism
available in web browsers, which at the efficiency of 10-20% puts the solution into question.

5. Conclusions

The application of semantic technologies allowed to implement working software that
assists the user in filling any electronic forms. As both research and implementation are still
in progress, the usefulness of this solution was based only on approximate estimates and on
several studies involving the users, which does not allow a thorough evaluation. The
outcome of the work, however, allows us to believe that the chosen direction has good
chances of success.

6. References

Berners-Lee T., Hendler J., Lassila O., The semantic web. Scientific American Magazine,
May, 2001.

Forgy C., On the efficient implementation of production systems. Carneggie-Mellon
University, 1979.

Grosof B., Horrocks 1., Volz R., Decker S., Description Logic Programs: Combining Logic
Programs with Description Logic .2003, http://www.cs.man.ac.uk/~horrocks/
Publications/download/2003/p117-grosof.pdf, 2009-01.

Horn A., On sentences which are true of direct unions of algebras. Journal of Symbolic
Logic, 16, 14-21, 1951.

OWL Web Ontology Language Guide. W3C, 2004, http://www.w3.org/TR/owl-guide,
2009-01.

OWL Web Ontology Language Overview. W3C, 2004, http://www.w3.org/TR/owl-
features, 2009-01.

OWL Web Ontology Language Reference. W3C, 2004, http://www.w3.org/TR/owl-ref,
2009-01.

OWL-S: Semantic Markup for Web Services, W3C, 2004,
http:/ /www.w3.org/Submission/ OWL-S, 2009-01.

OWL Web Ontology Language Semantics and Abstract Syntax. W3C, 2004,
http:/ /www.w3.org/TR/owl-semantics, 2009-01.

Resource Description Framework (RDF); Concepts and Abstract Syntax. W3C, 2004,
http:/ /www.w3.org/TR/rdf-concepts, 2009-01.

RDF Primer. W3C, 2004, http:/ /www.w3.org/TR/rdf-primer, 2009-01.

RDF Vocabulary Description Language 1.0: RDF Schema. W3C, 2004,
http:/ /www.w3.org/TR/rdf-schema, 2009-10.

RDF Semantics. W3C, 2004, http:/ /www.w3.org/TR/rdf-mt, 2009-01.

Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C, 2006,
http:/ /www.w3.org/ XML, 2009-01.

www.intechopen.com

7 Engineering the Computer Science and IT
Engineering the
Compuler Science and IT Edited by Safeeullah Soomro

ISBN 978-953-307-012-4

Hard cover, 506 pages

Publisher InTech

Published online 01, October, 2009
Published in print edition October, 2009

It has been many decades, since Computer Science has been able to achieve tremendous recognition and
has been applied in various fields, mainly computer programming and software engineering. Many efforts have
been taken to improve knowledge of researchers, educationists and others in the field of computer science
and engineering. This book provides a further insight in this direction. It provides innovative ideas in the field of
computer science and engineering with a view to face new challenges of the current and future centuries. This
book comprises of 25 chapters focusing on the basic and applied research in the field of computer science and
information technology. It increases knowledge in the topics such as web programming, logic programming,
software debugging, real-time systems, statistical modeling, networking, program analysis, mathematical
models and natural language processing.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Lukasz Bownik, Wojciech Gorka and Adam Piasecki (2009). Assisted Form Filling, Engineering the Computer
Science and IT, Safeeullah Soomro (Ed.), ISBN: 978-953-307-012-4, InTech, Available from:
http://www.intechopen.com/books/engineering-the-computer-science-and-it/assisted-form-filling

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FhE biEm It T 655 iEEFr SR # AR IRIE M Atk405 87T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

