We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

A Variation of Particle Swarm Optimization for
Training of Artificial Neural Networks

Masood Zamani and Alireza Sadeghian
Ryerson University
Canada

1. Introduction

Particle swarm optimization (PSO) is a stochastic global optimization method (Eberhart
& Kennedy, 1995) that belongs to the family of Swarm Intelligence and Artificial Life.
Similar to artificial neural networks (ANN) and genetic algorithms (GA) which are the
simplified models of the neural system and the natural selection of the evolutionary
theory, PSO is a simplified model of psychological principles and social behaviors
(Reynolds, 1987). PSO is based on the principles that flocks of birds,schools of fish, or
swarm of bees searches for food sources where at the beginning the perfect location is
not known. However, they eventually reach the best location of food source by means
of communicating with each other.

PSO is also conceptually compared to evolutionary computation methods such as GA
(Eberhart & Shi, 1998). The uniqueness of PSO is the dynamic interaction among the
particles.The optimization method starts with randomly generated particles (the
population) in a defined domain called the search space. Particle locations are updated
in each generation (iteration) to explore the search space for an optimum solution. In
PSO, particle positions and velocities are updated based on cooperation and
competition. Each particle finds its next position in the search space according to its
own search experience and the best experience of the particles located in its local
group, neighborhood and the entire population. Neighbors are the particles located
within a pre-defined distance of a specific particle.

In this article, we propose a method to update the velocities and positions of particles
when the maximum search space boundary and velocity are reached. The efficiency of
the proposed particle swarm optimization method is investigated through the training
of feed-forward artificial neural networks used for classification. The experiments
show the particle swarm optimization lends itself very well to training of neural
networks and is also highly competitive with the other methods of training feed-
forward ANNs. We have conducted four classification experiments using feed-forward
ANNs with PSO based training. The data sets used in the experiments are from the
UCI repository (Asuncion & Newman, 2007) commonly used in the literature.

www.intechopen.com

132 Computational Intelligence and Modern Heuristics

2. Related works

The most widely used method of training for feed-forward ANNs is back-propagation
(BP) algorithm (Hecht-Nelso R., 1989). Feed-forward ANNs are commonly used for
function approximation and pattern classifications. Back-propagation algorithm and its
variations such as QuickProp (Fahlman, 1998) and RProp (Riedmiller and Braun, 1993)
are likely to reach local minima especially in case that the error surface is rugged. In
addition,the efficiency of BP methods depends on the selection of appropriate learning
parameters. The other training methods for feed-forward ANNSs include those that are
based on evolutionary computation and heuristic principles such as Genetic
Algorithm(GA), and PSO.

Although, Genetic Algorithm (Mitchell M., 1988) is a suitable choice for the trainnig
due to its exploration and exploitaion properties and solves the gradient-based
drawbacks, however it sufferes from the mutation problem leading to premature
convergences and needs more time to converge to an optimum solution comparing to
the particle swarm optimization. As we discuss about the properties of PSO later, it
has been shown that PSO is a better evolutionary candidate for optimization (Eberhart,
and Shi, 1998). The PSO algorithm posseses imprtant chractristcs such as memory and
costructive cooperation among the individuals that can prevent mutation problem
exitst in GA. Different variations of PSO have been applied to train the feed-forward
ANNSs for non-linear function approximation and classification problems. The training
of neural networks is achieved basically in two ways:

1- Adjusting the connection weights when the ANN structure is predefined such
as the number of hidden layers, the number of neurons and their connections,
and activation function parameters.

2- Evolving a ANN structure which is not predefined and adjusting the weights
simultenously.

Training of fixed structure ANN has been experimented by basic PSO method (Mendes
et al.,, 2002). In this study, it has been shown PSO’s performance is competitive to BP
methods and especially in some problems where the number of local minima is high.

