We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Extensions of Deductive Concept in Logic
Programming and Some Applications

Ivana Berkovic, Biljana Radulovic and Petar Hotomski
University of Novi Sad, Technical faculty “Mihajlo Pupin” Zrenjanin
Serbia

1. Introduction

Automated reasoning systems are computer programs which have certain “intelligent”
components and can be used as: shells of expert systems, dialog systems, human language
translators, educational software etc. Inferring the conclusion in such systems is often based
on resolution refutation method from a certain set of rules and facts. In order to infer a
conclusion, these systems, apart from negating set query, use rules for deducting facts in
axiom form and working fact base. Automated reasoning systems give answers to a set
query which depend upon the knowledge base and fact base (Hotomski, 2004). In this sense,
“automated reasoning is concerned with the discovery, formulation, and implementation of
concepts and procedures that permit the computer to be used as a reasoning assistant”
(Wos, 1985).

The developing of automated reasoning results into the developing of logic programming
languages, especially PROLOG. In this paper the advantages and applications of changing
one system for automated reasoning by the other are described. The determinate resolution
system for automated theorem proving ATP (OL-resolution with marked literals) is
especially put into the base of prolog-like language, as the surrogate for the concept of the
negation as definite failure (SLDNF resolution) in PROLOG.

2. Ordered Linear Resolution as the Foundation of Automatic Theorem
Proving

The most popular method for automatic theorem proving is the resolution method, which
was discovered by J. A. Robinson in 1965 (Barr et al., 1982, Gevarter, 1985, Wos et al., 1992).
Since 1965, many resolution forms and techniques have been developed because the pure
resolution rule was unable to handle complex problems (Hotomski, 2004).

Here is used the general automatic method for determining if a theorem (conclusion) A
follows from a given set of premises (axioms) F:

F|— A.

Each formula will be transformed to the clauses form. The clauses have the form:

www.intechopen.com

2 Engineering the Computer Science and IT

LivLyv ...vLn
where L; are literals. The symbol for disjunction is: v .
The literals L; have the form: P(ty, ¢, ... , ta) or =P(ty, 2, ... , ta), where P is predicate symbol,
ti is term, — is negation. The literal P(ty, ¢, ..., tn) is called positive literal, the literal —P(ty, t,
..., tn) is called negative literal.
Resolution method is a syntactic method of deduction. Reduction ad absurdum is in the basis
of resolution method:

F|— A iff Fu{-A} |— contradiction .

Resolution rule will be applied on the set of clauses - axioms which was expanded by
negating the desired conclusion in clause form.

Ordered Linear (OL) resolution rule with marked literals (Hotomski & Pevac, 1991,

Hotomski, 2004, Kowalski & Kuchner, 1971) increases efficiency and doesn't disturb

completeness of pure resolution rule.

The generating process of OL-resolvent from central clause (d1) and auxiliary clause (d2):

1. Redesignate variables (without common variables in the clauses).

2. Determine universal unificator ® for last literal of d1 and k-literal (k=1,2,...) of d2 (if it
exists for some k, else it is impossible to generate OL-resolvent for specification clauses).

3. Create resolvent with marked last literal in d1® and add the rest of clause d2@® without k-
literal (d1® and d2® are clauses, which were formed by universal unificator ® applied on
d1 and d2, respectively).

4. Eliminate identical non-marked literals and tautology examination (tautologies are not
memorized).

5. The Shortening Operation (delete all ending marked literals)

6. The Compressing Operation (delete the last non-marked literal, which is complemented
in relation to negation, with some marked literal for unificator A).

7. Repeat steps: 5 and 6 until the empty clause is got, or the Compressing Operation is not
applied on the last non-marked literal.

The rule of OL-resolution with marked literals is separated in two parts: in-resolution and
pre-resolution. The steps: 1 - 5 are represented in-resolution. The steps: 6 - 7 are represented
pre-resolution. Mid-resolvents are the products of in-resolution and without their
memorizing, the completeness of the method can be lost. This modification of Ordered
Linear resolution rule is served as the base for development of the system for automatic
theorem proving ATP.

