We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Fault Localization Models Using Dependences

Safeeullah Soomro!, Abdul Hameed Memon?,

Asif Ali Shah? 4 and Wajiha Shah3 4

Emails: safee@ieee.org, memon@yic.edu.sa &
{asif.shah,wajiha.shah}@tuwien.ac.at

TYanbu University College, KSA

2Yanbu Industrial College, KSA

3Vienna University of Technology, Austria

*Mehran University of Engineering & Technology Jamshoro, Pakistan

Abstract

In recent years Mode-Based Diagnosis has an acheived a tremendous recognition and has
been applied to variety of disgnosis problems, mainly software debugging. Many efforts
have been taken to improve software development and prevent faults. Still software faults
pose challenging problems to software designers. Fault localization is next step after
detecting faults in programs. This chapter makes use of dependences between program
variables to detecting and localization faults from strucural programs. Further more we
discuss the relationship between the FDM (functional-dependences model) and VBM
(verification-based model) under presence of partial specifications artifacts like assertions
are pre and post conditions by exemplifying specific scenarios in software debugging.
Moreover, we discuss the relationship between VBM model and the well-known functional-
dependence model particularly under presence of partial specification artifacts like
assertions or pre- and post conditions. In the last we present the summary regarding
dependences models that helps us to choose which model is detecting and locating errors
from different type of data structures. Finally we discuss the case studies between FDM and
VBM with some test programs.

Keywords: Model Based Software Debugging, Software Debugging, Model-Based Diagnosis, Fault
Detection and Localization.

1. Introduction

Within the last decades several techniques for debugging, i.e., detecting, locating, and
repairing faults in programs, have been proposed. Some of the techniques make use of
models of the program's structure and behavior like algorithmic debugging or model-based
debugging. Other techniques try to find bugs by examining code for suspects, i.e., code
fragments that do not obey given rules, by finding differences between different program
runs, or by finding (structural) differences between a program and another implementation.

www.intechopen.com

24 Engineering the Computer Science and IT

The latter technique is used mainly for tutoring systems where the desired implementation
is known in advance.

We introduce the basic idea of automated fault localization in software by means of a small
Java program example. The program given in Figure 1. multiplies two integer variables x
and y and returns the product and the product's sign. In line 11 we assign 0-y to the loop
counter i, thus our program is buggy. For the test case x=-2 and y=+4 we obtain that result is
0, which contradicts our expectation result = -8.

In localizing the misbehavior's cause we start with static code analysis techniques. For
example, we compute a static slice in line 18 with respect to the variable result. This rules
out irrelevant statements by considering solely statements influencing the variable result.
Our static slice contains the statements [2,6,7,8,9,11,12,14,15,16] - that is, we can exclude the
statements 5 and 10 from causing the result's wrong value.

In addition we know that our loop counter i is always bigger or equal to 0 thus we might
add the assertion in line 13. When executing the program with the test case x=-2 and y=+4
the variable i becomes -4 which causes the assertion to fail. At this point we again compute
the static slice obtaining the lines [2,7,9,11]. Thus at this point we definitely know that one of
the statements given in this slice causes the misbehavior with regard to variable i. Moreover,
the second slice is a subset of the first one, thus we suspect the same error being responsible
for both assertion violations, line 13 and 17.

In the next step we incorporate the specific test case's outcome. Notably, dynamic slices
cannot localize the fault's real cause, thus the authors (Gyimothy et al, 1999 ; Agrawal et al,
1993) extend this notion to a so called relevant slice. A relevant slice is a dynamic slice
augmented with potentially affecting conditions and their data dependences. We employ
this notion of a slice for the given test case and the slicing criterion (13,{result =0}). When
taking into account this kind of slice we can further rule out line 7. Since, for the given test
case, the condition in line 8 is true, line 11 rather than 7 determines the value of i in line 13.

In our example, slicing techniques alleviate localizing the misbehavior's cause. In general,
fault localization is a difficult task and requires the incorporation of various models (the
spectrum ranges from abstract models relying on dependences (Jackson, 1995) to concrete
value-level models) and techniques (e.g. algorithmic debugging (Shapiro, 1983), model-
based debugging (Wotawa, 2000 ; Kleer & Williams, 1987) into a debugging environment.

www.intechopen.com

Fault Localization Models Using Dependences 25

1 // pre true
2 public int mult (int x,y) {
3 int add,i,result;
4
5 sign=1;
6 add =vy;
7 1=x;
8 result = 0;
9 if (x <0) {
10 sign = -1;
11 i=0-y; // should be 0-x
12 add=0-vy;}
13 ASSERT (i >=0)
14 while (0 <i) {
15 i=i-1;
16 result = result + add;}
17 ASSERT (result = xy);
18 output result, sign;
19 }
20 // post result = xy
21 // post sign = sign xy

Fig. 1. Multiplication of two integer values.

The chapter is organized as follows. In Section 2 we present our Verification Based Model
(VBM). The comparison between VBM and (Functional Dependence Model) FDM is given in
Section 3. In Section 4 we present case studies regarding debugging model. In section five
we present the related research work of dependences based models. Finally we summarize
the chapter including furure research.

2. Verification Based Model

Our novel debugging model allows one for reasoning about functions over dependence
relations under given assumptions. Therefore the notion of a dependence relation is
fundamental to our approach:

Definition 1 (Dependence Relation) Given a program with variables V, and a set of model
variables M={¢;...}. A dependence relation is a subset of the set D =2V X ((Mo V).
The key idea is to abstract over the actual state transitions of the program and instead view
its behavior as a dependence relation between inputs and outputs. Any pair (x,y) € D says
that the value of x after depends on the value of y before statement execution.