Also, the variant of PSO with minimum velocity constraint was proposed and tested
for function approximations using feed-forward ANNs (Xiaorong et al., 2007). Applying
the velocity constrains reduces the premature convergences and alleviates the effect of
dimentionality increase. This is done by guiding the particle in the search space by
limiting the maximum moving distance in each iteration. Thus, it prevents the particle
to go out of the bound (search space) or to stop when the velocity increases or
decreases. The very effective modifications focusing on optimizing the update
equations of PSO were made in (Russ et al, 2000), (Kennedy, 2000). These
modifications are adding the inertia weight and improving the PSO performance with
cluster analysis. Using cluster analysis methods, the update equations are modified in
a fashion that particle attempt to merge to the center of their cluster instead of merging
to the global best location. This approach improves the performaces in some classes of
problems. In (Angelin,1999), a selection mechanism was proposed for PSO similat to
that already used in genetic algorithm to improve the quality of the particles in a

www.intechopen.com

A Variation of Particle Swarm Optimization for Training of Artificial Neural Networks 133

swarm. Another modified PSO is the cooperative learning proposed in (Van den Bergh
& Engelbrecht, 2004). The application of this method to neural network training has
yield promising results. In this approach, input vectors are distributed into several
sub-vectors which are optimized in their own swarms cooperatively. Performace
improvment in this case are due to splitting the main vector into several sub-vector
that in turn results in better credit assignments and reduces the chance to omit a
possible good solution for a certain componet in the vector.

Training of ANNs by Multi-Phase PSO (MPPSO) is another variation which evolves
simeltiously multiple groups of particles that change the direction of search in
different phases of the algorithm (Al-kazemi & Mohan, 2002). Each particle in this
method is in a specific group and phase at a given time. MPPSO boosts the wider
exploration of the search space, increases pupolation diversity and prevents premature
convergences. Furthermore, MPPSO has different update equations comparing to the
basic PSO and permits changes to the locations of the particle that only lead to some
improvements. PSO also has been used as a means to evolve ANN architectures
(Chunkai et al., 2000). In this study, the network structure is adaptively adjusted and
the PSO algorithm is applied to evoles the nodes of the neural network with specific
generated structure. The techniques such as the combination of partial training and
evolving added nodes are employed to generate the desired architecture and then PSO
is used to evolve the nodes of the pre-defined structure. Hybrid of genetic algorithm
and particle swarm optimization (HGAPSO) is another modified PSO that was
employed to design recurrent neural networks [Juang, 2004]. In HGAPSO method, the
individuals of the next generation are created not only by crossover and mutation
operators but also by PSO. The upper-half of the best-performing individuals in a
population are ehanced using PSO and the other half is generated by applying the
crossover and mutations. Unlike GA, HGAPSO removes the restrictions of evolving
the individuals within the same generation. In this article, the proposed method is
another variation of particle swarm optimization for fixed structure ANNs where only
weights are adjusted.

3. Particle Swarm Optimization

The Particle Swarm Optimization algorithm is represented by the evolution of a population
in the form of an n-dimensional vector x=(xi,...,xn) ,i=1,..,n. These particles represent an
approximation of the desired solution, and the number of dimensions depends on a given
problem. Each particle has a memory p’, i=1,..m where m is the number of particles) which
keeps the best location that ith particle has found since its search started. Furthermore, every
flying particle has a velocity vi(t) that shows its direction and speed at the time instance t. In
each iteration, particle locations and velocities are updated according to equations (1), and
(2). The global best location, pg, found by any particle, and local best location, pL; found by
neighbors of the ith particle, are the two elements of shared information in the entire
population. To evaluate each particle’s performance, a fitness function is defined. There are
two types of PSO, global and local (Bergh & Engelbrecht, 2002). The local version of PSO
that is proven experimentally to be able to find the global optimum is shown by equation

www.intechopen.com

134 Computational Intelligence and Modern Heuristics

(3). This method is computationally extensive since for each particle a neighborhood of size
k is identified in each iteration as shown in Figure 1.

vi(t+1)=w.vi(t)+cr.ri(pl -xi(t))+ co.r2(ps-xi(t)) , i=1,....m 1)
xi(t+1)= xi(t)+ vi(t+1) ()

In the local version of PSO, the equation (1) is changed to (3).
Vi(t+1)=w. vi(t)+cr.r1(pi -xi(t))+ co.r2(ps —xi(t))+ ca.ra(pli-xi(t)) , i=1,...m 3)

The initial values of positions and velocities are calculated for each particle by the equations
(4), and (5).
Vi(0)=Vmin + rand(Vmax- Vmin), i=1,..,m 4)
X1(0)=Xmin + rand (Xmax- Xmin), i=1,..,m @)