3. ATP System for Automatic Theorem Proving

ATP is a system for automatic theorem proving (Berkovic, 1994), which is implemented on
personal computer by Pascal language. The rule of Ordered Linear Resolution with marked
literals presents the system base. The system is developed at Technical Faculty “Mihajlo
Pupin” in Zrenjanin. ATP is projected for scientific - researching, teaching and practical
purpose. ATP system disposes three search strategies: breadth-first, depth-first and their
combination. Numerously experiments with ATP system show that depth-first strategy is

www.intechopen.com

Extensions of Deductive Concept in Logic Programming and Some Applications 3

the most efficient. In depth-first search, a new node is generated at the next level, from the
one current, and the search is continuing deeper and deeper in this way until it is forced to
backtracking.
The main characteristics of ATP system:
This system presents a complete logical deductive base: the clauses-set is unsatisfied
(contradictory) iff the empty clause is generated by finite use of the resolution rule. So, the proof
of conclusion A is completed (F |— A) when the empty clause is generated by the
resolution from clauses-set FuU {—A}.
Besides the theoretical completeness of the system, it has the satisfying practical
efficiency limited by the space-time computer resources.
The first-order logic is the form of representation in ATP system (each formula is
transformed into the clause form). This deductive base has no restriction in Horn clause
(expansions concerning Horn clauses) and it allows the logical treatment of negation
(escaping negation treatment as a definite failure).
Therefore, the system of automated reasoning ATP is put into the base for development of
the descriptive language for logic programming LOGPRO. This logical complete deductive
base is used for building a new descriptive logical programming language (Berkovic, 1997,
Berkovic & Hotomski , 1997, Berkovic et al., 2003).

4. The Concept of LOGPRO - LOGic PROgramming Language Based on ATP
System

Many logic programming languages have been implemented, but PROLOG is the most
popular language and it is useful for solving many problems. PROLOG as a logic-oriented
language (Bratko, 1986, Malpas, 1987, Pereira & Shieber, 1987) contains a resolution-based
theorem-prover (PROLOG-system). The theorem-prover in PROLOG appears with the
depth-first search approach. It uses the special resolution rule: SLDNF (Linear resolution
with Selection function for Definite clauses and Negation as Failure).

4.1 Formalization on PROLOG

The first-order predicate logic is the form of representation in PROLOG. PROLOG-program
is a set of sentences. Every sentence is finished by full stop. Program in PROLOG consists of
axioms (rules, facts) and a theorem to be proved (goal). The axioms are restricted in Horn
clauses form. Horn clauses (Hotomski & Pevac, 1991), are clauses with at most one positive
literal.

The rules have the form: G :- Ty, Ty, ..., Tn.

where G is positive literal and Tj (j=1,2,...,n) are literals (positive or negative). The symbol
for conjunction is: , . The element G is presented head of the rule. The elements Tj (j=1,2,...,n)
are presented body of the rule. The separator :- corresponds to implication (<). The symbol
for negation is: not.

The facts have the form: G.

where G is positive literal.

The goals (questions) have the form: ?-Ty, Ty, ..., Tx.

where Tj (i=1,2,...,n) are literals.

www.intechopen.com

4 Engineering the Computer Science and IT

Practically, programming in PROLOG is restrictive in a subset of first-order logic. Horn
clauses are represented the first defect of PROLOG. The concept of negation as definite
failure is represented the second defect of PROLOG.

4.1 Formalization on LOGPRO

An other approach to logic programming is implementation of a different deductive
concept. The determinate system ATP for automated theorem proving is especially put into
the base of prolog-like language LOGPRO, as the surrogate for the concept of negation as
definite failure. This logical complete deductive base is used for building a new descriptive
logic programming language.

The first-order logic is the form of representation in ATP system, too. But, this system has
not restriction in Horn clauses. The program on logic language LOGPRO based on the ATP
system is a set of sentences (clauses). There are three kinds of sentences: rules, facts and
goals. Every sentence is finished by full stop.