We obtain the dependence relation of compound statement by putting together the
dependence relation of its constituent parts. Given two statement S; and Sy, the dependence

www.intechopen.com

26 Engineering the Computer Science and IT

relation of the compound statement S;; Sy is given by D(S1; S2)=D(S1) ® D(Sz). To reflect this
we define two composition operators:

Definition 2 (Composition1) Given two dependence relations R;, R, € Don V and M. The
composition of R; and R, is defined as follows:

{(xy) | Fexists (z,;y) inR; & 3 (x,2) ER2 } v
Ri®Ry= {(xy) | Jexists (zy) inRi & 3 (x,z) ER2 } 0
{(xy) | & exists (zy) in Ry & 3 (x,z) € Ry }

This definition ensures that no information is lost during computing the overall dependence
relation for a procedure or method. Hence, the first line of the definition of composition
handles the case where there is a transitive dependence. The second line states that all
dependences that are not re-defined in R; are still valid. In the third line all dependences
that are defined in R; are in the new dependence set provided that there is no transitivity
relation.

Note that functional composition is not a commutative operation and that { } is the identity
element of composition. For example, the combined dependences of our below examples
are:

rt®r2={(cr),dr)}=r"andr ® rs={(ar), (a pi), (cr),@dr)}=r"

In the following we explain the basic ideas using the following small program which
implements the computation of the circumference and area of a circle. The program contains
one fault in line 2 where a multiplication by IT (pi) is missing.

0. // pre true

1. d=r*2;

2. c=d;// BUG!a=d*pi;
3. c=r*r*pi

4. // postc=r2 -IIra=2 -r 11

These dependences solely are given by a statement whenever we assume that the statement
is correct (w.r.t. the dependences). If a statement is assumed to be incorrect, the
dependences are not known. We express the latter fact by introducing a new type of
variable, the so called model variables. Model variables are variables that work as place-
holder for program variables. For example, if we assume statement 2 to be incorrect, we
introduce a model that says that program variable a depends on model variable &, (where &>
is unique).

To point out intricacies with the previous definition we further need to define relation
composition as follows:

Definition 3 (Relational Composition) Given two dependence relations R;, R, € D on V and M.
Given two statement S; and S,, the dependences of the compound statement Si; Sy in terms of

www.intechopen.com

Fault Localization Models Using Dependences 27

relational composition is given by D(S1; S2) = D(S2) o D(S1). The relational composition of Ry
and R; is defined as follows:

RioR:={ (xy) | (xy) ER1 & (zy) ER2}
Note, that as long as we rely on the simple dependence definition given previously, this
operator suffers from information loss since it solely preserves transitive relationships. For
our running example we obtainr; 0 r» ={(cr)} =r'andrzor'={}=1"

In order to allow the direct comparison of specified dependences with the computed ones
we introduce a projection operator which deletes all dependences for variables that are not
of interest like the internal variable d.

Definition 4 (Projection) Given a dependence relations R € D and a set of ariables A & Mo V.
The projection of R on A written as [| A(R) is defined as follows:

[TaR) ={(xy) | (xy) ER &x €A}
For example, [[capi (r'') is {a,r), (c, 1),(c, pi)} which is equivalent to the specification.

From here on we assume that the computed dependence relation is always projected onto
the variables used within the specification before comparing it with the specification - that
is, A= {x | (x,y) € SPEC denotes the specified dependences.

Definition 5 (Grounded dependence relation) A dependence relation is said to be grounded (or
variable-free) if it contains no model variables.

We assume that all specification are grounded dependencerelations. Thus, we have to
compare dependence relations containing model variables with grounded dependence
relations. Wepropose a similar solution to that employed in the resolution calculus of first-
order logic, namely substitution and finding the most general unifier. However, in contrast
to variable substitution in first-order logic, we do not only replace one variable by one term
but one model variable by a set of program variables.

Definition 6 (Substitution) A substitution o is a function which maps model variables to a
set of program variables, i.e., 0: M— 2v. The result of the application of the substitution o on
a dependence relation R is a dependence relation where all model-variables x from R have
been replaced by o (x).

For the purpose of finding an efficient algorithm for computing asubstitution that makes a
dependence set equivalent to its specification we first map the problem to an equivalent
constraint satisfaction problem (CSP). A CSP (Dechter, 1992 & Dechter 2003) comprises
variables Vars, their domains Dom, and a set of constraints Cons that have to be fulfilled
when assigning values to the variables. A value assignment that fulfills all constraints is said
to be a o solution of the CSP. Every solution to the corresponding CSP is a valid substitution.
For more details about how make use of standard CSP algorithms for computing
substitutions. we refer the reader to (Jackson, 1995).

www.intechopen.com

28 Engineering the Computer Science and IT

Finally, we are now able to define the equivalence of a dependence set and its grounded
specification.

1. Assignmnts:
—Ab(x = e) »D(x = ¢e) = {(x,v) | v € vars(e) where vars is assumed to return all
variables which are used in exression e.
M(x=e)= {x}
Ab(x = e) — D(x =e) ={(x,&)}
2. Conditionals:
—~Ab(if e then Sp else S;) — D(if e then Sy else S;) = D(S1) v D(S2) v {(x,x) | x €
(M(S1) v M(S2))} v ((M(S1) v M(S2)) x vars(e))
M(if e then Syelse S») = M(S1) v M(S2)
Ab(if e then Syelse Sz) D(if e then Syelse S;)=D(S1) v D(S2) v {(x,x) | x €(M(S1) o M
(S2))fo (M(S1) o M(S2)) x { & })
3. Loops:
—Ab(while e {S}) —D(whilee { S }) = D(S)* v (M(S) x vars(e))) ® D(5)*
M (while e {S}) = M(S)
Ab(whilee { S })) — D(whilee {S }) =D (S)* o (M(S) X {&}) * D(S)+
In the above rules D(S) * is the transiive closure of D(S).
4. No-operation (NOP):
D((nop)=1where I ={(x,x) | x €V}
M(nop) = { }
5. Sequence of statements:
D(51;52) =D(S1) * D(S2)
M(S1;52) = M(S1) v M(S2)

Fig. 2. The Verification-Based Model.