In equation (1), r1, r2 are two random vectors with values ranging from zero to one. The
inertia w is a predefined positive value that is decreased in each iteration to slow down the
speed of particles which are closing gradually to the global best particle (Shi & Eberhart,
1998). As a result, this parameter gives more chance to particles to explore the search space
and bound the increase of velocity. The expression ci.ri(pi -xi(t)) in equation (1) is the
particle memory influence which indicates the scale that a particle relies on its own best past
experience. Also, the expression c,.r2(pg -xi(t)) in equation (1) is swarm influence indicating
the degree that a particle follows the best experience of the entire population or the local
group which is shown the expression cz.r3(pli-xi(t)) in equation (3). The three confidence
measures which are self-confidence, swarm and local-group confidences are denoted by cy,
c2 and c3 respectively. These are positive constant values ranging from 1.5 to 2.5. The inertia
value is usually chosen from 0.4 to 1.4 (Shi & Eberhart, 1998). Schematics for the equation
(1), (2) are shown in Figure 2.

Fig. 1. Neighborhoods of size 4, N; standing for neighborhood and P; for particles

www.intechopen.com

A Variation of Particle Swarm Optimization for Training of Artificial Neural Networks 135

Particle’s new

location(

X(t+1) ® pBest
(Particle Best)

A ">~<_ Particle
\ influence
Vi),

gBest
uence " (Gltal
Best)

Particle’s

current

location(X(t))

Fig. 2. The equation (1), (2) in the form of vector representation

The steps of PSO algorithm can be defined as the following:

1- Representing the primary solution of a given problem in the form of n-dimensional
vectors.

2- Defining a boundary for the search space and maximum velocity.

3- Defining a fitness function to evaluate the quality of each particle.

4- Generating a population consist of m particles represented in the form of n-
dimensional vectors and locating them randomly in the search space.

5- Updating the position and velocities of the particle by the equation (1),(2).

6- Evaluating the fitness of each particle

7- Updating the best experience or memory of each particle and the global best
particle.

8- Repeating from the step 5 until the desired solution is achieved.

PSO is comparable to Evolutionary Computation (EC) methods namely genetic Algorithm
(GA) since it is a stochastic population based method. In PSO the information is shared
among the population by global best and local best particles whereas in GA the crossover
operator performs the same function. The random vectors r, 2 in the equation (1) also are
similar to the mutation operator in the GA. However, unlike GA that discards the
individuals with lower fitness, in PSO all particles are kept and transferred to the next
generation. In addition, each particle has memory, whereas in GA the best individual is kept
in each generation.

4. Methodology

Training of neural networks can generally be considered as modification of the randomly
generated weights of pre-defined ANNs that comprise of a certain number of inputs,
outputs, and neurons in different hidden layers. The weights are changed until the
difference between the actual ANNSs outputs corresponding to input (samples or training
set) and the desired output reaches a certain error. Therefore, the training of ANNs can be

www.intechopen.com

136 Computational Intelligence and Modern Heuristics

interpreted as constructing a model (function) and optimizing it in an n-dimensional space.
That is, we attempt to optimize the empirical error by training in the search space.

This optimization problem can be solved by PSO, a stochastic global optimization method
suitable for non-linear function optimization. We consider the entire ANN as a particle in a
D- dimensional space. In other words, for instance, if an ANN has x inputs, y outputs and #;,
n, n3 neurons in its three hidden layers respectively, then the number of
dimensions(weights) for the particles is d=xXnq+11Xn2+ 12X 13+ 13X Y.

Using this method, we create a population of particles that represent the weights of different
an ANN. The other component of this optimization to be defined is the fitness function. A
fitness function definition depends on the problem we aim to solve. In our experiment for
classification, a fitness function is defined as feeding the entire training set to the ANN (one
epoch) and adding up the number of correct classifications. To interpret the fitness values of
particles, we assume that a particle with higher fitness value has less misclassification rates
since the ANN weights have been represented as the dimensions of the particles.

In this variation of PSO the directions of flying particles are recorded at the beginning as
positive or negative. When a particle reaches the maximum value of search space boundary,
the particle position is reset to a random coordinate approximately in the middle of search
space and its flying direction at this time will be changed to the opposite of that particle’s
original direction. In addition, if a particle’s velocity reaches its maximum value and its
coordinate is still within the search space, the particle’s velocity is set to minimum value and
its direction again is changed to the opposite direction. This updating method enables
particles to explore the search space more thoroughly by experiencing broader ranges of
possible values for both speed and location.

