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1. Introduction   

Quasi-one-dimensional nanostructures, such as carbon nanotubes, inorganic semi-
conducting nanotubes/wires, and conjugated polymer nanotubes/wires, have drawn 
considerable attention in the past 20 years due to their importance for both fundamental 
research and potential applications in nanoscale devices (Kuchibhatla et al., 2007; Xia et al., 
2003; MacDiarmid, 2002). Since the electrical conductivity of conjugated polymers can be 
increased by many orders of magnitude from 10-10-10-5 to 103-105 S/cm upon doping 
(MacDiarmid, 2002), conducting polymer nanotubes and nanowires (e.g., polyacetylene, 
polyaniline (PANI), polypyrrole (PPY), and poly(3,4-ethylenedioxythiophene) (PEDOT), 
poly(p-phenylenevinylene) (PPV)), are promising materials for fabricating polymeric 
nanodevices such as field-effect transistors (Aleshin, 2006), actuators (Jager et al., 2000), bio- 
and chemical sensors (Huang et al., 2003; Ramanathan et al., 2004), nano light emitting 
diodes, electrochromic displays (Cho et al., 2005), artificial muscles, and solar cells, etc. 
(Zhang & Wang, 2006)  
By now, conducting polymer nanotubes and nanowires can be prepared by various methods 
such as the template-guided synthesis (Martin, 1994), template-free method (Wan, 1999), 
interfacial polymerization (Huang et al., 2003), electrospinning (MacDiarmid, 2001), dilute 
polymerization (Chio & Epstein, 2005), reverse emulsion polymerization method (Zhang et 
al., 2006), etc. The template method of polymerization proposed by Martin et al. is an 
effective technique to synthesize polymer micro-/nanotubes and wires with controllable 
length and diameter (Cai & Martin, 1989; Cai et al., 1991; Parthasarathy & Martin, 1994; 
Martin, 1994 & 1995). The disadvantage of this method is that a post-synthesis process is 
needed in order to remove the template. The template-free method developed by Wan et al. 
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is a simple self-assembly method without an external template (Wan et al., 1999 & 2001; 
Zhang et al., 2004; Huang et al., 2005; Wan, 2008 & 2009; Long et al., 2003). By controlling 
synthesis conditions such as temperature and molar ratio of monomer to dopant, 
polyaniline and polypyrrole nanostructures can be prepared by in-situ doping 
polymerization in the presence of protonic acids as dopants. The self-assembled formation 
mechanism in this approach is that the micelles formed by dopant and/or monomer-dopant 
act as soft templates in the process of forming tubes. The interfacial polymerization method 
proposed by Kaner et al. (Huang et al., 2003; Huang & Kaner, 2004) involves step 
polymerization of two monomers or agents, which are dissolved respectively in two 
immiscible phases so that the reaction takes place at the interface between the two liquids. 
Interfacial polymerization has been used to prepare various polymers, such as polyaniline 
nanofibers and nanotubes. Electrospinning is an effective approach to fabricate long 
polymer fibers using strong electrostatic forces (MacDiarmid, 2001; Tan et al., 2008). For 
instance, submicron fibers of doped polyaniline blended with polyethylene oxide or pure 
polyaniline have been prepared by this technique (MacDiarmid et al., 2001; Cárdenas et al., 
2007). It should be noted that various spectroscopic results have indicated that the polymer 
micro- and nanostructures produced by these methods are usually partially crystalline; in 
other words, the small metallic regions of aligned polymer chains are interspersed with 
amorphous regions where the chains are disordered. The crystalline fraction depends on 
synthesis methods and synthesis conditions. At present, fabrication of highly crystalline and 
metallic polymer nanotubes and nanowires is still a challenge.  