Definition 7 (Equivalence) A dependence set R is equivalent to its grounded specification S iff
there exists a o = findSubstitution (R,S) # Lando (R) = 6.

Formally, it remains to introduce how to extract dependence information from the source
code. Figure 2 shows the appropriate rules. In the figure function D returns the dependences
for a given statement and function M returns the variables employed within a given
statement. Moreover, function var returns a given expression's variables. For more details
about how to extract dependences we refer the reader to (Jackson, 1995). In Figure 2 we
presented rules of of extracting dependences from multiples statements and more details
about how to extract dependences from procedures we refer to reader (Soomro., S. 2007).

3. Comparison Between VBM and FDM

In order to compare different models of programs for fault detection and localization, we
first introduce the debugging problem formally. Similar to Reiter's definition of a diagnosis
problem (Wotawa, 2002) a debugging problem is characterized by the given program and
its expected behavior. In contrast to Reiter we assume the existence of a specification that

www.intechopen.com

Fault Localization Models Using Dependences 29

captures the whole expected behavior and not only behavioral instances like given by the set
of observations OBS in Reiter's original definition.

Definition 8 (Debugging Problem) A debugging problem is characterized by a tuple ([[, SPEC)
where || is a program written in a certain programming language and SPEC is a (formal)
specification of the program's intended behavior. The debugging problem now can be separated into
three parts:
1. Fault Detection: Answer the question: Does [] fulfill SPEC?. In case a program fulfills
(does not fulfill) its specifications we write [[v SPEC ¥ ([Jo SPEC E - respectively).
2. Fault Localozation : Find the root cause in [| which explains a behavior not given in
SPEC.
3. Fault Correction : Change the program such that [| fulfills SPEC.

Note that SPEC is not required to be a formal specification. It might represent an oracle, i.e.,
a uman, which is able to give an answer to all questions regarding program []. In this
section we focus on the first two tasks of the debugging problem. Because fault localization
and correction can only be performed when identifying a faulty behavior, from here on we
assume only situations where ([], SPEC) k-L. The question now is how such situations can
be detected in practice.

The availability of a specification that is able to answer all questions is an assumption which
is hardly (and not to say impossible) to fulfill. What we have in practice is a partial
specification. Therefore, we are only able to detect a faulty behavior and not to prove
correctness. Obviously different kind of specifications may lead to different results to the
first task of the debugging problem, i.e., identifying a faulty behavior. In the context of this
chapter the question about the satisfiability of [v SPEC [is reduced to checking the
satisfiability of two entences, i.e., FDM([]) v SPECrpm -1 and VBM([])v SPECvsm F -+
where SPECypym and SPECrpy are the partial specification which belong to the FDM and
VBM respectively.

proc (a,b) {.....

x=a+b;

y=a/b; /finstead of y=a *b
assert (y==a*b)

).

ST L=

1AB(2) A ok (a) A ok(b)— ok(x) SPEC(proc) = {(y,a), (v,b)}

1AB(3) A ok (a) A ok(b)— ok(y) dep(proc) = {(y,a), (y,b)
dep(proc) = SPEC(proc)

—o0k(a), —ok(b), — 7 0k(y) DIAG ={}

DIAG = {{AB(3)}}

Fig. 3. Code Snippet, FD model, Specified and Computed Dependences.

The model comparison we present in the following relies on a couple of (reasonable)
assumptions. First, for the FDM we need to have a test case judging the correctness of

www.intechopen.com

30 Engineering the Computer Science and IT

specific variables. In general, finding an appropriate test case revealing a misbehavior w.r.t.
specific variables is a difficult task, however, the presence of such a single test case is a
requirement for the applicability of the FDM. For the VBM, we assume an underlying
assertion language, and a mechanism for deducing dependence specifications from this
language. Dependences are further oriented according to last-assigned variables and
specified in terms of inputs or input parameters rather than intermediate variables. For
simplicity, we further assume that there are no disjunctive post conditions.

In the following we illustrate the introduced models' strength and weaknesses in terms of
simple scenarios. In the figures the left hand side is a summary of the FDM model including
the observations obtained from running the test case and the left hand side outlines the
VBM. For both columns we summarize the obtained diagnosis candidates in terms of the set
DIAG. Note that we only focus on single-fault diagnosis throughout the following
discussion.

Figure 3 outlines a code snippet together with the assertion checking a certain property, the
FDM, and the specified computed dependences. Obviously, the VBM is unable to detect and
thus localize this specific (functional) fault. In contrast to this, the FDM is able to localize this
specific fault. Due to the failed assertion we can conclude that there is something wrong
with variable y, thus — ok(y) holds. We also can assume that inputs a and b are correct, thus
the assumptions ok(a) and ok(b) directly deliver line 3 (AB(3)) as the sole single-fault
diagnosis.

proc (a,b,x,y) {.....

x=a+b;

x =+2; //instead of y=x+2
assert (y==x+2, x ==qa+b)

J...

SARINC I

1 AB(2) A ok (a) A ok(b)— ok(x’) SPEC = {(y,a), (y,b)(x,a)(x,b)}
1AB(3) A ok (a) A ok(b)— ok(y) dep(proc) = {(x,a), (x,b)
—ok(x), —ok(a); —ok(b) dep(proc) & SPEC(proc)

o(L)={} o(S)=1{}
— 1 0k(x"");—ok(a), —ok(b)
DIAG = {{AB(3)}, {AB(3)}} DIAG={}

Fig. 4. The misplaced Left-hand Side Variable.

