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1. Introduction 

The array of numerous metallic nanowires with straight shape has much attention due to 

their shape anisotropy and extremely large surface area. This unique structure can be 

applied to develop the novel functional nano-materials such as electronic, magnetic and 

optical nano-scale devices. Metallic nanowires can be fabricated by manipulating metallic 

atoms one by one using a scanning tunneling microscope (STM) probe, while they can be 

also prepared by electrochemically depositing metallic atoms into a nanoporous template 

with numerous cylindrical nanopores. In a fabrication technique using electrodeposition of 

nanowires, nanoporous templates such as anodized aluminum oxide films with high 

density of nanopores (about 108~1010 pores•cm–2) have been used so far. 

In 1975, using an anodic oxide coating film on aluminum, magnetic properties of 

electrodeposited Co nanowires and Co-Ni alloy nanowires were investigated (Kawai & 

Ueda, 1975). In 1986, as an application to perpendicular magnetic recording medium, 

alumite films containing Fe nanowires were fabricated (Tsuya et al., 1986). In 1988, 

magnetization curling process in perpendicular direction was studied using Fe nanowire 

arrays in alumite media (Huysmans et al., 1988). In 1990, influence of the packing density on 

the magnetic behaviour was investigated using alumite media containg magnetic nanowires 

(Zhang et al., 1990). 

On the other hand, in 1991, using the polymer membrane template with numerous 

nanopores, polymeric and metal microtubules were synthesized (Martin, 1991). In 1993, 

arrays of Ni and Co nanowires were electrodeposited in polymer templates with the 

nanometer-sized pores prepared by nuclear track etching technique (Whitney et al., 1993). 

They found that the preferred magnetization direction is perpendicular to the film plane 

and enhanced coercivities as high as 680 Oe. Remnant magnetization of the nanowires up to 

90% had been reported. In 1994, a membrane-based synthetic approach to obtain nano-

materials was introduced to materials science field (Martin, 1994). He suggested that the 

template synthesis method is useful to prepare polymers, metals, semiconductors, and other 

materials on a nano-scopic scale. 

In 1994, giant magnetoresistance (GMR) properties were found in Co/ Cu multilayered 

nanowires electrodeposited in nanoporous polymer template (Piraux et al., 1994). In the 

report, magnetoresistance measurements with the current perpendicular to the layers were 

performed on the array of parallel nanowires. They observed that the 15% of GMR at room 

temperature on Co/ Cu multilayered nanowires. In the almost same time, GMR of 

Source: Electrodeposited Nanowires and Their Applications, Book edited by: Nicoleta Lupu,  
 ISBN 978-953-7619-88-6, pp. 228, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Electrodeposited Nanowires and Their Applications 

 

62 

nanowires with Co/ Cu and Ni-Fe/ Cu multilayers was demonstrated (Blondel et al., 1994). 

They made the multilayered nanowires with 6 µm long, 80 nm in diameter and each layer 

thickness of 5–10 nm in nanoporous polymer template. At ambient temperature, GMR of 

14% for Co/ Cu and of 10% for Ni-Fe/ Cu was demonstrated in the current perpendicular to 

the layers. 

On the contrary, in 2000, current perpendicular to plane giant magnetoresistance (CPP-

GMR) was found using the multilayered nanowires electrodeposited in a commercially 

available anodic aluminum oxide membrane filter (Evans et al., 2000). In the report, Co–Ni–

Cu/ Cu multilayered nanowires were synthesized and extremely large values (55% at room 

temperature and 115% at 77 K) of CPP-GMR were demonstrated. In 2003, Co/ Cu 

multilayered nanowires with spin-valve effect and GMR response were synthesized in self-

organized anodized aluminum oxide nanopores grown at the surface of bulk aluminum 

(Ohgai et al., 2003). In the report, the aluminum oxide template with pore-length as short as 

2000 nm was used and the pore bottom oxide layer was removed by a chemical etching 

technique. 20% of GMR was demonstrated in Co/ Cu multilayered nanowires at room 

temperature, while the typical resistance switching of spin-valves was observed in 

Co/ Cu/ Co tri-layered nanowires. 

Compound semiconductor nanowires were also fabricated as well as ferromagnetic metal 

nanowires using an electrodeposition technique. Bi2Te3 nanowires (Wang et al., 2004), CdTe 

nanowires (Ohgai et al., 2005), InSb nanowires (Zhang et al., 2005) and ZnSe nanowires 

(Katkar & Tait, 2007) have been synthesized so far. They reported that these semiconductor 

nanowires can be applied to light emission diodes, photovoltaic devices, solar cells and 

thermovoltaic devices. 