In order to fulfill the potential applications of conducting polymer nanotubes and wires, it is 
necessary to understand the electronic transport properties of individual polymer 
tubes/wires. The electrical characterization of individual conducting polymer nanotubes/ 
wires has made significant progress during the last decade. There are several strategies for 
measuring the conductivity of the template-synthesized fibres. The easiest and usual way is 
to leave the fibres in the pores of the template membrane and measure the resistance across 
the membrane (Cai & Martin, 1989; Cai et al., 1991; Parthasarathy & Martin, 1994; Martin, 
1995; Granström and Inganäs, 1995; Duchet et al., 1998; Mativetsky and Datars, 2002; Duvail 
et al., 2002 & 2004). Provided the number and diameter of the fibres are known, the 
measured trans-membrane resistance can be used to calculate the conductivity of a single 
fiber. However, this method may result in huge uncertainties on values due to the unknown 
number of connected fibres. Another way is to measure the resistances of compressed pellet 
or films (membrane removed) of the polymer nanofibres (Parthasarathy & Martin, 1994; 
Spatz et al., 1994; Orgzall et al., 1996). In fact, all these approaches did not realized the 
conductivity measurement of an individual fiber directly. Recently, the conductivity 
measurement of single polyaniline or polypyrrole tube/wire was achieved based on a 
conductive tip of an atom-force microscope (Park et al., 2002; Park et al., 2003; Saha et al., 
2004; Liu et al., 2006). In this two-probe geometry, the contact resistance can be minimized 
by applying a significant pressure of the tip onto the nanotube/wire. A common approach 
was generally realized by dispersing nanotubes/wires on patterned micro- or nano-
electrodes prepared by photo-lithography, electron-beam lithography and focused-ion beam 
deposition, followed by the subsequent searching of nanofibers just lying on the two or four 
electrodes only (Kim et al., 1999; MacDiarmid et al., 2001; Park et al., 2001; Park et al., 2003; 
Lee et al., 2004; Aleshin et al., 2004; Samitsu et al., 2005; Kim et al., 2005; Joo et al., 2005; 
Aleshin, 2006; Gence et al., 2007 & 2008; Callegari et al., 2009). Particularly, focused-ion beam 
assisted deposition technique has been employed to attach metal microleads on isolated 
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nanotubes/wires directly (Long et al., 2003a, 2004b & 2005b; Zhang et al., 2006; Huang et al., 
2006; Long et al., 2006c; Duvail et al., 2007; Lu et al., 2007; Long et al., 2008a & 2009b). There 
are also reports demonstrating a directed electrochemical nanowire assembly technique for 
the fabrication and measurement of polymer nanowire arrays between pre-patterned 
electrodes (Ramanathan et al., 2004). All these recent investigations contribute significantly 
to identify and understand the specific electrical behaviour of conjugated polymer nanwires 
and nanotubes in comparison to the bulk materials. Though a lot of efforts have been done, 
there are still some key questions needed to be clarified, for example, the effects of the 
nanocontacts on the electrical measurements, the differences in electrical properties between 
that of polymer nanotubes/wires and that of their bulk counterparts, the possibility of 
tuning and controlling the electrical properties of individual nanotubes/wires and so on. 
These questions are very important to fabrication and characterization of nanodevices based 
on individual nanofibers.  
In this chapter we provide a brief review of recent advances in the study of electronic 
transport properties (e.g., size effect in electrical conductivity, nonlinear current-voltage 
characteristics, small magnetoresistance effect, and nanocontact resistance effect) of 
individual conducting polyaniline, polypyrrole and PEDOT nanotubes/wires.   