Moreover, as Figure 4 illustrates, although the FDM allows for detecting misplaced left-
hand side variables, the VBM cannot localize these kind of faults. Assume that a=1,b=1,x=2
thus y=4. Our assertion suggests to assume the dependences {(y,a),(y,b) (x,a),(x,b)}. Both
models allow for detecting the fault. When employing the FDM, from the raised assertion
we know that — ok(x) holds. In order to conclude that the outcome of statement 3 is correct,

www.intechopen.com

Fault Localization Models Using Dependences 31

we need to know that x is correct prior to this statement's execution. Thus, to obtain the
contradiction we have to assume that both statements are correct.

By reverting the correctness assumption about statement 2 we obviously can remove the

contradiction. Moreover, reverting the assumption about statement 3 also resolves the
contradiction. Thus, we obtain two single-fault diagnosis AB(2) and AB(3). In contrast to
this, since y never appears as target variable, we cannot obtain dependences for variable y
and thus the VBM cannot localize these kind of (structural) faults.

proc (a,b,x,y) {.....

x=a+b;

y =x+c+d; //instead of y= x+c
assert (y = = x +c)

J...

ARG

1AB(2) A ok (a) C)— ok(x)

1AB@3) A ok (x) — ok(c) A ok(d) — ok(y)
— 7 0k(y),—ok(a), —ok(b)

DIAG = {{AB(2)}, {AB(3)}}

SPEC(proc) = {Y,a),(y,b)(y,c)}

Dep(proc) = {(y, a), (v, b), (y, ¢), (x, a), (x, b)}
Dep(proc) 2SPEC(proc)

DIAG={}

Fig. 5. A Typical (Structure) Fault Inducing Additional Dependences.

The next example points out that the VBM fails in case the fault introduces additional
dependences. In Figure 5 we assign x +c +d instead of x + ¢ to the variable y. Our assertion
indicates that y depends upon x and ¢, thus SPEC(proc) = {(y,a),(y,b),(y,c)}. Computing the
program's actual dependences dep(proc), however, yields to {(y,a)(y,b)(y,c)(y,d)}
{(y,a),(y,b),(y,c)} and thus VBM cannot detect this specific malfunctioning nor locate the
misbehavior's cause. By employing the FDM under the assumption - 0k(y) we obtain two
single-fault diagnosis AB(2) and AB(3).

Figure 6 illustrates an example where the fault manifests itself in inducing less dependences
than specified. Our specification is SPEC(proc) = {(y,a),(y,b),(y,c)}. Obviously, the computed
dependences {(y,a),(y,b)} 2 SPEC(proc). As the figure outlines, we obtain two single-fault
diagnosis candidates, AB(2) and AB(3). In this case, the FDM is also capable of delivering the
misbehavior's real cause, it returns two single-fault diagnosis candidates: AB(2) and AB(3).

The Author (Stumptner, 2001) shows that localizing structural faults requires exploiting
design information like assertions, and pre- and post conditions. Again, we outline this in
terms of a few small examples. Although the previous examples show that the VBM cannot
detect neither locate certain types of faults, it may provide reasonable results in capturing
structural faults.

www.intechopen.com

32 Engineering the Computer Science and IT

Our final example in Figure 7 illustrates that both approaches might deliver reasonable but
different results. We assume a=1,b=1,e=0, thus we expect z=2 and d=0. However, due to the
introduced fault, we obtain z=1 and d=0. Since the value of z is incorrect, but d=0, we
conclude that 40k(z) and ok(d) holds. Thus, we btain AB(2) and AB(4) as diagnosis
candidates. Note that this result primarily roots in the coincidental correctness of variable d.

y =x; //instead of y=x+c
assert (y = =a+b +c)

J...

SN N

1AB(2) A ok (a) A ok(b)— ok(x) SPEC = {(y,a), (y,b)(y,c)}
1AB(3) A ok (a) — ok(y) dep(proc) = {(y,a), (y,b)}

— q 0k(y), —ok(a), —ok(b) dep(proc) 2 SPEC(proc)

0 (&) =fabe}, 0 (5)={ab,c}

DIAG = {{AB(2)}, {AB(3)}} DIAG = {{AB(2)}, {AB(3)}}

Fig. 6. A Typical (Structural) Fault Inducing Fewer Dependences than Specified

Given the assertion in Figure 7 we are aware of the dependences {(d,a),(d,b),(de),(z,a) ,(z,b),
(z,e)}. As the figure outlines, we obtain two single-fault diagnosis AB(2) and AB(3). As is also
indicated in the figure, when solely employing a single assertion requiring z == c + d, we
obtain SPEC'(proc)={ (z,a),(z,b),(z,e)} and dep'(proc) =2 SPEC'(proc). Consequently, we obtain
3 diagnoses (AB(2), AB(3) and AB(4)) in this case. However, even when employing the FDM
we cannot exclude a single statement, thus, in this specific case, both models deliver the
same accuracy.

The examples outlined above should have made clear that a comparison of both models in
terms of their diagnostic capabilities inherently depends on how we deduce observations
from violated properties. Note that the FDM itself cannot detect any faults, rather faults are
detected by evaluation of the assertions on the values obtained from a concrete test run.

The VBM can reliably detect and localize faults that manifest in missing dependences on the
right-hand side of an assignment statement. Due to the over-approximation of dependences
we cannot locate faults manifesting in additional dependences as it is impossible to
distinguish if (1) the specification is incomplete, (2) the model computes spurious
dependences, or (3) an unwanted dependence is present due to a fault.