If the template synthesis technique on the basis of fabricating nanopores and 

electrodepositing nanowires as mentioned above is applied to produce micro- and nano-

scale devices in ultra large scale integration (ULSI), position of each nanopore, inter-pore 

distance, pore diameter and pore shape should be controlled precisely. To fabricate novel 

electronic devices in ULSI, lithographic galvanoforming (LIGA) process using laser, UV, X-

ray, electrons and ions can be used. 

In this chapter, fabrication process such as electrodeposition behavior, morphology, crystal 

structure and magnetic properties (magnetization and magnetoresistance) of metallic 

nanowires such as Ni, Co, Fe (in section 2), Ni-Fe alloy (in section 3) and Co/ Cu multilayer 

(in section 4) were discussed for the application to novel functional micro- and nano-scale 

devices. 

2. Ni, Co and Fe nanowires 

2.1 Electrodeposition process of Ni, Co and Fe nanowires 
Ion track-etched polycarbonate membrane filters with pore-diameter of 40, 80, 160 and 300 

nm, pore-length of 6000 nm and pore-density of 108 pore•cm-2 were used as a template for 

growing metallic nanowires as shown in Fig.1. On a surface of the membrane filter, a gold 

layer was sputter-deposited to cover the pores and make a cathode. Aqueous solution 

containing metal sulfate was used as electrolyte. 

To determine the optimum deposition potential for growing nanowires, cathodic 

polarizarion behavior was investigated in a wide range of cathode potential. Figure 2 shows 

cathodic polarization curves obtained from the solutions containing each iron-group metal 

ions (Ni2+, Co2+ or Fe2+). 
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Fig. 1. Experimental apparatus for electrodepositing metallic nanowires in polycarbonate 

membrane filter with numerous cylindrical nanochannels. 

The cathodic current begins to occur at ca. 0 V vs.Ag/ AgCl, which is more-noble than the 

equilibrium potential of iron-group metals. It is well known that the standard electrode 

potentials for Ni, Co and Fe are -0.46, -0.48 and -0.64 V vs.Ag/ AgCl. Therefore, this cathodic 

current is presumed to be reduction current of H+ ions. With increasing the cathodic current, 

at around 10–3 A, the potential polarizes to be around –0.8 V due to the diffusion limit of H+ 

ions. 

At around –0.8 V, the cathodic current increases again. It is also well known that the 

electrodeposition of iron-group metals proceeds accompanying some over potential. 

Therefore, this increase in cathodic current is mainly caused by an increase in deposition 

current of iron-group metal ions. At the potential region less than –1.2 V, with increasing 

cathodic current, the potential polarizes significantly to be less-noble region due to the 

diffusion limit of iron-group metal ions. 

Consequently, the optimum cathode potential region for growing iron-group metal 

nanowires is determined to be from –0.9 to –1.2 V according to the cathodic polarization 

curves as shown in Fig.2. 

To investigate the growing process of nanowires, time dependence of cathodic current was 

monitored during the electrodeposition. Ni, Co and Fe nanowires were potentio-statically 

electrodeposited at room temperature. Figure 3 shows the effect of cathode potential on the 

time-dependence of cathodic current in the solution containing Ni2+ ions. During the 

electrodepostion of Ni, cathode potentials were fixed to –0.9, –1.0, –1.1 and –1.2 V. If the 

potential was kept to –1.0 V, the cathodic current reached up to ca. 1 mA at the beginning of 

electrolysis within several tens minutes. Then, the current rapidly decresed to be ca. 0.4 mA  
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Fig. 2. Cathodic polarization curves for electrodeposition of Ni, Co and Fe on Cu sheet from 

aqueous solutions containing Ni2+ or Co2+ or Fe2+ ions. 

and kept the magnitude until around 1000 sec. During this process, electrodeposition of Ni 

proceeds in the nanopores. 

At the initial stages of the electrodepostion, large cathodic current was observed in every 

cathode potential. The concentration of metal ions in the nanopores will decrease with 

increasing electrodeposition time due to the cathodic reduction, while the metal ions will be 

provided from the bulk solution to the nanopore, where the metal ions are consumed by the 

electrodeposition. 

Finally, as shown in Fig.3, the cathodic current rapidly increases at the deposition time more 

than 1000 sec. At this stage, electrodeposited nanowires reach the surface of the membranes 

and large hemispheric Ni deposits are formed. Growth rate of Ni nanowires can be 

estimated as ca. 6 nm•sec–1 at the cathode potential of –1.0 V. Time-dependence of cathodic 

current for Co and Fe deposition also showed similar behavior as well as Ni deposition. 

Growth rate of the nanowires increases up to around 30 nm•sec-1 with increasing cathode 

potential up to -1.2 V. 

2.2 Crystal structure of Ni, Co and Fe nanowires 
After the growing nanowires, polycarbonate membrane filters were dissolved in organic 

solvent (dichloromethane and chloroform) and the remains consisted of nanowires and a 

gold layer was served as a sample for scanning electron microscope (SEM) observation. On 

the other hand, using ion-milling technique, as-deposited nanowires in a membrane filter 

were thinned and a cross-sectional area of the nanowires was observed using transmission 

electron microscope (TEM). 