2. Experimental  

2.1 Preparation and characterization 
The results reported in this review have been measured for conducting polymer nanotubes 
and nanowires prepared by template-free self-assembly method and template-guided method.  
The protonic acids doped polyaniline and polypyrrole nanotubes/wires were prepared by 
the template-free self-assembly method. The polyaniline nanotubes are chosen as an 
example to introduce the synthesis procedure. Aniline monomer was distilled under 
reduced pressure. Ammonium persulphate as an oxidant and camphor sulfonic acid (CSA) 
as a dopant were used without any further treatment. In a typical synthesis procedure, 
aniline monomer (0.002 mol) and CSA (0.001 mol) were mixed in distilled water (10 ml) with 
stirring. The mixture reacted and formed a transparent solution of CSA-aniline salt. Before 
oxidative polymerization, the solution was cooled in an ice bath. Then an aqueous solution 
of ammonium persulphate (0.002 mol in 5 ml of distilled water) cooled in advance was 
added slowly into the above cooled CSA-aniline salt solution. After all the oxidant was 
added, the mixture was allowed to react for 15 h in the ice bath. The precipitates were then 
filtered and washed with distilled water and ethanol for several times, and finally dried at 
room temperature in a dynamic vacuum for 24 h. It was noted that if the synthesis 

temperature was changed to -10 °C, polyaniline microspheres would be obtained (Long et 
al., 2004a). p-toluene sulfonic acid and 8-hydroxyquinoline-5-sulfonic acid doped 
polypyrrole tubes/wires were carried out along similar lines (Huang et al., 2005). The 
PEDOT nanowires were prepared in templates of polycarbonate track-etched membranes 
(Duvail et al., 2002, 2004 & 2008b). After the polymerization, polycarbonate (membrane 
template) was removed by dissolution with a flow of dichloromethane and the nanowires 
were dispersed onto a SiO2 wafer.  
The resulting polyaniline, polypyrrole, and PEDOT nanotubes/wires were characterized by 
elemental analysis, field-emission scanning electron microscopy (SEM), transmission electron 
microscopy, infrared and Raman spectroscopy, x-ray diffraction, x-ray photoelectron spectra 
and electron spin resonance (Zhang et al., 2004; Huang et al., 2005; Duvail et al., 2002 & 2004). 
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Fig. 1 shows the SEM and TEM images of the obtained polyaniline and polypyrrole nanotubes. 
The outer diameter is about 80-400 nm for the self-assembled polyaniline and polypyrrole 
tubes/wires and 20-190 nm for the template-synthesized PEDOT wires. It was found that the 
polymer tubes/wires prepared by the template-free self-assembly method show a partially 
crystalline character according to the x-ray diffraction patterns. This partially crystalline 
feature was also proved by specific heat (Long et al., 2004b) and magnetic susceptibility (Long 
et al., 2006b) studies on polymer nanotubes/wires.   
 

 

 

 

Fig. 1. Typical SEM images of self-assembled polyaniline nanotubes (a and b) and 
polypyrrole nanotubes (c and d). Typical TEM images of polyaniline nanotubes (e) and 
polypyrrole nanotubes (f).  

2.2 Fabrication of Pt microleads and electrical measurements 
The method used to attach Pt microleads on an isolated polymer nanotube/wire was 
described in previous publications (Long et al., 2003a & 2005b). First, polymer nanotubes/ 
wires were ultrasonically dispersed in ethanol for template-free prepared nanotubes/wires 
and in dichloromethane for template-prepared PEDOT nanowires. Then, a drop of solution 
was placed on an insulating SiO2/Si wafer. After the evaporation of the solvent, an electron 
microscope was used to find an appropriately isolated nanotube/wire on the wafer. At last, 
two pairs of Pt microleads typically 0.5 μm in width and 0.4 μm in thickness were fabricated 
by FIB deposition (Dual-Beam 235 FIB System from FEI Company, working voltage of the 
system is 5 kV for the electron beam and 30 kV for the focused-ion beam, respectively, 
current of the focused-ion beam is very small, 1-10 pA, to minimize the modification of the 
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conjugated polymer). Fig. 2 shows the individual polymer nanotubes/wires and the 
attached Pt microleads. It was noticed that the resistance of Pt microleads (less than 1 kΩ) is 
negligibly small compared with that of a single polymer nanotube/wire (several tens or 
hundreds of kΩ typically).  
 

  

  

Fig. 2. Typical SEM images of an isolated polyaniline nanotube/wire (a, b and c) and 
polypyrrole nanotube/wire (d), and the attached platinum microleads. (Long et al., 2003a & 
2005b)  

The electrical connection between the Pt microleads and the sample holder was made by 
highly conductive silver paste and gold wires and the electrical measurements of individual 
polymer nanotube/wire were carried out using a Physical Property Measurement System 
from Quantum Design and a Keithley 6487 picoammeter/voltage source, or a Keithley 236 
source-measure unit in an Oxford helium gas flow cryostat covering a wide temperature 
range from 300 down to 2 K. The four-probe resistance was measured by applying a very 
small current in the linear part of the I-V characteristics. The two-probe resistance was 
determined under Vbias = 0.02 V, while no rectifying behaviour has been measured in our 
samples. The I-V curves were obtained by scanning the voltage from -4 to 4 V with a step of 
0.02 V. The dI/dV curves were numerically derived from the corresponding I-V curves. The 
same polymer nanotube/wire was used for the four-probe measurement first and then for 
the two-probe measurement. The resistance of the polymer nanotube/wire with a given 
diameter was measured at least two times, for example, under cooling and during heating 
with a good reproducibility. In addition, for nanotubes/wires with a given diameter, two or 
more individual nanowires were measured to check the reproducibility.  