Table 1 summarizes the illustrated examples by listing the individual models' fault detection
and localization capabilities. For those examples, where both models deliver diagnosis
candidates, we checked whether the diagnoses provided by the VBM are a subset of those
provided by the FDM.

www.intechopen.com

Fault Localization Models Using Dependences 33

In comparing both models, we start by contrasting the well-known artifacts in the area of
MBSD. Table 2 summarizes the most notable differences in employing the VBM and FDM
for fault localization. In both models we employ a partial specification (e.g. test case,
assertion, invariant) for deducing a number of observations. Whereas the VBM encodes
observations in terms of dependence relations, the FDM relies on a program's execution and
subsequent classification of the observed variables. Variables are merely classified as being
correct or incorrect with respect to a given (partial) specification.

proc (a,bc) {.....

c= a;// should be c=a+b

d=c *e;

z =c+d;

assert (z==c+d, [d==c*e])

J...

S

1AB(2) A ok (a) — ok(c)

1AB(3) A ok (c) A ok(e) — ok(d)
[~ ok(d]),— ok(z)

DIAG = {{AB(2)}, {AB(4)}}

DIAG" = {{AB(2)}, {AB(3)}L,{AB(4)}}

SPEC(proc) = {(z,a), (z,b), (z,e), (d,a), (d,b), (de)}
dep(proc) = {(z,a), (z,e), (d,a), (de)}

dep(proc)/ = SPEC(proc)

0($) ={ab}, 0 (53) ={abe} 0 (&) =1}

DIAG = {{AB(2)}, {AB(3)}}

SPEC'(proc) = {(z,a), (z,b), (z.e)}
dep’(proc)={(z,a),(ze)}

dep’(proc)y = SPEC’(proc)

0(§2) ={ab}, 0(§3)={abe} 00(Ss) = {ab,e}

Fig. 7. A Degenerated Example (Error Masking), Diags (FDM) (symbol) diags(VBM)

Example FDM loc VMB Diags (FDM) o
det. loc diags (VBM)
Fig. 3 v X X -
Fig. 4 v X X -
Fig. 5 X v v -
Fig. 6 v v v v
Fig. 7 v v v X

Table 1. Summary on the Outline Scenarios

www.intechopen.com

34 Engineering the Computer Science and IT

Furthermore, the VBM models the program in terms of functions over ependence relations,
the FDM captures the programs behavior by a number of logical sentences, in particular we
employ a Horn clause theory. The VBM detects a fault by checking whether the system
description fulfills the given specification. In case this relationship does not hold, a fault has
been detected. In contrast, we detect a fault with the FDM if the system description together
with the specification yields to logical contradiction.

artifact VBM FDM
observatuibs dependence relations Ok, ~ (ok)
systemn descr function over dependences | Horn clauses FDM([])
relation VBM (I])
fault detect. VBM ([]) 2 SPEC -
fault localiz. VBM ([1) 2 SPEC FDM(IT) v Spec #-L
assumptions Varible substitution € = ... ~ AB
theorem prover CSP solver Horn clauses theorem prover
structureal faults | detect., localiz, detect, localiz.
functional faults no detect., no localiz detect., localiz.

Table 2. Comparing the Most Common Artifacts

The VBM locates possible causes for detected misbehavior by assuming that specific
statements depend on model variables, and checking whether there is a valid substitution.
As authros outlined in (Peischl et al, 2006), this process is an efficiently done by solving a
CSP. Instead, the FDM employs a Horn clause theorem prover under the assumption of
statement abnormality in computing diagnosis candidates. Note, that whereas the FDM
does not assume any faulty behavior for specific statements, the VBM assumes specific
dependences guided by the specification.

As indicated by the example above, the VBM is tailored towards detection and localization
of structural faults, whereas the FDM may capture structural but particularly functional
faults. Similar to static slicing capturing control as well as data flow dependences, the FDM
must comprise all statements responsible for the computation of an erroneous variable.
Thus, the FDM always provides diagnosis candidates under presence of an erroneous
variable. The author (Wotawa, 2002) points out that the FDM delivers at least the same
results as static slicing. Moreover, we know that the misbehavior's real cause is always
among the delivered diagnosis candidates when employing the FDM. This perspective is
supported by theoretical foundation (Friedrich et al, 1999) as well as practical evidence in
numerous case studies.

Particularly, a comparison w.r.t. the accuracy and completeness of the obtained diagnosis is
of interest. Figure 8 summarizes the relationship of the FDM and the VBM regarding their
abilities of checking satisfiability. The lines between the nodes building up the lattice denote
a subset relationship. As illustrated by the examples, there are debugging problems where
the VBM allows for finding a discrepancy but the FDM does not and vice versa.

www.intechopen.com

Fault Localization Models Using Dependences 35

4. Case Studies

Authors (Peischl et al, 2006) present first experimental results indicating the approaches'
applicability. The results presented there solely stem from small programs. In evaluating the
model's fault localization capabilities under presence of procedural abstraction, we
decompose a program into several procedures in a step by step fashion. This procedure
allows for a first evaluation of both, the model for (1) parameter passing and (2) handling of
return values.

Table 3 summarizes our most recent results. Specifically, the program eval evaluates the
arithmetic expression z «(r x h)+(c /d) - (d+h) x (e+f). The specification says that the left-hand
side z depends on the variables r,/,c,d,e, and f. We introduced a single structural fault and
decomposed this program by adding procedures computing specific subexpressions in a
step by step fashion. A specific subexpression is thus evaluated by a single procedure and
replaced by the variable capturing this procedure's evaluation. We refer to the decomposed
programs comprising i ethods by eval(i). In the remaining programs, which perform simple
computations like taxes or evaluate simple arithmetic expressions, we also introduced a
single structural fault.