Figure 4 shows SEM images of Co nanowires separated from the polycarbonate templates. 

Diameter (40, 80, 160 and 300 nm) and length (6000 nm) of the nanowires corresponds well 

to that of nanopores and the cylindrical shape was precisely transferred from the nanopores 

to the nanowires. Aspect ratio of the nanowires reaches up to around 150. 
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Fig. 3. Effect of cathode potential on the time-dependence of cathodic current during 

electrodeposition of Ni nanowires. 

 

Fig. 4. SEM images of electrodeposited Co nanowires separated from polycarbonate 

membrane filters. 

TEM bright images and diffraction patterns of electrodeposited Ni, Co and Fe nanowires 

were also investigated as shown in Fig.5. According to TEM bright images, cross-sectional 

area of the nanowire was almost to be round shape, while the diffraction patterns are 

composed of spots, which means a nanowire consists of a single crystal domain. 

www.intechopen.com



 Electrodeposited Nanowires and Their Applications 

 

66 

 

Fig. 5. Cross-sectional TEM images of Ni, Co and Fe nanowires electrodeposited in 

polycarbonate membrane filter. 

2.3 Magnetic properties of Ni, Co and Fe nanowires 
Magnetic hysteresis loops of electrodeposited nanowires were obtained using vibrating 

sample magnetometer (VSM) with increasing the magnetic field up to 10 kOe. Figure 6 

shows the magnetic hysteresis loops of Ni, Co and Fe nanowires electrodeposited into 

polycarbonate templates with pore-diameter of 80, 160 and 300 nm. Magnetic field was 

applied to perpendicular directions to the film plan, which corresponds to the parallel 

direction to the long axis of nanowires. Coercive force of the nanowires was increased in 

decreasing the pore-diameter. Figure 7 shows the magnetic hysteresis loops of Ni, Co and Fe 

nanowires electrodeposited into polycarbonate templates with pore-diameter of 40 nm. As 

shown in these figures, magnetization switching was observed at around 1 kOe and residual 

magnetization was almost equal to the saturated magnetization. The coercive force of Co 

nanowires reaches up to 1084 Oe and the magnetic hysteresis loop shows typical 

perpendicular magnetization behavior. This is resulting from the uni-axial magnetic 

anisotropy and single magnetic domain structure of the nanowires with large aspect ratio. 

3. Ni-Fe alloy nanowires 

3.1 Electrodeposition process of Ni-Fe alloy nanowires 
Ion track-etched polycarbonate membrane filters with pore-diameter of 80, 160, 300 and 800 

nm, pore-length of 6000 nm and pore-density of 108 pore•cm-2 were used as a template for 

growing metallic nanowires while copper foils were used as a cathode for electrodepositing 

metallic films. On a surface of the membrane filter, a gold layer was sputter-deposited to 

cover the pores and make a cathode. Aqueous solution containing metal sulfate was used as 

electrolyte. The solution compositions are shown in Table 1. 

To determine the optimum deposition potential for growing nanowires, cathodic 

polarizarion behavior was investigated in a wide range of cathode potential. Ni and Ni-Fe 

alloy nanowires were potentio-statically electrodeposited at 313 K. Figure 8 shows cathodic 
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polarization curves for the electrodeposition of Ni and Ni-Fe alloy. For the Ni-Fe alloy 

deposition, the solutions containing 1.5 % of Fe2+ ions concentration ratio (RFe/bath=1.5%) was 

used as shown in Table 1. 

 

 

Fig. 6. Magnetic hysteresis loops of Ni, Co and Fe nanowires electrodeposited into 

polycarbonate templates with channel-diameter of 80, 160 and 300 nm. 

 

 

Fig. 7. Magnetic hysteresis loops of Ni, Co and Fe nanowires electrodeposited into 

polycarbonate templates with channel-diameter of 40 nm. 
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Table 1. Electrolytic solution composition for electrodeposition of Ni-Fe alloys. 

The cathodic current begins to occur at ca. 0 V vs.Ag/ AgCl, which is more-noble than the 

equilibrium potential of Ni and Fe. Therefore, this cathodic current is presumed to be 

reduction current of H+ ions. With increasing the cathodic current, at around 10–3 A, the 

potential polarizes to be around –0.7 V due to the diffusion limit of H+ ions. At around –0.7 

V, the cathodic current for Ni deposition increases again, while the cathodic current for Ni-

Fe alloy deposition increases at around –0.8 V. This increase in cathodic current is mainly 

caused by an increase in deposition current of Ni and Ni-Fe. At the potential region less 

than –1.2 V, with increasing cathodic current, the potential polarizes significantly to be less-

noble region due to the diffusion limit of Ni2+ and Fe2+ ions. 

