
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

13

A Novel Modeling Method for Cooperative Multi-
robot Systems Using Fuzzy Timed Agent Based

Petri Nets

Hua Xu
State Key Laboratory of Intelligent Technology and Systems, Tsinghua National

Laboratory for Information Science and Technology, Department of Computer Science and
Technology, Tsinghua University, Beijing

P. R. China

1. Introduction

Characterized as cooperation and high efficiency, cooperative multi-robot systems (CMRS)
have emerged as usual manufacturing equipments in current industries (Cao et al., 1997).
Differing from generic control systems, the cooperation needs to be considered in the
realization of CMRS (Cao et al., 1997). So the system modeling, analysis and refinement
always meet with difficulties. As one of the typical multi-agent systems (MAS), CMRS can
be regarded as one MAS in distributed artificial intelligence (Jennings et al., 1998). For
modeling MAS, some attempts to use object-oriented methodology have been tried and
some typical agent objects have been proposed, such as active object, etc (Guessoum & Briot,
1999). However, agent based object models still can not depict the structure and dynamic
aspects of MAS, such as cooperation, learning, temporal constraints, etc (Jennings et al.,
1998).
On one hand, as one of the most proper and promised realization technology, object-
oriented concurrent programming (OOCP) methodology is always used to realize MAS
(Guessoum & Briot, 1999). In OOCP realization, one special object called active object is
proposed (Guessoum & Briot, 1999), which can be used to model generic agent architectures
and behaviors with OO methodology. Although OOCP can solve MAS realization problem
favorably, the modeling problem mentioned above still exists.
On the other hand, as a kind of powerful formal description and analysis method for
dynamic systems (Murata, 1989), Petri net (PN) has become a bridge between practical
application and model theories (Murata, 1989). With object-oriented concepts introduced
into PN, typical object Petri nets such as HOONet (Hong & Bae, 2000) etc, al. are presented,
which are strict OPNs. Then for providing the ability of modeling time critical complex
systems, timed hierarchical object oriented Petri net (TOPN) (Xu & Jia, 2006) is proposed on
the base of HOONet (Hong & Bae, 2000). It supports temporal knowledge description and
object-oriented concepts. Modeling features in TOPN support describing and analyzing
dynamic systems such as MAS and CMRS. Recently, some attempts have been conducted on
modeling MAS by using OPN (Chainbi, 2004). Although Petri nets can be used to model and
analyze different systems, they have failed to model learning ability and the aging effects in O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

hw
eb

.c
om

Source: Recent Advances in Multi-Robot Systems, Book edited by: Aleksandar Lazinica, ISBN 978-3-902613-24-0, pp. 326, May 2008,
I-Tech Education and Publishing, Vienna, Austria

www.intechopen.com

Recent Advances in Multi-Robot Systems

250

dynamic systems. Recently, fuzzy timed Petri net (FTPN) (Pedrycz & Camargo, 2003) has
been presented to solve these modeling problems. As a kind of reasoning and learning
ability, fuzzy reasoning in FTPN can be considered as supporting autonomous judging or
reasoning ability in MAS. In order to solve the reasoning ability and other modeling
problems in large-scale MAS, fuzzy timed object-oriented Petri net (FTOPN) (Xu & Jia, 2005)
is proposed on the base of TOPN (Xu & Jia, 2006) and FTPN (Pedrycz & Camargo, 2003). In
FTOPN, agent can be modeled as one FTOPN object with autonomy, situatedness and
sociality. However, in FTOPN every agent should be modeled from common FTOPN
objects. To model CMRS—“one of the typical MAS” needs generic FTOPN agent objects on
the base of active objects (Guessoum & Briot, 1999).
This chapter proposes a high level PN called fuzzy timed agent based Petri net (FTAPN) on
the base of FTOPN (Xu & Jia, 2005). As one of the typical active objects, ACTALK object is
modeled by FTOPN and is introduced into FTAPN, which is used as one generic agent
object in FTAPN. The aim of FTAPN is to solve the agent or CMRS modeling ability
problem and construct a bridge between MAS models and their implementations.
This chapter is organized as the following. Section 2 reviews the relative preliminary
notations of active objects, TOPN and FTOPN quickly. Section 3 extends FTOPN to FTAPN
on the base of ACTALK model. Section 4 discusses the learning which is important for
representing dynamic behaviors in CMRS. Section 5 uses FTAPN to model one CMRS in the
wafer etching procedure of circuit industry and makes some modeling analysis to
demonstrate its benefits in modeling MAS. Finally, the conclusion and future work can be
found in section 6.