The rules have the form: Gy, Gy, ..., G :-T1, Ta, ..., Ta.

where G; (i=1,2,...,m) and Tj (j=1,2,...,n) are literals (positive or negative). The symbol for
conjunction is: , . The elements G; (i=1,2,...,m) present head of the rule. The elements T;
(j=1,2,...,n) present body of the rule. The separator :- corresponds to implication (<). The
symbol for negation is: ~ .

The facts have the form: G.

where G is literal (positive or negative).

The goals (questions) have the form: ?- Ty, T, ..., Tn.

where Tj (i=1,2,...,n) are literals (positive or negative).

The rules and facts (axioms) are presented by auxiliary clauses. The goal (central clause) is
negating the theorem to be proved. Symbol ?- in goal is the substitution for negation. The
execution procedure is ATP system based on OL-resolution with marked literals. This
formulation enables eliminating the defects of PROLOG-system.

The logic programming languages PROLOG and LOGPRO are compared. PROLOG rules
and facts do not allow the explicit statement of negative information. But, the declarative
syntax of the logic programming language LOGPRO allows the expression of negative
information in rules and facts. Also, it is possible to construct the rule with more than one
element in the rule’s head.

Example 1.
The problem of trying to formulate sentence:
“Alice likes whatever Queen dislikes, and dislikes whatever Queen likes.” into PROLOG
form (Subrahmanyam, 1985).
The representations:

likes(alice,X1) :- not likes(queen,X1).

not likes(alice,X1) :- likes(queen,X1).
are illegal in PROLOG because the second rule has a negation in head (it isn't Horn clause).
It is possible to solve the problem by trick - using a modified predicate likes, and expressing
the statement as:

likes(alice, X1,true) :- likes(queen,X1,false).

likes(alice,X1,false) :- likes(queen,X1,true).

www.intechopen.com

Extensions of Deductive Concept in Logic Programming and Some Applications 5

The expansion concerning Horn clauses on the logic programming language based on ATP
system has the possibilities to express the statement as:

likes(alice,X1) :- ~ likes(queen,X1).

~ likes(alice,X1) :- likes(queen,X1).
PROLOG-system has the negation defect (Brtka, 2001). This defect is corrected in ATP
system. It can be illustrated by the following example.

Example 2.
Program in PROLOG:
vegetarian(tom).
vegetarian(ivan).
smoker(tom).
likes(ana,X1) :- not (smoker(X1)), vegetarian(X1).
PROLOG-system gives unconnected answers on the following questions:
?- likes(ana,X1).
no
?- likes(ana,ivan).
yes
If the last clause is now:
likes(ana,X1) :- vegetarian(X1), not (smoker(X1)).
PROLOG-system gives wrong answers on the following questions:
?- likes(ana,X1).
X1=ivan
?- likes(ana,ivan).
yes
These answers are incorrect because we have not data about Ivan and smoking. We don't
know if Ivan is a smoker or not. The correct answer will be: “I don't know”.
The program in LOGPRO:
vegetarian(tom).
vegetarian(ivan).
smoker(tom).
likes(ana,X1) :- ~ smoker(X1), vegetarian(X1).
ATP-system gives answers on the following questions:
?- likes(ana,X1).
Success=0
The proof isn't completed
?- likes(ana,ivan).
Success=0
The proof isn't completed
When the last clause is:
likes(ana,X1) :- vegetarian(X1), ~smoker(X1).
ATP system also gives the correct answers: “Success=0, the proof isn't completed”.
In fact, the system generates resolvents, but can not complete the proof with depth-first
strategy. The treatment of negation as definite failure in this system is escaped. The concept
of LOGPRO allows eliminating of endless branches, recursion using and works with

www.intechopen.com

6 Engineering the Computer Science and IT

structures and lists, as well as PROLOG. It is presented in some concrete examples
(Berkovic, 1997).