3. Electronic transport properties 

3.1 Diameter and temperature dependent electrical conductivity 
The dependence of electrical conductivity on the diameter of the polymer nanotubes/wires 
(prepared by the template method) at room temperature has been widely reported (Cai et 
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al., 1991; Parthasarathy & Martin, 1994; Martin et al., 1995; Granström & Inganäs, 1995; 
Duchet et al., 1998). It was found that the room-temperature conductivities of 
nanotubes/wires of conducting polypyrrole, polyaniline et al. can increase from 10-1-100 to 
about 103 S/cm with the decrease of their outer diameters from 1500 to 35 nm. The possible 
reason can be ascribed to the enhancement of molecular and supermolecular ordering 
(alignment of the polymer chains). For PEDOT nanowires prepared by template method, the 
room-temperature conductivities of the nanowires with diameters of 190, 95-100, 35-40, and 
20-25 nm are about 11.2, 30-50, 490-530, and 390-450 S/cm, respectively (Duvail et al., 2007 & 
2008a). For polypyrrole nanotubes prepared by template-free method, as shown in Fig. 3, it 
was found that the polypyrrole tube with a 560-400 nm outer diameter is poorly conductive 
and the room-temperature conductivity is only 0.13-0.29 S/cm. When the outer diameter 
decreased to 130 nm, the conductivity of the single nanotube increased to 73 S/cm (Long et 
al., 2005b). Such conductivity dependence on diameter was observed not only for template-
synthesized polymer tubes/wires but also for self-assembled polypyrrole tubes, which 
indicates that the polymer tubes/wires prepared by these two different methods have 
similar structural characteristic: the smaller the diameter, the larger the proportion of 
ordered polymer chains.  
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Fig. 3. Diameter dependence of room-temperature conductivity of individual polypyrrole 
micro-/nanotubes prepared by template-free self-assembly method. (Long et al., 2005b)  

Since the electrical properties of conducting polymers are strongly influenced by the effect 
of disorder and temperature, three different regimes (namely, insulating, critical, and 
metallic regimes close to the metal-insulator transition) have sorted out based on the extent 
of disorder and conductivity dependence on temperature (Yoon et al., 1994; Menon et al., 
1998; Heeger, 2002). In the insulating regime, for a three-dimensional system, the 
temperature dependent resistivity usually follows Mott variable-range hopping (VRH) 
model: ρ(T) = ρ0exp(TM/T)1/4. At lower temperatures, when the Coulomb interaction 
between charge carriers is significant, ρ(T) usually follows Efros-Shklovskii (ES) VRH: ρ(T) = 
ρ0exp(TES/T)1/2. In the critical regime, for a three-dimensional system close to the metal-

insulator transition, the resistivity follows the power-law dependence: ρ(T)∝T-β, where β lies 

within the range of 0.3<β<1. In the metallic regime, the sample shows a positive 
temperature coefficient of the resistivity at low temperatures (for example, below 10-20 K for 
metallic polypyrrole films, Menon et al., 1998).  
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Fig. 4. The dependence of resistance on temperature of a single polyaniline nanotube (σRT = 
47 S/cm) and a single polypyrrole nanotube (σRT = 0.8 S/cm) in the insulating regime of the 
metal-insulator transition: (a) and (c) plotted as ln R(T) versus T-1/4 ; (b) and (d) plotted as ln 
R(T) versus T-1/2; the temperature dependence of resistance follows 3D-VRH at higher 
temperatures and ES-VRH at lower temperatures. (Long et al., 2005b) 

Long et al. reported temperature dependent resistivity of a single polyaniline nanotube with 
average outer and inner diameters of 120 nm and 80 nm, which falls in the insulating regime 
of metal-insulator transition (Long et al., 2005b). The tube’s room-temperature conductivity 
is 47 S/cm. It was found that the resistivity follows three-dimensional (3D) Mott-VRH above 
66 K, and follows ES-VRH model below 66 K, as shown in Figs. 4a and 4b. Here it is noted 
that from the view point of electrons, the polymer tube/wire with an outer diameter of 120 
nm is still three dimensional because the localization length of carriers (LC < 20 nm) is much 
smaller than the wall thickness or the diameter of the submicrotube. Similar smooth 
crossover from Mott-VRH to ES-VRH has also been observed in a single polypyrrole 
microtube (room-temperature conductivity, 0.8 S/cm) at around 96 K (as shown in Figs. 4c 
and 4d, Long et al., 2005b). However, the crossover temperature (Tcros ~ 66-96 K) and the 
characteristic ES temperature (TES ~ 316-780 K) of a single polymer tube/wire are much 
higher than those of a polyaniline pellet or a polypyrrole film (Tcros < 15 K and TES ~ 29-56 
K), which could be possibly due to enhanced strong Coulomb interaction in polymer 
nanotubes/wires at low temperatures.  
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In addition, with the decrease of disorder or diameter of polymer nanotubes/wires, Long et 
al. found that a 130-nm polypyrrole nanotube with room-temperature conductivity of 73 
S/cm is lying close to the critical regime of metal-insulator transition (Long et al., 2005b). Its 