2. Preliminary Notations

In this section, the basic concepts of ACTALK are firstly reviewed. Then the definitions of
TOPN are introduced quickly. Finally, the concepts of FTOPN are reviewed formally.

2.1 ACTALK
2.1.1 Active Objects (Guessoum & Briot, 1999)

Object-oriented concurrent programming (OOCP) is one of the most appropriate and
promising technologies for implementing or realizing agent based systems or MAS.
Combining the agent concept and the object-oriented paradigm leads to the notion of
agent-oriented programming (Shoham, 1993). The uniformity of objects’ communication
mechanisms provides facilities for implementing agent communication, and the concept
of encapsulating objects or encapsulation support combining various agent granularities.
Furthermore, the inheritance mechanism enables knowledge specialization and
factorization.
The concept of an active object has been presented, which makes it possible to integrate an
object and activity (namely a thread or process). It also provides some degree of
autonomy for objects in that it does not rely on external resources for activation. Thus, it
provides a good basis for implementing agent based systems or MAS. However, similar to
common objects in Object-oriented systems, an active object’s behavior still remains
procedural and only reacts to message requests. More generally, the main feature of
agent-based systems or MAS is autonomous. Agents should be able to complete tasks
autonomously. That’s to say, agents must be able to perform numerous functions or

www.intechopen.com

A Novel Modeling Method for Cooperative Multi-robot Systems
Using Fuzzy Timed Agent Based Petri Nets

251

activities without external intervention over extended time periods. In order to achieve
autonomy, adding to an active object a function that controls message reception and
processing by considering its internal state is one of effective realization methods (Briot,
1996) (Maruichi et al., 1990).
On one hand, for modelling and realizing MAS, there are two basic questions regarding
how to build a bridge between implementing and modelling MAS requirements
(Castelfranchi, 1995) (Gasser, 1992). On the other hand, the facilities and techniques OOCP
provides (Gasser & Briot, 1992):

• How can a generic structure define an autonomous agent’s main features?

• How do we accommodate the highly structured OOCP model in this generic structure?
The active-object (or actor) concept has been introduced to describe a set of entities that
cooperate and communicate through message passing. This concept brings the benefits of
object orientation (for example, modularity and encapsulation) to distributed environments
and provides object-oriented languages with some of the characteristics of open systems
(Agha & Hewitt, 1985). Based on these characteristics, various active object models have
been proposed (Yonezawa & Tokoro, 1987), and to facilitate implementing active-object
systems, several frameworks have been proposed. Actalk is one example.
When Actalk is used to model and realize the MAS, there still exist the following
shortcomings:

• Active object is not an autonomous agent. It only manifests the procedural actions.

• Although active object can communicate, they do not own the ability to reduce the
decision to communicate or order other active objects.

• If one active object has not received the information from other active objects. It is still
in none-active state.

In order to overcome the shortcomings mentioned above, the concept of active object has
been proposed and a general agent framework (Shoham, 1993) (Maruichi et al., 1990). An
universal agent architecture has also been proposed so as to fulfil the modelling
requirements of MAS (Gasser & Briot, 1992), which can be used to model and analyze MAS
deeply. For either agent-based systems or MAS, the method mostly is on the base of active
objects. So in this chapter, the concept of active object is firstly reviewed quickly.