Consequently, the optimum cathode potential for electrodeposition of Ni and Ni-Fe alloys is 

determined to be –1.0 V. 
 

 

Fig. 8. Cathodic polarization curves for the electrodeposition of Ni and Ni-Fe alloy on Cu 

sheet from aqueous solutions containing Ni2+ and Fe2+ ions. 

To investigate the relationship between Fe2+ concentration ratio 

(RFe/bath=[Fe2+]/ ([Fe2+]+[Ni2+])) in baths and Fe content (RFe/depo =[Fe]/ ([Fe]+[Ni])) in Ni-Fe 
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alloy deposits, the composition of electrodeposits were determined using EDX analysis. 

Figure 9 shows the relationship between Fe2+ concentration ratio (RFe/bath) in baths and Fe 

content (RFe/depo) in Ni-Fe alloy deposits. With increase in RFe/bath, RFe/depo also increases. In the 

figure, composition reference line (C.R.L) means RFe/depo corresponds to RFe/bath. In this study, 

less-noble Fe preferentially electrodeposited rather than Ni. For example, Ni-22at.%Fe alloy 

deposit (RFe/depo=22%) was obtained from the solution containing 1.5 % of Fe2+ ions 

(RFe/bath=1.5%). Fe ratio in deposit was condensed ca. 10 times higher than Fe2+ ratio in bath. 

This result can be explained by the anomalous codeposition mechanism due to the 

formation and adhesion of Fe(OH)2 on cathode. In this mechanism, Fe(OH)2 on cathode 

would suppress and inhibit the electrodeposition of Ni. 

 

 

Fig. 9. Relationship between Fe2+ concentration ratio ([Fe2+]/ ([Fe2+]+[Ni2+])) in baths and Fe 

content in Ni-Fe alloy deposits. 

 

 

Fig. 10. SEM image of electrodeposited Ni-22at.%Fe alloy nanowires separated from 

polycarbonate membrane filter. 
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3.2 Crystal structure of Ni-Fe alloy nanowires 
After the growing nanowires, polycarbonate membrane filters were dissolved in organic 

solvent (dichloromethane and chloroform) and the remains consisted of nanowires and a 

gold layer was served as a sample for SEM observation. Figure 10 shows SEM image of Ni-

22at.%Fe alloy nanowires separated from polycarbonate template. Diameter and length of 

the nanowires corresponds well to that of nanochannels and the cylindrical shape was 

precisely transferred from the nanochannels to the nanowires as well as the case of pure Ni 

and pure Fe nanowires as shown in Fig.4. 

3.3 Magnetic properties of Ni-Fe alloy nanowires 
Magnetic hysteresis loops of electrodeposited films and nanowires were obtained using 

VSM with increasing the magnetic field up to 10 kOe. Figure 11 shows the magnetic 

hysteresis loops of Ni film and Ni-22at.%Fe alloy film electrodeposited on a copper foil. 

Magnetic field was applied to in-plan direction (red line) and perpendicular direction (blue 

line) to the film plan. As shown in these figures, in perpendicular direction, the films were 

hardly magnetized. On the other hand, in-plan direction, the films were easily magnetized 

and the magnetization reached to saturation at less than 1 kOe. Coercive force of Ni-22at.Fe 

alloy film was only ca. 1 Oe, which is quite smaller than that of Ni film (ca. 110 Oe). This is 

resulting from decreasing the magnetic anisotropy constant and magnetostriction constant 

of Ni with increase in Fe content in Ni-Fe alloy. 

 

 

Fig. 11. Magnetic hysteresis loops of Ni film and Ni-22at.%Fe alloy film electrodeposited 

from aqueous solutions. Magnetic field was applied to in-plan direction (red line) and 

perpendicular direction (blue line) to the film plan. 

Figure 12 shows the relationship between Fe content in Ni-Fe alloy deposits (RFe/depo) and the 

coercive force obtained from magnetic hysteresis loops with the applied magnetic field of in-

plan direction. With increase in Fe content in deposits, the coercive force decreased down to 

ca. several Oe level. It is well known that coercive force, Hc is expressed by the following 

equation if the rotation process is dominant in magnetization. 