resistivity follows the power-law dependence: ρ(T)∝T-β, as shown in Fig. 5. The fit yields a β 
value of 0.488. Duvail et al. reported that a 100-nm PEDOT nanowire (σRT ~ 50 S/cm) fell in 

the critical regime with a β value of ~ 0.78 (Duvail et al., 2007). Furthermore, the 35-40 nm 
template-prepared PEDOT nanowire (σRT ~ 490 S/cm) displays a metal-insulator transition 
at about 32 K, indicating that the nanowire is lying in the metallic regime (Duvail et al., 
2007). However, for a PEDOT nanowire with a diameter of 20-25 nm, though its 
conductivity is relatively high at room temperature (~ 390-450 S/cm), the nanowire shows 
very strong temperature dependence (R(10K)/R(300K) ~ 105) or insulating behavior at low 
temperature. This is possibly due to a confining effect since the value of the diameter (20-25 
nm) becomes equal or close to the localization length of electrons (Lc ~ 20 nm). In such a 
case, localization of electrons induced by Coulomb interaction or small disorder must be 
taken into account for explaining this insulating behavior at low temperatures. 
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Fig. 5. The dependence of resistance on temperature  (ln R(T) versus ln T plot) for a single 
130-nm polypyrrole nanotube in a conductive state close to the critical regime of the metal-
insulator transition. (Long et al., 2005b)  

3.2 Nonlinear I-V characteristics 
The current-voltage (I-V) characteristics of individual polymer nanowires/tubes such as the 
polyacetylene, polyaniline, polypyrrole, and PEDOT have been explored extensively in the 
past ten years (Park et al., 2001; Park et al., 2003; Kaiser et al., 2002, 2003 & 2004; Aleshin et 
al., 2004; Long et al., 2005b). With lowering temperature, a transition from linear to nonlinear 
I-V characteristics is usually observed (Fig. 6a), and a clear zero bias anomaly (i.e., Coulomb 
gap-like structure) gradually appears on the differential conductance (dI/dV) curves (Fig. 
6b). Similar transition has also been reported in carbon nanotubes (Kang et al., 2002) and 
inorganic compound nanowires such as CdS nanoropes (Long et al., 2005a & 2008b), 

K0.27MnO2⋅0.5H2O nanowires (Long et al., 2008c), ZnO (Ma et al., 2005) and SnO2 (Ma et al., 
2004) nanowires. 
Up to now, several theoretical models such as the space-charge limited current, fluctuation-
induced tunneling (Kaiser et al., 2003 & 2004; Kaiser and Park, 2005), Coulomb gap (Kang et 
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Fig. 6. I-V characterisitics (a) and  the corresponding differential conductance (dI/dV) 
curves (b) of a single polypyrrole nanotube at low temperatues.  

al., 2002; Ma et al., 2004; Long et al., 2005b & 2008c), Coulomb blockade (Saha, 2002; Aleshin 
et al., 2005; Long et al., 2008b), Lüttinger liquid (Aleshin et al., 2004), Wigner crystal (Rahman 
and Sanyal, 2007) models, etc. have been considered to explain the conduction mechanism 
of quasi-one dimensional nanofibers. Saha and Aleshin et al. reported single-electron 
tunneling or Coulomb-blockade transport in conducting polypyrrole and helical 
polyacetylene nanofibers (Saha, 2002; Aleshin et al., 2005) separately. In addition, power-law 
behaviors for both I-V characteristics and electrical conductance G(T) have been reported 
recently in polyacetylene fibers (Aleshin et al., 2004) and polypyrrole wires/tubes (Rahman 
and Sanyal, 2007), which are characteristics of one-dimensional systems composed of 
several Lüttinger liquids or Wigner crystals connected in series, owing to electron-electron 
interactions (repulsive short-range electron-electron interactions or long-rang Coulomb 
interactions). Particularly, Kaiser et al. (Kaiser et al., 2004; Kaiser and Park, 2005) recently 
proposed a generic expression (extended fluctuation-induced tunneling and thermal 
excitation model) for the nonlinear I-V curves based on numerical calculations for metallic 
conduction interrupted by small barriers:  