5. Results and discussion

We conducted four classification experiments using feed-forward ANNs with PSO
based training. The two main parts of these experiments, PSO and the training of
ANNs have been implemented in C++. The data sets were chosen from the UCI
repository (Asuncion & Newman, 2007). The four data sets are Iris, Wine, SPECT heart
and Ionosphere. The parameters values of ANNs and PSO used in the experiments are
shown in Table 1. The information of attributes, training and validation data sets and
target attributes (classes) is shown in Table 2. Since we are dealing with the two
parameterized methods, PSO and ANN, it is not feasible to set identical values for the
parameters in every experiment because the type of problem that is solved greatly
influences the values chosen for the parameters.

www.intechopen.com

A Variation of Particle Swarm Optimization for Training of Artificial Neural Networks 137
PSO parameters
Dataset name Iris Wine SPECT Ionosphere
Heart
Confidence factor | 1717 | 1717 | 1717 17,17
(Cll C2)
Inertia(w) 0 0.9 0.9 0.9
{adisnny speed 1.0 1.2 1.2 1.2
step (vmax)
Maximum value
for each dimension 3.0 4.0 4.0 4.0
(max-dim)
Iteration(T) 5000 1000 10000 1000
Particles(p) 20 30 20 30
MLP parameters
Hidden layers 2 2 2 2
number of neurons
ininput, hidden | 4 504 | 1315101 | 22,3051 | 34,15,10,1
and output layers
respectively
Table 1. The parameters of PSO and Neural Networks used in the experiments
Number | Number of records Number of | Accuracy
i Accuracy
of in correct MLP
Dataset . . N e . other
attributes | training/validation | classification | trained methods
/classes datasets by PSO
Iris 4/3 150/15 148 98.66% 85% -
) 97.77%
. 96.1%-
0,
Wine 13/3 178/18 177 99.44% 99.49%
SPECT 0 80% -
Heart 22/2 80/187 172 91.97% 90.7%
0 90.7% -
Ionosphere 34/2 351/35 328 93.42% 96.7°

Table 2. The specifications of the data sets and the result of experiments

With the exception of the SPECT heart data set that contains a validation data set of
187 records, the rest of the data sets do not have any validation data sets. Therefore,
we applied k-fold cross-validation method (k=10) for those data sets (Haykin, 1994). In
k-fold cross-validation a data set is divided into k equal partitions where k-1 partitions
are used as the training set and the remaining partition is used as a validation data set.
The procedure is repeated k times with different partitions being used as the validation
set each time, and the sum squared errors in k validations is considered as the final

www.intechopen.com

138 Computational Intelligence and Modern Heuristics

error for the model. The results of 5 trainings from the total 10 trainings on the four
data sets, Iris, Wine, SPECT heart and Ionosphere have been shown in the Tables 3-7.
To avoid showing several graphs of the trainings, we have chosen only one graph of
the ten trainings in each experiment, however, the related data is completely
represented in the Tables 3-7.

In addition, to avoid recording unnecessary data, we ignored the fitness values that
were not changed and were repeated in the intervals of iterations. Therefore, fitness
values were recorded only when they were improved. The empty entries in the tables
below show that after certain iterations the fitness had never improved until the
maximum iteration number was reached. The data represented in Tables 3, 4, 6 can be
useful to evaluate how fast and efficiently ANNSs are trained. Moreover, by comparing
the last fitness value of the trainings, shown in the mentioned tables, to their
corresponding validation results shown in Table 5, we observe that a satisfactory result
in the training does not provide a good result in the validation result and vice versa.

Training 5 | Training 6 | Training 7 | Training 8 | Training 9 | Training 10
FIT | ITE | FIT | ITE | FIT | ITE | FIT | ITE | FIT | ITE | FIT
0 45 0 53 0 48 0 86 0 45 0 46
7 58 1 71 4 50 | 23 | 89 1 46 3 93
8 61 5 90 5 60 | 24 | 90 5 64 13 | 104
6
8

10 80 30 97 68 36 | 121 | 17 76 32 105
28 82 | 203 | 110 90 | 180 | 127 | 24 90 49 106
33 88 | 210 | 122 | 30 94 | 191 | 128 | 365 | 91 | 244 | 109
101 | 89 | 304 | 126 | 72 | 107 | 254 | 129 | 378 | 93 | 252 | 118
116 | 90 | 532 | 128 | 190 | 122 | 1707 | 130 | 452 | 94 | 466 | 121
368 | 91 | 540 | 129 | 210 | 124 | 4862 | 131 | 529 | 110 | 522 | 129
521 | 93 | 544 | 130 | 217 | 125 | 4963 | 132 | 754 | 120 | 853 | 132

604 | 104 | 573 | 131 | 584 | 126 872 | 127 | 922 | 133
745 | 116 | 1165 | 132 | 639 | 129 2012 | 128 | 1393 | 134
1066 | 126 735 | 130 3230 | 131

2034 | 128 2374 | 131

2035 | 129

2043 | 130

3343 | 131

Table 3. The last 5 training results on Iris data set - ITE denotes the number of
iterations and FIT stands for fitness.