 Hc = 2K/ Ms    (1) 

Here, K and Ms mean magnetic anisotropy constant and saturated magnetization. Magnetic 

anisotropy constants of Ni and Fe are followings. KNi = -4.5 kJ/ m3 (-562.5 kGOe) and KFe = 
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+48 kJ/ m3 (+6000 kGOe). Saturated magnetization of Ni and Fe are followings. MNi = 0.61 T 

(6100 G) and MFe = 2.16 T (21600 G). Therefore, the theoretical coercive force of Ni, HNi is 

estimated to be around 184 Oe, which is larger than the value (ca. 110 Oe) obtained in this 

study. If the magnetic anisotropy constant and saturated magnetization of Ni-Fe alloy can 

be expressed by the following equation, 

 KNi-Fe = KNi× (1- RFe/depo) + KFe×RFe/depo    (2) 

 MNi-Fe = MNi× (1- RFe/depo) + MFe×RFe/depo  (3) 

The theoretical coercive force of Ni-Fe alloy, HNi-Fe will be expressed by the following 

equation, 

 HNi-Fe = 2KNi-Fe/ MNi-Fe  (4) 

In this theory, Ni-9at.%Fe alloy will show minimum coercive force, which is almost zero. 

On the other hand, if the domain wall process is dominant in magnetization, Hc is expressed 

by the following equation. 

 Hc ∞ λσ/ Ms   (5) 

Magnetostriction constant of Ni and Fe are followings. λNi = -2.0×10-5 and λFe = +2.0×10-5. 

In this theory, Ni-50at.%Fe alloy will show minimum coercive force, which is almost zero. In 

this study, as shown in Figure 4, the Ni-Fe alloy films with low coercive force were obtained 

over the wide range of Fe content from 20 % to 60 %. 

 

 
 

Fig. 12. Relationship between Fe content in Ni-Fe alloy deposits and the coercive force 

obtained from magnetic hysteresis loops of the alloy. 
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Figure 13 shows the magnetic hysteresis loops of Ni and Ni-22at.%Fe alloy nanowires 

electrodeposited into polycarbonate templates with channel-diameter of 160 nm. Magnetic 

field was applied to in-plan direction (red line) and perpendicular direction (blue line) to the 

membrane film plan. The perpendicular direction to the membrane film plan corresponds to 

the parallel direction to the long axis of nanowires. 

As shown in these figures, in-plan direction, the nanowires were hardly magnetized. On the 

other hand, in perpendicular direction, the nanowires were easily magnetized and the 

magnetization reached to saturation at less than 2 kOe. Coercive force of Ni-22at.Fe alloy 

nanowires was ca. 100 Oe, which is almost half value of Ni nanowires (ca. 200 Oe) and the 

magnetic hysteresis loops show unique soft magnetic behavior. This is resulting from 

decreasing the uni-axial magnetic anisotropy due to the alloying effect of Fe. According to 

the equation (2), KNi-Fe will decrease with increasing the content of Fe. On the other hand, 

due to the equation (3), MNi-Fe will increase with increasing the content of Fe. Consequently, 

HNi-Fe will decrease with increasing the content of Fe according to the equation (4). 

Figure 14 shows the magnetic hysteresis loops of Ni nanowires and Ni-22at.%Fe alloy 

nanowires electrodeposited into polycarbonate templates with channel-diameter of 80, 160, 

300 and 800 nm. Magnetic field was applied to perpendicular directions to the film plan, 

which corresponds to the parallel direction to the long axis of nanowires. 

According to the figures, coercive force of Ni-22at.%Fe alloy nanowires was decreased with 

increasing the channel-diameter as well as the case of Ni nanowires. The coercive force of 

Ni-22at.%Fe alloy nanowires with channel-diameter of 800 nm reached down to 58 Oe. The 

magnetic hysteresis loop of the alloy nanowires shows unique linear dependence over the 

wide range of magnetic field. 

 

 
 

 
 

Fig. 13. Magnetic hysteresis loops of Ni nanowires and Ni-22at.%Fe alloy nanowires 

electrodeposited into polycarbonate templates with channel-diameter of 160 nm. Magnetic 

field was applied to in-plan direction (red line) and perpendicular direction (blue line) to the 

membrane film plan. The perpendicular direction to the membrane film plan corresponds to 

the parallel direction to the long axis of nanowires. 
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Fig. 14. Magnetic hysteresis loops of Ni nanowires and Ni-22at.%Fe alloy nanowires 

electrodeposited into polycarbonate templates with channel-diameter of 80, 160, 300 and 800 

nm. Magnetic field was applied to perpendicular directions to the film plan, which 

corresponds to the parallel direction to the long axis of nanowires. 
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4. Co/Cu multilayered nanowires 

4.1 Electrodeposition process of Co/Cu multilayered nanowires 
Figure 15 illustrates the fabrication process of Co/ Cu multilayered nanowires 

electrodeposited in nanochannels obtained by the heavy-ion track etching technique applied 

in this study: (a) recording of heavy ion tracks, (b) etching of tracks, (c) formation of 

electrodes, (d) electrodeposition of Co/ Cu nanowires. 

First, by irradiating the sample with an ion beam from a linear accelerator, straight ion 

tracks with a density of 108 tracks cm-2 were created perpendicular to the film surface as 

shown in Fig.15-(a). The tracks were selectively etched in a 6 M aqueous solution of NaOH 

to produce cylindrical nanochannels as depicted in Fig.15-(b). The etching process following 

the irradiation was optimized to produce a uniform cross section all along the channel with 

very small roughness. 