 G=I/V=G0⋅exp(V/V0)/{1+h[exp(V/V0)-1]}  (1) 

where G0, V0 and h are parameters: G0 is the temperature-dependent zero-bias conductance; 
V0 is the voltage scale factor, which strongly depends on the barrier energy. Kaiser et al. 
showed that this expression could give a very good description of the observed 
nonlinearities in polyacetylene nanofibers, vanadium pentoxide nanofibers, etc. Here, one 
question arises for the Kaiser expression: Is it still appropriate to fit the nonlinear I-V 
characteristics of individual polymer nanowires/tubes if the Coulomb interactions are 
strong and should be taken into account?  
The Kaiser expression has been used by Long et al. (Long et al., 2009b; Yin et al., 2009) to 
numerically calculate the I-V characteristics of individual polyaniline nanotube, polypyrrole 
nanotubes, PEDOT nanowires, CdS nanorope, and K0.27MnO2 nanowire, as shown in Fig. 7a. 
The fitting results indicate that except at low temperatures and low bias voltages, the Kaiser 
generic expression can give a good description of the I-V characteristics of individual 
nanotubes/wires, because the Kaiser expression (extending the Sheng model or fluctuation-
induced tunneling and thermal excitation model) has well included the microstructure 
feature and the conduction feature of conjugated polymer nanofibers (quasi-one-

(b) 
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dimensional metallic conduction interrupted by small barriers). Apparent deviation from 
the Kaiser expression has been evidenced in the low-temperature I-V curves as shown in 
Fig. 7b).  
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Fig. 7. I-V characterisitics of single polypyrrole nanotube with fits to expression (2), at 
temperatures (a) ranging rom 300 K to 100 K and (b) from 80 K to 10 K. (Long et al., 2009b) 
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Fig. 8. Zero-field conductance versus temperature, where G0 is determined from the fitting 
data and G0‘ is determined from the experimental data. (Long et al., 2009b)  

Particularly, we compare the values of zero-bias conductance determined from the fitting 

parameter (G0) with that determined from experimental measurements (G0‘, obtained from 

the I-V curve or the differential conductance). As shown in Fig. 8, the fitting parameter G0 

decreases smoothly with temperature lowering, but the experimental value G0‘ sharply 

decreases below 80-100 K and deviates from G0, although it becomes superposable to G0 for 

temperature equal and larger to 100 K. We note that the deviation temperature (about 80 K) 

is close to and consistent with the crossover temperature (66-96 K) for the crossover from 

Mott-VRH to ES-VRH, as shown in Fig. 4.  

We propose that one possible reason for the deviation is that the Kaiser expression does not 
include the contributions from the Coulomb-gap occurring in density of states near Femi 
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level and/or enhanced Coulomb interactions due to nanosize effects, which become 
important at low temperatures and voltages. (Long et al., 2009b & 2005b; Yin et al., 2009) 

3.3 Magnetoresistance 
The magnetoresistance (MR, defined as MR=ΔR(H)/R(0)=[R(H)-R(0)]/R(0)) of bulk films of 
conducting polymers have been extensively studied in the past 20 years (Menon et al., 1998). 
For example, polyaniline, polypyrrole, PEDOT films, and polyaniline composites usually 

exhibit a positive magnetoresistance at low temperatures (T<10 K) and MR∝ H2 (H is not 
very large). The mechanism generally involved is the shrinkage of localised wavefunctions 
of electrons in the presence of a magnetic field or electron-electron interactions (Menon et al., 
1998). Whereas highly conductive polyacetylene films usually show a negative 
magnetoresistance at low temperatures, which is mainly attributed to the weak localization 
effects (Menon et al., 1998; Kozub et al., 2002). Up to date, only a few papers have reported 
the magnetoresistance of polymer nanotubes/wires (Kim et al., 1999; Park et al., 2001; Kozub 
et al., 2002; Long et al., 2006a, 2006c & 2009c).  
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Fig. 9. The magnetoresistance curves for different temperatures of (a) a single polyaniline 
nanotube and (b) a pellet of polyaniline nanotubes. (Long et al., 2006a)  

Long et al. reported that the magnetoresistance of single polyaniline nanotube and single 
PEDOT nanowire is positive below 10 K and increases as H2 up to 9 T. Typically, a positive 
magnetoresistance is expected for hopping conduction, because applying a magnetic field 
results in a contraction of the overlap of the localized state wavefunctions and thus an 
increase in the average hopping length. This corresponds to a positive magnetoresistance at 
sufficiently low temperatures. The theory of positive magnetoresistance has been developed 
for two cases, without and with electron-electron interactions. In both cases the weak-field 