5. Applications of ATP System and LOGPRO

5.1. Time-Table and Scheduling System DEDUC
This system ATP is incorporated in the system for automatic creating of the combinatorial
disposition DEDUC, where it has presented the satisfying practical efficiency.
DEDUC is a software package that integrates scientific results of Constraint Logic
Programming and practical needs in generating combinatorial schedules. The work on the
system started in 1991. After ten years the powerful system was developed.
System is based on synchronized work of two processes: data storing and optimization of
gaps in the timetable. Theorem prover controls both processes to secure that initial
requirements are not violated
System facilities and performances:
Automatic and interactive generating of schedules for the initial data and conditions;
Setting up and maintenance of the initial data and requirements by using the user
friendly interface;
Setting up various initial requirements like splitting classes into groups, connecting
groups and classes, enabling multiple lessons; setting restrictions in using laboratories
and rooms; setting teachers’ requirements and the other pedagogic obligations and
desirable demands;
Generating schedules respecting school shifts;
Screen browsing and printing the general, per-class and per-teacher schedules;
Generating and archiving different versions of the schedules generated for the same
initial data and conditions;
Maintenance of the archived versions, data and conditions.
The practical efficiency and system limits can be observed for complicated examples as well
as for the simple ones. Essentially, getting the acceptable version of the schedule depends on
structure of the initial requirements and their connections with data, although the number
of requirements has no influence.
Practical experiences in the real world assure that DEDUC system generates timetables with
quality level higher than quality level of hand-made timetables. The time needed for
generating a timetable varies from few minutes to several hours, and depends on amount of
data, structure of conditions as well as on computer performances. More informations at
http://deduce.tripod.com

5.2. A Technique for the Implicational Problem Resolving for Generalized Data
Dependencies

A mechanism for generalized representation of various data dependency types, such as
functional (fd), multivalued (mvd), join (jd), implied (imd) and inclusion (id) dependencies,
has been developed in the relational data model theory. The initial supposition was that all
the data dependencies (i.e. “rules” which hold among data) can be represented, in unified
manner, by one, or more symbolic data templates, satisfying certain criteria, according to
defined interpretation rules for such symbolic templates. On the basis of that supposition,
the term of generalized data dependency has been introduced, so as to represent the other

www.intechopen.com

Extensions of Deductive Concept in Logic Programming and Some Applications 7

dependency types in the same way. One of the important questions, arising when new data
dependency type is introduced, is how it can be stated if a data dependency is a logical
consequence of a given set of data dependencies. This problem in relational databases is
known as the implicational problem.

At the beginning, the terms of: tableau, as a symbolic data template, generalized
dependency (gd) and its interpretation are defined without explanations, because they are
considered as already known. In (Lukovic et al., 1996, Lukovic et al., 1997) is presented a
possible approach to resolving the implicational problem for gds, it is established at the
same time a way of testing the implicational problem for all the specific data dependency
types which can be formalized by means of gds. The proposed approach considers a usage of
the ATP System.

To resolve the implicational problem for a given sets of gds I' and arbitrary gd y means to
establish if I' | = y holds. It is not practically possible to test he implicational problem I' | =y
by exact applying of definition of generalized dependencies by systematic generating of all
the relations form SAT (R) and checking the implication r |=T => r |=y, because SAT(R)
is, in most cases, the set of high cardinality and it can be even infinite. Therefore, the other
methods have to be applied so as to resolve the problem. According to the nature of gds, it is
concluded that for the automations of the test I' |= y, the resolution procedure can be
applied. Therefore, the set of I' and the dependency y will be represented by appropriate
predicate formulas. According to the resolution theorem and theorem of generalized
dependencies, the test of the condition I' |= y, where I' = {y1,..., yxu}, is performed by
disproving procedure, on the basis of the set of initial assumptions F(I') and the negation of
the conclusion —F. In that case, the theorem that should be proved by ATP System is of the
form: F(I') — F.