A copper layer of thickness 1 μm, which acts as cathode for the nanowire growth, was 

electrodeposited on a gold layer of thickness 100 nm sputtered on the membrane as shown 

in Fig.15-(c). An aqueous electrolytic solution was synthesized from CoSO4•7H2O 120 g L-1, 

CuSO4•5H2O 1.6 g L-1 and H3BO3 45 g L-1 for electrodeposition of Co-Cu alloy nanowires 

and Co/ Cu multilayered nanowires as shown in Fig.15-(d). 

 

 

Fig. 15. Schematic of fabrication process of Co/ Cu multilayered nanowires electrodeposited 

in nanochannels obtained by heavy-ion-track etching: (a) preparing latent tracks using 

heavy-ion beams, (b) etching of latent tracks leading to channels, (c) sputtering a gold layer 

on both sides of the surface and electrodeposition of Cu layer on the sputtered gold layer, 

(d) electrodeposition of Co/ Cu nanowires in the channels. 
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A cathodic polarization curve was measured over a wide range of cathode potential to 

determine the optimum potential for Cu and Co deposition. 

Figure 16 shows a cathodic polarization curve of polycarbonate template with channel 

length 30 μm and diameter 200 nm. The equilibrium potentials of Cu and Co are estimated 

to be around +0.05 V and –0.48 V (vs.Ag/ AgCl) on the basis of the Nernst equation as 

follows. 

 Eeq = E0 + RT (nF)–1 lnCM  (6) 

Here, E0 is the standard electrode potential, and CM denotes the concentration of metal ions 

(Cu2+ or Co2+). 

The cathodic current occurs at the potential region close to the equilibrium potential of Cu 

as shown in Fig.16. It is well-known that Cu2+ ions begin to electrodeposit without an 

accompanying overpotential from the aqueous solution. Therefore, this cathodic current 

corresponds to the deposition current of Cu. With increasing cathodic current, at around 10-

5A, the potential significantly polarizes to the less-noble region. This phenomenon seems to 

be caused by the diffusion control of Cu2+ ions. In the potential region less-noble than the 

equilibrium potential of Co, the cathodic current increases again at circa –0.8 V. It is also 

well-known that the electrodeposition of iron-group metals such as Ni, Co, and Fe is 

accompanied by the overpotential due to the rate determining multi-step reduction 

mechanism. Therefore, this increase in cathodic current is mainly caused by the deposition 

current of Co. It is well known that the potential dependence of growth rate for the 

nanowires corresponds well to the polarization curve for Cu and Co deposition. 

 

 

Fig. 16. Cathodic polarization curves for Cu (blue line), Co (red line) and Co-Cu alloy (black 

line) nanowires, both as a function of applied cathode potential during electrodeposition in 

a polycarbonate template with channel length 30 μm and diameter 200 nm. 
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Growth rates of nanowires were estimated by the channel filling time, which was 

determined from the time - dependence of deposition current at each potential. 

Figure 17 shows the effect of the cathode potential on the time-dependence of the cathodic 

current during Co-Cu alloy nanowire deposition in the polycarbonate template with 

channel length 30 μm and diameter 200 nm. The cathode potentials were fixed to -0.7, -0.9, -

1.1, and -1.3 V. To determine the wire growth rate, the channel-filling time was estimated by 

monitoring the deposition current. When the wires reach the membrane surface, the current 

will increase drastically due to the formation of hemispherical caps. If the radius of a 

hemispherical cap increases linearly with increase in deposition time, the current increases 

in proportion to the square of deposition time because the current linearly depends on the 

surface area of a hemispherical cap. Deposition rates were estimated by dividing channel 

length by channel-filling time. At –0.7 V, this time is around 600 s and the deposition rate is 

estimated to be about 50 nm s-1, while the filling time is close to 60 s at –1.3 V and the 

deposition rate is estimated to be around 500 nm s-1. 
 

 

Fig. 17. Effect of cathode potential on measured current during Co-Cu alloy nanowire 

deposition in a polycarbonate template with channel length 30 μm and diameter 200 nm. 

The cathode potentials were -0.7, -0.9, -1.1, and -1.3 V. 

On the basis of the results shown in Fig.16 and Fig.17, the optimum deposition potentials of 

Cu and Co are determined to be about –0.3 and –1.0 V (vs. Ag/ AgCl), that is, at potentials 

nobler than the diffusion limit region of each metal ion. Typical deposition rates of Cu and 

Co were roughly 10 nm s-1 (at –0.3 V) and 200 nm s-1 (at –1.0 V). 
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Co/ Cu multilayered nanowires were electrodeposited by alternatingly changing the 

cathode potential from -0.3 V vs. Ag/ AgCl (for Cu layer) to -1.0 V (for Co layer) as shown in 

Fig.18. According to this figure, when the potential is switched from -1.0 V to -0.3 V, anodic 

current is observed. This is resulting from the dissolution of electrodeposited Co, because -

0.3V is more noble than the equilibrium potential of Co. At this potential, it is estimated that 

the Cu deposition and Co dissolution will proceed simultaneously. 
 