Removing certain dependences from the specification allows for evaluating our odel's
capabilities in localizing structural faults under presence of partial knowledge of the
dependences of the output variables. Thus, we observed a subset of the output dependences

involving up to 5 variables and recorded the minimum and maximum number of diagnosis
candidates.

TLIAG=
[xlx Lz in stmmt(p)}

T
‘\-._____h__—_—__ﬂ___,_-f

Fig. 8. The (Open) Relationship Between VBM and FDM

www.intechopen.com

36 Engineering the Computer Science and IT

Methodno| LOC Total Min-Max no. Diagnosis Candidates

dep.no 5 4 3 2 1

eval (1) 10 9 - - - - 4
eval (2) 14 10 - - - 4 4-11
eval (3) 18 11 - - 4 4-13 4-18
eval (4) 22 12 - 4 4-15 4-22 4-22
eval (5) 26 13 4 4-17 4-26 4-26 4-26
sum 22 11 - - 4 4-13 4-18
arithmetic 26 12 - 4 4-15 4-15 4-22
tax comp. 30 13 4 4-17 4-26 4-26 4-26
calculator 40 12 1-31 1-31 1-33 1-34 1-34

Table 3. Number of single-Faults Diagnosis with Decreasing Number of Specified Output
Variables.

For example, regarding the program eval(3) we obtained 4 diagnosis candidates when
observing all outputs. Afterwards we selected 2 output variables out of the 3 output
variables, and for all possible combinations of selecting 2 out of 3 outputs, we recorded the
number of diagnoses. The table specifies the minimal and maximal number of diagnosis
candidates obtained in this way (in this specific case of considering 2 output variableswe
obtain at least 4 and at most 13 diagnosis andidates). We checked whether or not the
introduced faults appear among the delivered diagnosis candidates. Regarding all our
experiments, we have been able to locate the misbehavior's real cause.

Furthermore, the table lists the number of total dependences (column 3) and the program's
size in terms of the lines of code (column 2). Our experiments indicate an increase in the
number of candidates with a decreasing number of outputs being considered. In the table,
we did not take into account cases where the reduced output dependences are not capable
of detecting the fault. In this case our approach obviously returns { }. In summary, the
obtained results, confirm the findings in (Hamscher & Davis 1984): As our problem becomes
under-constrained by removing certain output dependences, the number of diagnosis
candidates may increase drastically. As our experiments indicate, this also appears to hold
for the novel model introduced herein.

5. Related Research

We present related work which provides an overview of related research of our chapter.

5.1 Model-Based Software Debugging

Model-based diagnosis(MBD) is a well-known Artificial Intelligence(Al) Technique for the
localization and malfunctioning parts in (mostly physical) systems. The definitions of MBD
as given in (Reiter, 1987; Kleer & Williams 1987) and show how this approach can be used
to locate faulty components in a given system. First-order logic produced formal model for
MBD and covers sound framework. Test cases are uses to examine the specifications and
diagnostic engine locates single or multiple faults from derived system. Several authors
(Hamscher, W.C 1991, Greiner, R et. al. 1989) provides the well-founded theory underlying

www.intechopen.com

Fault Localization Models Using Dependences 37

Model-Based Diagnosis (MBD). Traditionally MBD focuses on diagnosing physical systems
(Console, L. et. al. 1993, Cascio., F. et. al. 1999, Williams., B.C. 1996 & Malik., A. 1996),
however several authors (Console, L. et. al. 1993, Bond., G. W. 1994, Stumptner., M &
Wotawa., F. 1999a, Stumptner., M & Wotawa., F. 1999b, Stumptner., M & Wotawa., F.1999¢
& Stumptner., M & Wotawa., F. 1999d) employing model-based diagnosis techniques in
software debugging.

Authors (Stumptner., M & Wotawa., F. 1999a & Stumptner., M & Wotawa., F. 1999b) covers
model-based software debugging of functional programs and the other authors of these
publications (Mayer., W. & Stumptner., M. 2003, Mayer., W. et. al 2002a & Wieland., D.
2001) focus on software debugging of Java programs, particularly objected-oriented
programming features. These authors work together JADE project to develop functional
dependency model and value based model for software debugging. The comparison
between two models are presented in (Mayer.,, W. et. al 2002a, Mayer., W. et. al 2002b,
Stumptner., M. et. al. 2001a & Stumptner., M. et. al. 2001b) where they discussed capabilities
of both models in respect with advantages and weaknesses.

The work described in this chapter is solely based on diagnosis from first principle (Reiter,
1987). According to Reiter's (Reiter, 1987) a precise theoretical foundation of diagnostic
reasoning from first principle will be a essential ingredient in any common theory of
diagnostic reasoning. Applying theory of model-based diagnosis to software debugging first
requires an adaption of the diagnosis theory. We wrote some articles (Wotawa., F. &
Soomro., S. 2005, Peischl., B., et. al. 2005, Soomro., S. 2007., Soomro., S. 2008, ., Soomro., S. et.
al. 2008; Soomro., S. & Wotawa., F. 2009) for software debugging to localize faults using
model-based diagnosis technique.

5.2 Aspect System: Abstract Dependencies

Aspect is a static analysis technique for detecting bugs in imperative programs, consisting of
an annotation language and a checking tool. This system introduced by (Jackson, 1995)
which is based on the abstract dependencies that are used by the Aspect system (Jackson,
1995) for detecting faults.The Aspect system analysis the dependences between variables of
a given program and compares them with the specified dependences.The computed
dependencies are compared to expected ones specified by software engineer. After
comparing these dependencies with derived ones this system pinpoint the missing
dependencies. This work employs abstract dependences for detecting rather than for
localizing a fault.Aspect system (Jackson, 1995) which has been used for dependency based
verification of C programs. Aspect system provides a very simple way to specify and verify
properties of software system, even though the results of this approach is limited,as the
correctness of program is hardly expressable due to terms of variable dependences.