One of the challenges in this experiment is that changing the parameter of PSO
influences the performance of ANNs and vice versa. For instance, increasing the
number of particles demands more fitness evaluation of particles and changing the
number of hidden layers and their neurons adds more dimensions to the particles. In
addition, it also slows down the performances. Therefore, there need to be some
tradeoffs. The higher dimension we set, the more iterations are required to obtain a
given accuracy. On the other hand, increasing the number of iterations adds more

www.intechopen.com

A Variation of Particle Swarm Optimization for Training of Artificial Neural Networks

139

computational load. Other difficulties arise when the number of samples and inputs of
ANNSs increase. In other word, increasing the number of records and attributes in a
data set increases the training time.

Training 1 | Training 2 | Training 3 | Training4 | Training 5
ITE | FIT | ITE | FIT | ITE | FIT | ITE | FIT | ITE | FIT
0108 0 [108 | O 76 0 92 0 96
13114 | 2 [115] 2 93 1 [133 | 3 99
50 | 140 | 8 [121 | 5 | 107 | 229 | 144 | 48 | 100
65 | 141 | 14 | 136 | 20 | 111 90 | 102
96 | 145 | 66 | 143 | 24 | 114 91 | 104
168 | 146 | 143 | 149 | 29 | 117 98 | 111
210 | 148 44 | 130 103 | 114
311 | 149 51 | 140 105 | 115
334 | 150 74 | 150 107 | 138
500 | 151 233 | 151 193 | 140
550 | 152 450 | 147
802 | 153
952 | 154
966 | 155

Table 4. The first 5 training results on Wine data set. - ITE denotes the number of
iterations and FIT signifies the fitness

The other issue is the outputs chosen for the ANN. At the first glance, it might appear
that the number of outputs should be equal to the number of classes. However, based
on our experiment, we realized that this might not be the case necessarily. Therefore,
we have chosen one output for ANN in all experiments and the activation function of
the output neuron is set to a linear function.

Validations | 1 | 2 | 3 |4 |5 |6 |7 |8]9 |10
Iris 1415|1514 | 15| 15|15 |15 |15 | 15
(Out of 15)
Wine 18 118 |18 |18 |17 | 18 | 18 | 18 | 18 | 18
(Out of 18)
Ionosphere | 35 | 31 | 30 | 31 | 35 | 34 |31 | 35 |35 | 35
(Out of 35)

Table 5. Validation results (number of correct classification) on Iris, Wine and
Ionosphere data sets according to 5 trainings shown in tables 3,4,6.

www.intechopen.com

140

Computational Intelligence and Modern Heuristics

Training | Training | Training | Training | Training
2 3 4 5 10
ITE | FIT | ITE | FIT | ITE | FIT | ITE | FIT | ITE | FIT
0] 244 0] 234 0] 225 0] 225 0219
2 | 254 41240 1] 245 1] 234 7 1232
5 | 263 8 | 241 4 | 248 21244 | 10 | 242
70 | 264 91250 | 17| 251 6248 | 13 | 244
72 1266 | 25| 251 | 39 | 258 81254 | 19| 256
86 | 270 | 27 | 260 | 46 | 274 | 49 | 270 | 45| 257
87 1273 | 50 | 273 | 72| 275|335 | 272 | 52| 262
115 | 274 | 53 | 274 | 75 | 278 | 371 | 275 | 63 | 264
124 | 279 | 68 | 276 | 79 | 279 | 415 | 277 | 65 | 265
158 | 280 | 78 | 277 | 83 | 281 | 556 | 278 | 71 | 266
180 | 283 | 83 | 278 | 700 | 287 | 662 | 279 | 85 | 269
181 | 284 | 84 | 280 | 802 | 290 119 | 270
280 | 286 | 202 | 281 | 990 | 291 122 | 271
311 | 287 183 | 272
318 | 288 211 | 274
217 | 276
224 | 278
226 | 280
286 | 281

Table 6. The training results of 2-5 and 10 on Ionosphere data set - ITE denotes the number
of iterations and FIT signifies the fitness

By applying inertia parameter w in equation (1) the optimum point is reached faster.
This is evident from the results of training shown in Tables 3 and 4 where the inertia
parameter was not used for the trainings with Iris data set.