To prove the theorem, the clauses should be built from the set of assumptions F(I') and
negation ~F. They represent the input for ATP. Beside that, two additional input parameters
are: (i) maximal searching deep and (ii) maximal clause length. With respect to the
resolution theorem, there are three possible outcomes from ATP. (a) “positive”; an empty
clause has been reached, which means that the assertion F holds. According to theorem of
generalized dependencies, I' |= y holds, too; (b) “"negative”: the empty clause has not been
reached and there are no more possibilities for new clause generating. It means that the
conclusion F cannot be derived from F(I'). According to theorem of generalized
dependencies, we conclude I' |= y does not hold; (c) “uncertain”: the empty clause has not
been obtained, whereas maximal searching deep and maximal clause length have been
reached, or memory resources have been exhausted.

5.3. Intelligent Tutoring System Based on ATP System
The concept of LOGPRO can be an excellent base for an intelligent tutoring system iTUTOR
(Brtka, 2001, Berkovic et al., 2003). Such deductive logic programming language can perform
tasks that standard PROLOG system could not (Hotomski, 2004).
It is now possible to define predicate:

know(student_name, concept, degree).
where studentname is name of a student, concept is name of a concept that student should
know and degree indicates grade of concept cognition.
Negation in the head of the rule can be implemented as:

~know (student_name, concept, degree):-

www.intechopen.com

8 Engineering the Computer Science and IT

know(student_name, concept;, degreey),
know(student_name, concept,, degree,),

know(student_name, concept,, degree,),
degree;<cy,
degrees<cy,

degree,<c.
which means that student does not know concept in certain degree if he does not know
minor concepts concept;, concepty, ..., concept, in degree greater than or equal with ¢y, ¢, ...,
cn where ¢y, ¢, ..., cn are predefined constants. Furthermore, one can calculate degree of
concept cognition by adding a line at the end of previous rule:
degree is (degree;+ degrees+...+ degree,)/n.
Rule:

~nextlesson(student_name, lesson_name):-

know(student_name, concept;, degreey),
know(student_name, concepty, degree,),

know(student_name, concept,, degree,),
degree;>cy,
degreey>cy,

degreen>cy.

indicates lessons that particular student should not learn because he knows all belonging
concepts in degree greater than predefined constant.
Similar rule:

~nextlesson(student_name, lesson_name):-

~know (student_name, concept;, degreey),
know(student_name, concepty, degree,),

know(student_name, concept,, degree,),
degree;>cy,
degreey>cy,

degreen>ch.

where some predicates in the body of the rule are negated, indicates lessons that student
should not learn because he does not know all belonging concepts in degree greater than
predefined constant. Application of such logic programming language LOGPRO can
overcome some problems during the process of student modelling in an intelligent tutoring
system.

www.intechopen.com

Extensions of Deductive Concept in Logic Programming and Some Applications 9

5.4. Baselog System as Deductive Databases

Baselog system concept and its program implementation enabled the integration of good
properties of Datalog, Prolog and ATP system, and so is realized a more flexible system in
reference to the work in the closed, respectively opened world. Specifically needs in the
development for the work with databases ask just development and application of a such
system, and it makes it more superior in reference to Datalog, Prolog and ATP system,
considered separately (Radulovic, 1998, Radulovic & Hotomski, 2000).

Some automated reasoning systems can give incorrect answers if they work in closed world
concept, or correct answers if they work in open world concept where the answer depends
on fact base completeness. If fact, the base is incomplete, some of automated deduction
systems can consult facts from various extension files. In order to enable work with greater
data amount there arose a need to access certain databases which can even be distant and
then take the piece of data which could be used for deducting a conclusion (Hotomski,
2004).

5.4.1. Close/Open World Assumption in Baselog

In (Ceri, 1989, Stonebraker et al., 1990, Ullman, 1994) is described Datalog, the logic
programming language in the field of the database that is implemented in the post-relation
software for database management system PROGRESS. Datalog works on the CWA-
principle, respectively (by) adopting the Closed World Assumption. The CWA-principle
declares (Radulovic, 1998, Radulovic & Hotomski, 2000) :

Definition 1. (The CWA - principle) If a fact does not logically follow from a set of Datalog
clauses, then we conclude that the negation of this fact is true.