The work described in this thesis is based on the abstract dependencies that are used by the
Aspect system (Jackson, 1995) for detecting faults.The verification-based model for
debugging is an extension of the dependence model from Jackson's Aspect system (Jackson,
1995) which has been used for dependency based verification of C programs. The Aspect
system analysis the dependences between variables of a given program and compares them
with the specified dependences. In case of a mismatch the program is said to violate the

www.intechopen.com

38 Engineering the Computer Science and IT

specification. Otherwise, the program fulfills the specification. Unfortunately, the Aspect
system does not allow to locate the source of a mismatch. In the following we extend
Jackson's idea towards not only detecting misbehavior but also localizing the
malfunctioning's real cause.

5.3 Program Slicing

The author (Weiser, 1982 & 1984) introduces program slicing towards debugging systems.
Program slicing is an approach for reduce to complexity of programs by focusing on
selected aspects of semantics. The process of slicing deletes those parts of the program
which can be determined to have no effect upon the semantics of interest. Slicing has
applications in testing and debugging, re-engineering, program comprehension and
software measurement. The author (Tip, 1995) scrutinize various approaches of slicing with
respect with static and dynamic slicing.

Program slicing is a general, widely-used, and accepted technique applicable to different
software engineering tasks including debugging, whereas model-based diagnosis is an Al
(Artificial Intelligence) technique originally developed for finding faults in physical systems.
During the last years it has been shown that model-based diagnosis can be used for software
debugging (Console, L. et. al. 1993, Bond., G. W. 1994, Stumptner., M & Wotawa., F. 1999a,
Stumptner., M & Wotawa., F. 1999b, Stumptner., M & Wotawa., F.1999¢ & Stumptner., M.)
The author (Wotawa, 2002) clarifies that model-based diagnosis is related to program
slicing. In case of diagnosis it proves that slices of a program in a fault situation are
equivalent to conflicts in model-based debugging. This result helps debugging community
to compute diagnosis faster and gives more information about possible bugs in certain
situations.

6. Conclusion and Future Research

In this chapter we focused on verification-based model (VBM) specifically tailored towards
detecting and localizing structural faults. We discussed the relationship between this model
and the well-known functional dependence model (FDM) by exemplifying the weaknesses
and strengths of both models. Our examples show, that there are debugging problems
where the verification-based model (VBM) delivers different diagnoses than the functional-
dependence model (FDM) and vice versa. Furthermore, we present case studies conducted
recently. Notably, whenever our novel model detects a structural fault, it also appears to be
capable of localizing the misbehavior’s real cause.

A future research challenge is the empirical evaluation of the modeling approaches
discussed herein. Also include another extensions of the Verifcation Based Model, e.g, to
handle object oriented features and to provide an emprical anaylsis. Another open issued
which is the connection with program slicing that is also based on abstract dependences.

www.intechopen.com

Fault Localization Models Using Dependences 39

7. References

Bond.,, G. W. (1994). Logic Programs for Consistency Based Diagnosis. Phd. Thesis
Dissertation, Carleton University, Faculty of Engineering, Ottawa, Canada.

Cascio., F., Console., L, Guagliumi., M, Osella., M., Panato., A., Cauvin,, S., Cordier. M.,
Theseider, D & Sottano. S. (1999) . Generating on-board diagnostics of dynamic
automotive systems based on qualitative models. Artificial Intelliegence
Communication, Vol., No. 12, 1999.

Cauvin., S., Cordier. M. & Dousson.C (1998). Monitoring and Alarm Interpretation in
Industrial Environments. Artificial Intelliegence Communication, Vol., No. 11, 1998.

Console, L., Friedrich, G. & Theseider, D. (1993). Model-Based Diagnosis Meets Error
Diagnosis in Logic Programs, Proceedings of Joint International Conference on Artifical
Intelligence, pp. 1494-1499, Chambery, August and 1993.

Greiner, R., Smith, B & Ralph, W. (1989). A Correction to the Algorithm in Reiter's Theory of
Diagnosis. Artificial Intelliegence, Vol., No., 41, pp. 79-88.

Hamscher, W.C (1991). Modeling Digital Circuits for Troubleshooting. Artificial Intelliegence,
Vol., No., 51 (October & 1995) pp. 223-271.

Hamscher, W.C; Console, L. & Kleer, J. (1992). Readings in Model-Based Diagnosis. Morgan
Pulisher, (October & 1992).

Jackson, D. (1995). Aspect Detecting Bugs with Abstract Dependences. Transaction on
Software Engineering and Mrthodology, Vol., No., 3, (April & 1995) pp. 109-145.

Kleer, J. & Williams, B C (1987). Diagnosing multiple faults. Artificial Intelligence, pp. 97-130.

Malik., A., Struss., P. & Sachenbacher., M. (1996). Case Studies in Model-based Diagnosis
and Fault Analysis of Car-Subsystems. Proceedings of European Conference ofArtifical
Intelligence. Pp. 1322-1334. 1996.

Mayer.,, W. & Stumptner.,, M. (2003). Extending Diagnosis to Debug Programs with
Exceptions. Proceedings of 18t International IEEE Conference on Automated Software
Engineering, pp. 240-244, Montreal, Canada, October 2003.