[teration

0

1] 3

8 |21 | 28

37 | 133

218 | 254

556 | 1014

2659

3634

Fitness

40

42 | 47

50 | 54 | 57

59 | 61

63 | 64

65 66

67

68

Table 7. The result of training on 80 records of the SPECT heat dataset. The validation
result is 172 records out of 187 which is equal to ,15 misclassification.

www.intechopen.com

A Variation of Particle Swarm Optimization for Training of Artificial Neural Networks

141

u-miwzg

EESEE

Iteration

1014
2653
3634

Fig. 3. Training on SPECT Heart

Fitiness

==

S DT s e B

i Pt Pl B B P e
= SN D RS NSRS RS A S R O A e Lo N

| ST I T T

i

28 101 368 604 1066 2035 3343

Itaration

Fig. 4. Training on the 5th partition of Iris.

www.intechopen.com

142 Computational Intelligence and Modern Heuristics

30

300 e

2540

200

E150

100

S0

R R -
o B I ™ i T o T
Iteration

Fig. 5. Training on the 1st partition of Ionosphere

147
198
385
636

180

120

100

a0

Fitness

440

20

0 2 9 21 242 935
iteration
Fig. 6. Training on the 7th partition of Wine

6. Conclusion

PSO is a heuristic optimization method that performs well for different optimization
problems. As with other optimization methods, it has not been proven that this method can
always find the global optimum. However, it fulfills the exploitation and exploration of a
search space. It is claimed that the local version of the method is able to find global

www.intechopen.com

A Variation of Particle Swarm Optimization for Training of Artificial Neural Networks 143

optimum. In the simulation, we experimented with training of feed-forward ANNs and
demonstrated both the efficiency of this method and its competitiveness with other ANNs
training methods. The proposed approach outperformed some of the previous results in our
experiments. Moreover, the application of this method to train ANNs is limited by the
structure of given ANNs. This means that with high numbers of inputs and neurons in the
hidden layers, particle dimensions are increased and consequently training time rises.
However, based on the properties of this method, it is possible to decrease the training time
by parallel implementation. The feasibility of parallel implementation is a very important
advantage of this method over other common training methods. Lastly, this method can be
employed for training of ANNs with different topologies such as recurrent neural network
where the gradient-based training methods are not suitable choices.

7. References

Al-kazemi, B. & Mohan, CK (2002). Training feedforward neural networks using multi-
phase particle swarm optimization, Proceedings of the 9th International Conference on,
pp. 2615- 2619, 981-04-7524-1, USA, Nov. 2002, USA, IEEE, New York.

Angelin P. J.,(1999).Using selection to improve particle swarm optimization, Proceedings of
IJCNN’99, 0-7803-4869-9, pp. 84-89, USA, July 1999, IEEE,Anchorage.

Asuncion A. & Newman D.]. (2007). UCI Machine Learning Repository, Univ. of California,
Irvine, School of Information and Computer Sciences, 2007. [Online].available:
http:/ /www.ics.uci.edu/$\ sim$mlearn/{MLR}epository.html.

Bergh, F. & Engelbrecht, A. (2002). A New Locally Convergent Particle Swarm Optimizer,
Proceedings of the IEEE International Conference on Conference on Systems, Man and
Cybernetics, pp. 96-101, 0-7803-7437-1, Oct. 2002, IEEE.

Chunkai, Z., Yu, L. & Huihe, S. (2000). A new evolved artificial neural network and its
application, Proceedings of the 3rd World Congress on, pp. 1065-1068, 0-7803-5995-X,
June 2000, China, IEEE, Hefei.

Eberhart, R. C. & Kennedy, J. (1995). A new optimizer using particle swarm theory,
Proceedings of the Sixth International Symposium on Micro Machine and Human Science,
pp. 39-43, 0-7803-2676-8, Japan, Oct 1995, IEEE, Nagoya.