For knowledge databases is also characteristic the open world assumption. In the open
world regime work classic systems for the automatic theorem proving, especially, ATP
system (Berkovic, 1994, Berkovic, 1997). The knowledge bases contain limited knowledge
segments from a certain field. They can be incomplete, i.e. they do not present total relevant
knowledge. The applying of the closed world concept on such databases, can bring wrong
answers to the asked questions. Because of that the pure concept of the closed world can not
be applied for the databases used in the education computing software.

Universal resolution systems from theoretic aspect totally support the work with databases
as well, but they show a practical deficiency. It can be seen in the fact that because of the
endeavoring to get a semantically expected answer, it is necessary to give a complete space
description where the solution is claimed.

In the database area it is, for example, exposed through the necessity of proposing following
axiom:

tztA tzb AL AtZzL = ~P()

where ty,...,t, are the relation database tuples, and P(t) means the tuple t belonging to the
database relation (~ is negation).

As it can be seen, already for little number of tuples in database, this axiom has big length,
so this theoretic possibility is left in practical applications. Both in Datalog and in Prolog it is
made the attempt for solving this deficiency in specific ways. In Prolog it is the strategy of
definite failure (Bratko, 1986, Berkovic, 1997) and in Datalog the CWA-principle

www.intechopen.com

10 Engineering the Computer Science and IT

(Stonebraker et al., 1990). Meanwhile, no one of these solutions can satisfy education needs
in fullness, for the following reasons.
In reference to possible user’s questions, there are following options:

a) the answer to the question is deducible from the base,

b) the answer to the question is not deducible from the base,

where in b) we differ:

b1) the answer needs to be affirmative,
b2) the answer needs to be negative.

In a) when the answer is deducible from the base, it will be found and presented to a user
either Prolog, Datalog or Logpro based on ATP-system.

Specificities are being reflected in b). According to the adopted the CWA-assumption in
Datalog, respectively the definite failure concept in Prolog, there are possible incorrect or
indefinite answers. So in bl) Datalog can generate the incorrect answer NO, while Prolog’s
answer “NO” can be interpreted as “uncertain”. In b2) Datalog answer “NO” is correct, and
Prolog answer “NO” can be interpreted as “NO”. In both cases bl) and b2) Logpro based on
ATP gives answer “uncertain”.

We observe that in educative meaning Datalog according to the bl) does not satisfy, while
Prolog and Logpro based on ATP give acceptable, but uncertain answers. In b2) Datalog
gives correct and precise answer, while Prolog and Logpro based on ATP gives
inadequately precise answers. From the educative aspect it is desirable to lessen the
indefiniteness of the system answer and it is necessary to eliminate the non-allowed
answers. Otherwise, there is need to keep the definiteness present in Datalog for b2) and
eliminate non-allowed answer from b1). Implementing Baselog - system projected on the list
of the CWA-predicate and the CWA-rule, a flexible concept has been realized. Such system
all predicates which are in the CWA-list treats as Datalog, in closed-world, while all the
other predicates treat in open world, i.e. works as ATP. With it, it is free of Prolog defects in
reference to the negation treatment and the definite failure concept.

The basis for Baselog - system make following components (Radulovic & Hotomski, 2000,
Radulovic, 1998):

e The CWA-predicate list, which is a part of the program,

e The CWA-rule,

e The CWA-controller by which is enlarged ATP resolution system.

The whole Baselog - system is the extension of the resolution method by the concepts of the
opened and closed world. By the CWA-controller one provides dozing a degree of the
world openness/closeness for the program predicates.

Every literal of the form R(wy,...,wm) where R is predicate name mentioned in the CWA-
predicate list, and wy,...,wn, are arguments, Baselog - system will treat in the closed system
regime, while all the other predicates that are not in the CWA-predicate list, by the system
will be treated in the open world regime. Here, the CWA-controller of Baselog -system uses
the CWA-rule, formulated in the following way.

www.intechopen.com

Extensions of Deductive Concept in Logic Programming and Some Applications 11

The CWA - RULE:

Let D is the clause of the forms Livisv...v L, and let L;, 1<i <p is literal of the form R(wj,...,wn),
where the predicate R is declared as the CWA-predicate. If R(wy,...,w,) can not be unified with no
one base element, then R(wj,...,wy,) will be deleted from clause D.