MR with strong temperature dependence can be expressed as ln(R(H)/R(0))∝H2⋅T-3/4 

(Shklovskii & Efros 1984). However, the magnetoresistance of a single nanotube/wire is 
much smaller than that of the nanotube/wire pellet at 9 T: MR<5% (2K) for the single 
nanotube/wire (Fig. 9a), and MR ~ 90% (3K) for the polyaniline nanotubes’ pellet (Fig. 9b, 
Long et al., 2006a). In addition, when the temperature increases, the magnetoresistance of 
the single nanotube/wire becomes smaller and close to zero. No evident transition from 
positive magnetoresistance to negative one was observed. In contrast to that of single 
nanotube/wire, pellets of polyaniline and polypyrrole nanotubes/wires show a relatively 
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larger positive magnetoresistance at low temperatures. With temperature increasing, there is 
a transition from a positive magneto-resistance to a small negative magnetoresistance at 
about 60 K. The results indicate that the magnetoresistance in the bulk pellet samples made 
of polymer nanotubes/wires is dominated by a random network of inter-fibril contacts.  
The small magnetoresistance effect in individual polymer nanotube/wire has been 
confirmed in other samples. For example, the low-temperature magnetoresistance 
(MR~0.1%) in a polyacetylene nanofiber network is rather smaller than that in a bulk 
polyacetylene film (Kim et al., 1999; Park et al., 2001). A single gold/polyaniline microfiber 
shows a small positive magnetoresistance (MR<4.1%) below 6 K (Long et al., 2006c). The 
reason for this weak magnetoresistance effect in individual polymer nanotube/wire is 
possibly due to the elimination of inter-nanotube/wire contacts, small size and, relatively 
high conducitivity of individual polymer nanotube/wire. (Park et al., 2001; Long et al., 
2006a) 

3.4 Nanocontact resistance 
The contact resistance is often encountered when we study electronic transport in an 
individual polymer nanowire/tube or polymer nanofiber-based nano-devices. As we know, 
there are two major factors responsible for the contact resistance magnitude: geometry and 
insulating layers (potential barriers) between the contacting surfaces. The resistance of a 
contact is inversely proportional to its area, and is dependent on the surface stiffness and the 
force holding the two surfaces together.The insulating layers (potential barriers) between 
the polymer nanowire and the metal electrode are usually formed due to their different 
energy levels or work functions. A bad (insulating or semiconducting) electronic contact 
may possess a strongly temperature dependent contact resistance, and thus can seriously 
complicate or even dominate the measured resistance. In this section, we discuss two kinds 
of nanocontact resistance: between two crossed polymer nanowires/tubes and between 
polymer nanowire/tube and metal microlead.  
 

  

Fig. 10. SEM images showing two crossed polyaniline nanotubes and their attached Pt 
microleads. (Long et al., 2003c)  

The nanocontact resistance between two crossed polymer nanotubes/wires has been 
studied by Long et al. (Long et al., 2003c & 2009a). It was found that the inter-tubular 
junction resistance of two crossed polyaniline nanotubes (Fig. 10) is very large, about 500 kΩ 
at room temperature, which is nearly 16 times larger than the intra-tube (intrinsic) resistance 
of an individual PANI nanotube (about 30 kΩ, Long et al., 2003c). This result explains 
straightforwardly why an individual polyaniline nanotube has a much higher room-
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temperature conductivity (30.5 S/cm) than that of a pellet of polyaniline nanotubes where 
the measured resistance is dominated by the inter-fibril resistance (0.03 S/cm). For crossed 
PEDOT nanowires, the junction resistance (between the two nanowires) at room 
temperature can vary from 885-1383 kΩ for one sample and to 370-460 MΩ for another 
sample, which is respectively comparable or much larger than the intrinsic resistance of the 
PEDOT nanowires. In addition, the contact resistance shows a stronger temperature 
dependence (R(72K)/R(300K) is about 120 ~141) and could be fitted by a thermal 
fluctuation-induced tunneling (FIT) model (Long et al., 2009a). It should be noted that the 
nanojunction resistance is comparable to the intrinsic resistance of polymer nanotube/wire 
and shows large sample-sample variations. The possible reasons could be attributed to the 
contamination of the nanotube/wire surfaces (polycarbonate for template-prepared PEDOT 
nanowires, solvent impurities or water adsorption), the variation of the junction area 
between the two nanotubes/ wires, and the self-formation conditions of the junction. It has 
to be mentioned that no special effort was made to control the formation of the junction 
between the two crossed nanotubes/wires during fabrication.  
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Fig. 11. The temperature dependence of the four-probe resistance (R4P) and the two-probe 
resistance (R2P) of (a) an individual PEDOT nanowire with a diameter of 35 nm, which falls 
in the metallic regime of the metal-insulator transition, and (b) an individual PEDOT 
nanotube with a diameter of 190 nm, which falls in the insulating regime of the metal-
insulator transion  (Long et al., 2010)  