 

Fig. 18. Time dependence of observed-current and applied cathode potential during 

electrodeposition of Co/ Cu multilayered nanowires. 

4.2 Crystal structure of Co/Cu multilayered nanowires 
To determine the alloy composition of the wires, a sample was prepared as follows. First, 

nanowires were electrodeposited at constant cathode potential in polycarbonate channels 

with length 6 μm and diameter 40 nm. Then, the polycarbonate was dissolved in an organic 

solvent to expose the wires. Finally, the wire composition was determined by EDX. Co-Cu 

alloy nanowires electrodeposited at –1.0 V contained 81%-Co and 19%-Cu. 

Figure 19 shows the SEM image and EDX profiles of electrodeposited Co/ Cu multilayered 

nanowires with the diameter of 40 nm and the each layer thickness of 30nm. According to 

the SEM image, multilayered structure is clearly observed and periodical EDX profiles also 

well correspond to the multilayered structure of the nanowires. 
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Fig. 19. SEM image and EDX profiles of electrodeposited Co/ Cu multilayered nanowires 

with the diameter of 40 nm and the each layer thickness of 30nm. 

4.3 Magnetic properties of Co/Cu multilayered nanowires 
To measure the wire resistance the wires were in-situ contacted with a gold layer during the 

electrodeposition process as illustrated in Fig.15-(d). Magneto-resistance curves were 

measured at room temperature applying a direct current of 10 μA and changing the 

magnetic field up to 10 kOe. 

Figure 20 exhibits the magnetoresistive hysteresis of Co-Cu alloy nanowires and Co/ Cu 

multilayered nanowires electrodeposited in a polycarbonate template with channel length 

30 μm and diameter 200 nm. Here, θ is defined as the angle between the magnetic field and 

the nanowire axis (current direction). The MR ratio is defined by the following equation 

 MR ratio (%) = 100(R0 - R10)/ R10   (7) 

Here, R0 and R10 are the resistance of zero field and 10 kOe, respectively. AMR curves of Co-

Cu alloy nanowires show the usual dependence on the direction of the applied magnetic 

field. In the direction parallel to the wire (0 deg), the effect of magnetic field on the 

resistance was very small and the MR ratio was almost zero, while in the direction 

perpendicular to the wire (90 deg), the MR effect was maximum. An AMR ratio of 0.6 % was 

observed for Co81Cu19 alloy wires, which is typical of this system. 

The structure of Co/ Cu nanowires electrodeposited in polymer templates is illustrated 

schematically in Fig.20. The layer thickness of Co and Cu is around to 10 nm. GMR strongly 

depends on Co and Cu layer thickness, and a maximum effect could be observed at about 10 

nm. Therefore, a thickness of 10 nm was realized for each layer by controlling the deposition 

time. The GMR curves of Co/ Cu multilayered nanowires possess only a small angular 

dependence, and the MR ratio reaches up to 8.0 %. For these samples, the saturation field 

www.intechopen.com



Fabrication of Functional Metallic Nanowires Using Electrodeposition Technique  

 

79 

seems to be around 5 kOe, which is much smaller than the field from which the AMR curves 

of Co-Cu alloy nanowires result. We have already reported that in porous alumina 

membranes Co/ Cu nanowires containing 100 and 300 bi-layers showed 20% and 12% of 

GMR ratio, respectively, while the Co/ Cu nanowires containing 1,500 bi-layers showed 

8.0% in this study. It is not surprising that the GMR ratio of Co/ Cu nanowires will decrease 

when increasing the number of bi-layers. For example, this GMR decrease could be caused 

by the enhancement of Co/ Cu interfacial roughness with increasing the number of bi-layers. 

 

 

Fig. 20. Magnetoresistance of Co-Cu alloy nanowires and Co/ Cu multilayered nanowires 

with length 30 μm and diameter 200 nm electrodeposited in polycarbonate nanochannels. 

The layer thickness of Co and Cu is 10 nm. 

Figure 21 shows the magnetoresistance of Co/ Cu multilayered nanowires with length 6 μm 

and diameter 60 nm electrodeposited in polycarbonate nanochannels. The each layer 

thickness of Co and Cu is adjusted to 10 nm. The GMR curves of Co/ Cu multilayered 

nanowires with length of 6 μm possess only a small angular dependence as well as the case 

of multilayered nanowires with length of 30 μm as shown in Fig.20. MR ratio of 

multilayered nanowires with length of 6 μm reaches up to 12 % as shown in Fig.21, which is 

much larger than that of multilayered nanowires with length of 30 μm. This is resulting 

from the difference of layered structure in nanowires. Layered structure will depend on the 

number of layers. With increasing number of layers, interlayer structure will be disappeared 

and each layer will form alloy. Therefore, GMR of multilayered nanowires with short length 

would show larger value than that of the multilayered nanowires with long length. 