If exists unificator for L; and some element from base, then clause D is not changed, there is no
deleting.

The proof of the CWA-rule correctness is described in (Radulovic, 1998).

6. Conclusion

Completeness and universality of the resolution method, as the base of ATP system, enables
it to be applied as the deductive base of prolog-like language. The relationship between
programming language based on ATP system and programming language PROLOG are
emphasized. The logic programming language based on ATP system enables eliminating
the defects of PROLOG-system (the expansion concerning Horn clauses, escaping negation
treatment as definite failure, eliminating of endless branches), keeping the main properties
of prolog-language. In this paper are also described some applications of ATP system and
LOGPRO such as: time-table and scheduling (DEDUC), a technique for the implicational
problem resolving for generalized data dependencies, deductive databases (Baselog System)
and intelligent tutoring system based on ATP system (iTUTOR). Also, ATP system is used
for the development inference system and data mining (Brtka, 2008).

7. References

Barr, A.; Cohen, P.R. & Feigenbaum, E.A. (1982). The Handbook of Artificial Intelligence,
Vol.LILIII, Heuris Tech Press, W. Kaufmann, Inc., California

Berkovi¢, 1. (1994). Variable Searching Strategies in the Educationally Oriented System for
Automatic Theorem Proving, M.Sc. Thesis, Technical Faculty "Mihajlo Pupin",
Zrenjanin, (in Serbian)

Berkovi¢, I. (1997). The Deductive Bases for the Development of the Descriptive Languages
for the Logical Programming, Ph.D. Thesis, Technical Faculty "Mihajlo Pupin",
Zrenjanin, (in Serbian)

Berkovi¢, I. & Hotomski, P. (1997). The concept of logic programming language based on
resolution theorem prover, Proceedings of VIII Conference on Logic and Computer
Science LIRA, pp. 111-120, Sept 1-4 1997, Novi Sad, Serbia

Berkovi¢, I.; Hotomski P. & Brtka V. (2003). The Concept of Logic Programming Language
Based on the Resolution Theorem Prover and its Appliance to Intelligent Tutoring
Systems; IEEE Proceedings of 7th International Conference on Intelligent Engineering
Systems, pp 169 - 172; ISSN: 977.246.048.3 /1562, Assiut - Luxor, Egypt, March 4 - 6.
2003.

Bratko, 1. (1986). PROLOG Programming for Artificial Intelligence, Addison-Wesley Publ.
Comp.

Brtka, V. (2001). Tutoring educational software, M.Sc. Thesis, Technical Faculty "Mihajlo
Pupin", Zrenjanin, (in Serbian).

www.intechopen.com

12 Engineering the Computer Science and IT

Brtka, V. (2008). Automated Synthesis of Rule Base in Inference Systems, Ph.D. Thesis,
Technical Faculty "Mihajlo Pupin", Zrenjanin, (in Serbian)

Ceri, S.; Gottlob, G. & Tanza, L. (1989). What You Always Wanted to Know About Datalog
(And Never Dared to Ask), IEEE Transactions on Knowledge and Data Engineering,
Vol. 1, No. 1 March 1989, pp. 146-167

Gevarter, W.B. (1985). Intelligent Machines, Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Hotomski, P. & Pevac, I. (1991). Mathematical and Programming Problems of Artificial Intelligence
in the Field of Automatic Theorem Proving, Naucna knjiga, Belgrade, (in Serbian)

Hotomski, P. (2004). Systems of Artificial Intelligence, University of Novi Sad, Technical
Faculty "Mihajlo Pupin" Zrenjanin, (in Serbian)

Kowalski, P. & Kuchner, D. (1971). Linear Resolution with Selection Function, Artificial
Intelligence, Vol. 2, pp. 227-260

Lukovié, I.; Hotomski, P.; Radulovié, B. & Berkovig, I. (1996). A Proof of Generalized Data
Dependency Satisfaction by The Automatic Reasoning Method, Proceedings of the
Second Symposium on Comp, Sc. and Informatics YU INFO, Brezovica, 02-05.-4.1996.
(in Serbian)

Lukovié, I; Hotomski, P.; Radulovié¢, B. & Berkovi¢, 1. (1997). A Technique for the
Implicational Problem Resolving for Generalized Data Dependencies, Proceedings of
VIII Conf. on Logic and Computer Science LIRA '97, pp. 111-119, Novi Sad, 01-
04.09.1997,

Malpas. J. (1987). PROLOG: A Relational Language and Its Applications, Prentice-Hall
International Inc.