The nanocontact resistance between a polymer PEDOT nanowire and a platinum microlead 
prepared by FIB deposition has also been studied by Long et al. (Long et al., 2010). It was 
found that the nanocontact resistance (determined from four-probe resistance and two-
probe resistance of the same nanowire) is in the magnitude of 10 kΩ at room temperature 
and can reach 10 MΩ at low temperatures, which, in some cases, is comparable to the 
intrinsic resistance of the PEDOT nanowires. For a semiconducting polymer nanowire in the 
insulating regime of the metal-insulator transition, the four-probe resistance is quite close to 
the two-probe resistance because the contact resistance is much smaller than the intrinsic 
resistance of the polymer nanowire as shown in Fig. 11a (Long et al., 2008a & 2010). 
However, for a nanowire that falls in the metallic regime of the metal-insulator transition 
(for example, the 35 nm PEDOT nanowire as shown in Fig. 11b, Long et al., 2010), the 
metallic nature of the measured polymer fibers could be over shadowed by the two-probe 
measurement although the nanowire shows a relatively high electrical conductivity at room 
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temperature (390-450 S/cm). It can be attributed to the nanocontact resistance is much larger 
than the intrinsic resistance of the nanowire especially at low temperatures. We note that, 
for individual RuO2 nanowires (Lin et al., 2008), the temperature dependence of the two-
probe resistance indicates that the nanowire is semiconducting, whereas the four-probe 
resistance dependence of the same nanowire shows the measured nanowire is metallic. So, 
in order to explore the intrinsic electronic transport properties of individual nanowires, 
especially in the case of metallic nanowires, the four-probe electrical measurement is 
necessary because nanocontact resistance cannot be excluded in a two-probe measurement.  

4. Conclusion 

During the past 15 years, significant progress has been made in synthesis, structural and 
electrical characterizations, and applications of conducting polymer nanotubes/wires. In 
this chapter, a brief review of the recent advances in electronic transport properties of 
individual conducting polymer nanotubes/wires prepared by both the template-free self-
assembly method and the template method is presented. Results with broad interest have 
been discussed. For example, it was found that the electrical conductivity of the individual 
polymer tubes/wires increases by several times of magnitudes with decreasing outer 
diameter (size effect in electrical conductivity). The crossover from Mott to Efros-Shklovskii 

variable-range hopping conduction was observed at a relatively high transition temperature 
in single nanotubes/wires (enhanced Coulomb interaction effect). The low-temperature 
magnetoresistance of a single polymer tube/wire is positive and quite smaller than those of 
the nanotube/wire pellets (small magnetoresistance effect). The intrinsic resistance of an 
individual nanotube is much smaller than the contact resistance of two crossed nanotubes 
(nanocontact resistance effect). In addition, individual polymer tubes/wires show obvious 
transition from linear to nonlinear I-V curves at low temperature, and a clear zero-bias 
anomaly with Coulomb gap-like structure appeared on the differential conductance curves 
at low temperatures. These results indicate that the electrical properties of isolated 
conducting polymer tubes/wires are different from those of bulk polymer pellets or films in 
some cases due to their nanoscale diameters. However, in order to eliminate nanocontact 
resistance and reveal the intrinsic electronic transport properties of an individual nanotube/ 
wire, it is still quite important to develop new or improved conductivity measurement 
approaches on a single nanofibre. Furthermore, due to the complicated microstructures of 
conducting polymers, there are still problems and challenges to fulfill their applications in 
nanoscale devices, such as whether fully metallic conducting polymer nanotubes/wires, 
which show metallic behavior from room-temperature down to low temperatures, can be 
prepared through improving their molecular or supramolecular ordering. In addition, 
reproducibility and/or controllability of individual polymer nanotubes/wires are also a 
problem, since their electrical properties are sensitive to many factors such as doping level, 
extent of disorder, diameter, temperature, aging effect, etc.  
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