Eberhart, R. C. & Shi, Y. (1998). Comparison between genetic algorithms and particle swarm
optimization, Proceedings of the 7th International Conference on Evolutionary
Programming VII, PP. 611-616, 3-540-64891-7, UK, 1998, Springer-Verlag, London.

Fahlman, S. E. (1988). Faster-learning variations on back-propagation: an empirical study.
Proc. 1988 Connectionist Models Summer School. D. S. Touretzky, G. E. Hinton and T.
J. Sejnowski, (eds), Morgan Kaufmann, San Mateo, CA, 1988, pp. 38-51.

Haykin S. (1994). Neural networks, a comprehensive foundation, Prentice Hall PTR , NJ, USA.
Hecht-Nelson, R. (1989). Theory of the backpropagation neural network. Proceedings of
International Joint Conference on Neural Netowrk, vol. 1, pp. 593-605, Jun. 1989.

Juang, C. F. (2004). A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design, Systems, Man, and Cybernetics, vol. 34, no. 2, pp. 997-1006,
April 2004, IEEE.

Kennedy, J. (2000). Stereotyping: Improving particle swarm optimization performance with
cluster analysis, Proceedings of the 2000 Congress on Evolutionary Computing, pp. 1507-
1512, USA, July 2000, IEEE, La Jolla.

www.intechopen.com

144 Computational Intelligence and Modern Heuristics

Mendes, R., Cortez, P., Rocha, M. & Neves,].,(2002). Particle swarms for feedforward neural
network training, Neural Networks, 2002. IJCNN '02. Proceedings of the 2002
International Joint Conference on, pp. 1895-1899, 0-7803-7278-6, USA, May 2002, IEEE,
Honolulu.

Mitchell, M., Introduction to Genetic Algorithms, MIT Press, Cambridge, MA (1996).

Riedmiller M. & Braun H., “A direct adaptive method for faster backpropagation learning;
The rprop algorithm,” in Proc. IEEE Int. Conf. Neural Networks, San Francisco, CA,
Apr. 1993.

PuX., Z.Fang Z. & Liu Y. (2007). Multilayer perceptron networks training using particle
swarm optimization with minimum velocity, Proceedings of the 4th international
symposium on Neural Networks: Advances in Neural Networks, pp.237-245, 978-3-540-
72394-3, China, 2007, Springer Berlin/Heidelberg, Nanjing.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model,
Proceedings of the 14th annual conference on Computer graphics and interactive
techniques, pp. 25-34, USA, July 1987, ACM, New York.

Russ C., & Eberhart, Y. Shi. (2000). Comparing inertia weights and construction factors in
particle swarm optimization, Proceedings of the 2000 Congress on Evolutionary
Computing, pp. 84-88, USA, July 2000, IEEE, La Jolla.

a) Shi, Y. & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization,
Proceedings of the 7th International Conference on Evolutionary Programming VII, pp.
591-600, 1998, UK, Springer-Verlag, London.

b) Shi, Y. & Eberhart, R. C. (1998). A modified particle swarm optimizer, Proceedings of the
IEEE International Conference on Evolutionary Computation, pp.69-73, May 1998, USA,
IEEE, Anchorage.

Van den Bergh, F. & Engelbrecht, AP (2004). A Cooperative approach to particle swarm
optimization, Evolutionary Computation, vol.8, No.3, (June 2004)(225-239), 1089-
778X.

www.intechopen.com

Computational Intelligence and Modern Heuristics
Compulational Intelligence) i
and Modern Heuristics Edited by Al-Dahoud Ali

i

ISBN 978-953-7619-28-2

Hard cover, 348 pages

Publisher InTech

Published online 01, February, 2010
Published in print edition February, 2010

The chapters of this book are collected mainly from the best selected papers that have been published in the
4th International conference on Information Technology ICIT 2009, that has been held in Al-Zaytoonah
University, Jordan in the period 3-5/6/2009. The other chapters have been collected as related works to the
topics of the book.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Masood Zamani and Alireza Sadeghian (2010). A Variation of Particle Swarm Optimization for Training of
Artificial Neural Networks, Computational Intelligence and Modern Heuristics, Al-Dahoud Ali (Ed.), ISBN: 978-
953-7619-28-2, InTech, Available from: http://www.intechopen.com/books/computational-intelligence-and-
modern-heuristics/a-variation-of-particle-swarm-optimization-for-training-of-artificial-neural-networks

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE DEHERFERESS HiBEPR R A IRIE IMAE4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