Mayer., W., Stumptner., M., Wieland., D. & Wotawa., F (2002a). Can Al help to improve
debugging substantially? Debugging experiences with value-based models.
Proceedings of European Conference ofArtifical Intelligence. Pp. 417-421. 10S Press,
Lyon, France 2002.

Mayer., W., Stumptner., M., Wieland., D. & Wotawa., F (2002b). Towards an Integrated
Debugging Environment Proceedings of European Conference ofArtifical Intelligence.
Pp. 422-426. 10S Press, Lyon, France 2002.

Peischl., B., Soomro., S. & Wotawa., F. (2006). Towards Lightweight Fault Localization in
Procedural Programs. Proceedings of the 19th Conference on International Conference on
Industrial, Engineering and Applications of Applied Intelligent Systems (IEA/AIE).
Lecture Notes in Compter Science, Springer 2006.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, pp. 57-95.

Stumptner., M & Wotawa., F. (1999a). Debugging Functional Programs. Proceedings of Joint
International Conference on Artifical Intelligence, pp. 1074-1097, August, Stockholm,
Sweden, 1999.

Stumptner., M & Wotawa., F. (1999b). Reconfiguration Using Model-Based Diagnosis.
Proceedings of Diagnosis Worksshop Series , Loch Awe, Scotland.

Stumptner., M & Wotawa., F. (1999c). Detecting and Locating Faults in Hardware Designs.
Proceeding AAAI 99 Workshop on Intelligent Software Engineering, Orlando, Florida.

www.intechopen.com

40 Engineering the Computer Science and IT

Stumptner., M & Wotawa., F. (1999d). Jade -- Java Diagnosis Experiments -- Status and
Outlook. IJCAI '99 Workshop on Qualitative and Model Based Reasoning for Complex
Systems and their Control August, Stockholm,Sweden, 1999.

Stumptner., M., Wieland.,, D. & Wotawa., F. (2001a). Analysis Models of Software
Debugging.Proceedings of Diagnosis Worksshop Series , Sansicario, Italy.

Stumptner., M., Wieland., D. & Wotawa., F. (2001b). Comparing Two Models for Software
Debugging. Proceedings of the Joint German/Austrian Conference on Artificial
Intelligence (KI), Vienna, Austria.

Soomro., S. (2007). Using Abstract Dependences to localize faults from procedural Programs
Proceeding of Artificial Intelligence and Applications. pp. 180-185, Inssbruck, Austria

Soomro., S., Shah. A.A & Shah., Wajiha (2008). Localize Faults from ALias-free Programs
using Verification Based Model. Proceeding of Artificial Intelligence and Soft
Computing ASC 2008. pp. 190-196, Palma-DelMalorca, Spain. 2008.

Soomro., S. (2008). Verification Based Model Localizes Faults from Procedural Programs.
Frontiers in Robotics and Automation Control International Book of Advanced Robotic
System. ISBN 978-953-7619-17-6, October 2008.

Soomro. S. & Wotawa. F. (2009). Detect and Localize Faults in Alias-free Programs using
Specification Knowledge. Proceedings of the 19th Conference on International
Conference on Industrial, Engineering and Applications of Applied Intelligent Systems
(IEA/AIE). Lecture Notes in Compter Science, Springer, Taina,, Taiwan 2009.

Tip, F. (1995). A Survey of Program Slicing Techniques. Journal of Programming Languages,
Vol., No., 3, (September & 1995) pp. 121-189.

Wieland., D. (2001). Model Based Debugging of Java Programs Using Dependencies. Phd.
Thesis Dissertation, Vienna University of Technology, Computer Science
Department, Institute of Information Systems (184), Database and Artificial
Intelligence Group (184/2) Austria , November 2001.

Williams., B.C. & Nayak., P.P. (1996). Immobile Robots -- Al in the New Millennium.
Artificial Intelligence Magzine, AAAI Press, pp. 16-35.

Weiser. M. (1982). Programmers Use Slices when Debugging. Communication of The ACM,
Vol. No. (7), pp. 446-452. July 1982.

Weiser. M. (1984). Programmers Use Slices when Debugging. IEEE Transaction of Software
Engineering, Vol. No. (4) , pp. 352-357. July 1984.

Wotawa., F. & Soomro., S. (2005). Using abstract dependencies in debugging. Proceedings of
19th International Workshop on Qualitative Reasoning QR-05 pp. 23-28., Graz-Austria.

www.intechopen.com

7 Engineering the Computer Science and IT
Engineering the
Compuler Science and IT Edited by Safeeullah Soomro

ISBN 978-953-307-012-4

Hard cover, 506 pages

Publisher InTech

Published online 01, October, 2009
Published in print edition October, 2009

It has been many decades, since Computer Science has been able to achieve tremendous recognition and
has been applied in various fields, mainly computer programming and software engineering. Many efforts have
been taken to improve knowledge of researchers, educationists and others in the field of computer science
and engineering. This book provides a further insight in this direction. It provides innovative ideas in the field of
computer science and engineering with a view to face new challenges of the current and future centuries. This
book comprises of 25 chapters focusing on the basic and applied research in the field of computer science and
information technology. It increases knowledge in the topics such as web programming, logic programming,
software debugging, real-time systems, statistical modeling, networking, program analysis, mathematical
models and natural language processing.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Safeeullah Soomro, Abdul Hameed Memon, Asif Ali Shah and Wajiha Shah (2009). Fault Localization Models
Using Dependences, Engineering the Computer Science and IT, Safeeullah Soomro (Ed.), ISBN: 978-953-
307-012-4, InTech, Available from: http://www.intechopen.com/books/engineering-the-computer-science-and-
it/fault-localization-models-using-dependences

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE B ERFEE6SS LEBEPR SR AIRE A 4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