Pereira, F.C.N. & Shieber, SM. (1987). PROLOG and Natural - Language Analysis, CLSI,
Leland Stanford Junior University

Radulovié, B. & Hotomski, P. (2000). Projecting of Deductive Databases with CWA
Management in Baselog System, Novi Sad Journal of Mathematics, pp 133-140. Vol 30,
N2, 2000, Novi Sad, Serbia

Radulovié, B. (1998). Database Projecting in the Field of Education Computer Software,
Ph.D. Thesis, Technical Faculty “Mihajlo Pupin”, Zrenjanin, (in serbian)

Radulovi¢, B. & Hotomski, P. (1997). Database projecting in the Baselog-system, Proceedings
of VII Conf. “Informatics in eduation and new information technologies”, pp. 71-77, Novi
Sad, 1997, (in serbian)

Radulovi¢, B.; Berkovié, I.; Hotomski, P. & Kazi, Z. (2008). The Development of Baselog
System and Some Applications, International Review on Computers and Software
(LRE.CO.S.), pp 390-395, Vol. 3 N. 4, July 2008, Print ISSN: 1828-6003

Stonebraker, M.; Rowe, L. A. & Hirohama, M. (1990). The Implementation of POSTGRES,
IEEE Transactions on Knowledge and Data Engineering, pp. 125-142, Vol. 2, No. 1,
March 1990

Subrahmanyam, P.A. (1985). The "Software Engineering" of Expert Systems: Is Prolog
Appropriate?, IEEE Transactions on Software Engineering, pp. 1391-1400, Vol. SE-11,
No. 11, november 1985.

Ullman, J. (1994). Assigning an Appropriate Meaning to Database Logic With Negation,
www-db.stanford.edu/pub/papers/negation.ps

Wos, L. (1985). Automated Reasoning, The American Mathematical Monthly, pp. 85-93 Vol. 92,
No. 2, february 1985.

Wos, L.; Overbeek, R.; Lusk, E. & Boyle]J. (1992). Automated Reasoning: Introduction and
Applications, Prentice-Hall

www.intechopen.com

7 Engineering the Computer Science and IT
Engineering the
Compuler Setence andil Edited by Safeeullah Soomro

ISBN 978-953-307-012-4

Hard cover, 506 pages

Publisher InTech

Published online 01, October, 2009
Published in print edition October, 2009

It has been many decades, since Computer Science has been able to achieve tremendous recognition and
has been applied in various fields, mainly computer programming and software engineering. Many efforts have
been taken to improve knowledge of researchers, educationists and others in the field of computer science
and engineering. This book provides a further insight in this direction. It provides innovative ideas in the field of
computer science and engineering with a view to face new challenges of the current and future centuries. This
book comprises of 25 chapters focusing on the basic and applied research in the field of computer science and
information technology. It increases knowledge in the topics such as web programming, logic programming,
software debugging, real-time systems, statistical modeling, networking, program analysis, mathematical
models and natural language processing.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ivana Berkovic, Biliana Radulovic and Petar Hotomski (2009). Extensions of Deductive Concept in Logic
Programming and Some Applications, Engineering the Computer Science and IT, Safeeullah Soomro (Ed.),
ISBN: 978-953-307-012-4, InTech, Available from: http://www.intechopen.com/books/engineering-the-
computer-science-and-it/extensions-of-deductive-concept-in-logic-programming-and-some-applications

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE B ERFEE6SS LEBEPR SR AIRE A 4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