Furthermore, GMR value will also depend on the magnetic domain structure in nanowires. 

It is well known that the magnetic domain structure depends on the diameter size of 

nanowires. With decreasing the diameter, the domain structure will be changed from multi-
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domain to single domain. The domain wall in ferromagnetic layer will decrease GMR value. 

The domain wall area of nanowires with diameter 60 nm is smaller than that of nanowires 

with diameter 200 nm. Consequently, GMR of multilayered nanowires with short diameter 

would show larger value than that of the multilayered nanowires with long diameter. 

 

 

Fig. 21. Magnetoresistance of Co/ Cu multilayered nanowires with length 6 μm and 

diameter 60 nm electrodeposited in polycarbonate nanochannels. The layer thickness of Co 

and Cu is 10 nm. Magnetic field was applied to in-plan direction (blue line) and 

perpendicular direction (red line) to the membrane film plan. The perpendicular direction to 

the membrane film plan corresponds to the parallel direction to the long axis of nanowires. 

5. Summary 

5.1 Ni, Co and Fe nanowires 
Optimum deposition potential region for growing Ni, Co and Fe nanowires was determined 

to be the range from –0.9 to –1.2 V. Growth rate of Ni nanowires was ca. 6 nm•sec-1 at the 

cathode potential of –1.0 V. Growth rate of nanowires was increased up to around 30 

nm•sec-1 with increasing cathode potential up to -1.2 V. 

The cylindrical shape was precisely transferred from the nanochannels to the nanowires and 

the aspect ratio reached up to ca. 150. The each nanowire was consisted of single crystalline 

domain. Basis on the uni-axial magnetic anisotropy and single magnetic domain structure of 

the ferromagnetic metal nanowires, the magnetic hysteresis loops showed typical 

perpendicular magnetization behavior and the coercive force reached up to around 1 kOe. 

5.2 Ni-Fe alloy nanowires 
Optimum deposition potential for electrodeposition of Ni-Fe alloy is determined to be ca. –

1.0 V. Fe ratio in deposit was condensed more than 10 times higher than Fe2+ ratio in bath. 

This phenomena was explained by the anomalous codeposition mechanism due to the 
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formation and adhesion of Fe(OH)2 on cathode. According to the mechanism, Fe(OH)2 on 

cathode would suppress and inhibit the electrodeposition of Ni. 

Coercive force of Ni-22at.Fe alloy film was ca. 1 Oe, which is quite smaller than that of Ni 

film (ca. 110 Oe). Ni-Fe alloy films with low coercive force were obtained over the wide 

range of Fe content from 20 % to 60 %. 

Growth rate of Ni and Ni-Fe alloy nanowires was ca. 6 nm•sec-1 at the cathode potential of –

1.0 V. The cylindrical shape was precisely transferred from the nanochannels to the 

nanowires as well as the case of pure Ni and pure Fe nanowires. 

Coercive force of Ni-22at.Fe alloy nanowires was ca. 100 Oe, which is almost half value of Ni 

nanowires (ca. 200 Oe). Magnetic hysteresis loops show unique soft magnetic behavior due 

to decreasing the uni-axial magnetic anisotropy resulting from the alloying effect of Fe. 

5.3 Co/Cu multilayered nanowires 
Optimum deposition potentials of Cu and Co are determined to be about –0.3 and –1.0 V 

(vs. Ag/ AgCl), that is, at potentials nobler than the diffusion limit region of each metal ion. 

Typical deposition rates of Cu and Co were roughly 10 nm s-1 (at –0.3 V) and 200 nm s-1 (at –

1.0 V). Co/ Cu multilayered nanowires were electrodeposited by alternatingly changing the 

cathode potential from -0.3 V vs. Ag/ AgCl (for Cu layer) to -1.0 V (for Co layer). Co-rich 

alloy electrodeposited at –1.0V consisted of 81%-Co and 19%-Cu. 

GMR ratio of Co/ Cu multilayered nanowires with length 6 μm, diameter 60 nm and layer-

thickness 10 nm reaches up to 12 %. GMR curves of the Co/ Cu multilayered nanowires 

showed only a small angular dependence. It was suggested that the interlayer structure will 

be disappeared and each layer will form alloy with increasing number of layers. Co/ Cu 

multilayered nanowires with short length and short diameter would show larger GMR 

value than that of the multilayered nanowires with long length and long diameter due to the 

magnetic domain structure. 
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