2.1.2 ACTALK (Guessoum & Briot, 1999)

One of the typical active objects is Actalk. Actalk is a framework for implementing and
computing various active-object models into a single programming environment based on
Smalltalk, which is an object-oriented programming language. Actalk implements
asynchronism, a basic principle of active-object languages, by queuing the received
messages into a mailbox, thus dissociating message reception from interpretation. In Actalk,
an active object is composed of three component classes (see Fig. 1), which are instances of
the classes.

• Address encapsulates the active object’s mailbox. It defines how to receive and queue
messages for later interpretation.

• Activity represents the active object’s internal activity and provides autonomy to the
actor. It has a Smalltalk process and continuously removes messages from the mailbox,
and the behavior component interprets the messages.

• ActiveObject represents the active object’s behavior—that is, how individual messages
are interpreted.

www.intechopen.com

Recent Advances in Multi-Robot Systems

252

To build an active object with Actalk, we must describe its behavior as a standard Smalltalk
(OOCP) object. The active object using that behavior is created by sending the message active

to the behavior:
active

“Creates an active object with self as corresponding behavior”

^self activity: self activityClass address: self addressClass

Figure 1. Components of an Actalk active object

The activityClass and addressClass methods represent the default component classes for creating
the activity and address components (along the factory method design pattern). To configure
the framework of Actalk means to define the components of its sub-classes. That’s to say, it
lets users to define special active object models. So Actalk is the basis to model agent based
systems or MAS.

2.2 Timed Object-oriented Petri net (TOPN)

Formally TOPN is a four-tuple (OIP, ION, DD, SI), where (OIP,ION,DD) is an ordinary
object Petri net-“HOONet” (Hong & Bae, 2000) and SI associates a static (firing) temporal
interval SI: {o}→[a, b] with each object o, where a and b are rationals in the range 0≤a≤b≤+∞,
with b≠+∞. The four parts in TOPN have different function roles. Object identification place
(OIP) is a unique identifier of a class. Internal timed object net (ION) is a net to depict the
behaviors (methods) of a class. Data dictionary (DD) declares the attributes of a class in
TOPN. And static time interval function (SI) binds the temporal knowledge of a class in
TOPN. There are two kinds of places in TOPN. They are common places (represented as
circles with thin prim) and abstract places (represented as circles with bold prim). Abstract
places are also associated with a static time interval. Because at this situation, abstract places
represent not only firing conditions, but also the objects with their own behaviors. So,
abstract places (TABP) in TOPN also need to be associated with time intervals. One problem
to be emphasized is that the tokens in abstract places need to have two colors at least. Before
the internal behaviors of an abstract place object are fired, the color of tokens in it is one
color (represented as hollow token in this paper). However, after fired, the color becomes
the other one (represented as liquid token in this paper). At this time, for the following
transitions, it is just actually enabled. There are three kinds of transitions in TOPN. The

www.intechopen.com

A Novel Modeling Method for Cooperative Multi-robot Systems
Using Fuzzy Timed Agent Based Petri Nets

253

timed primitive transition (represented as rectangles with thin prim) (TPIT), timed abstract
transition (represented as rectangles with bold prim) (TABT) and timed communication
transition (represented as rectangles with double thin prim) (TCOT).

DD

OIP

ION

OIP

ION

[α , β]

Figure 2. The General Structure of TOPN

Figure 3. Places and Transitions in TOPN

Static time intervals change the behavior of TOPN just similar to a time Petri net in the
following way. If an object o with SI(o)=[a, b] becomes enabled at time I0, then the object o
must be fired in the time interval [I0+a, I0+b], unless it becomes disabled by the removal of
tokens from some input place in the meantime. The static earliest firing time of the object o
is a; the static latest firing time of o is b; the dynamic earliest firing time (EFT) of t is I0+a; the
dynamic latest firing time (LFT) of t is I0+b; the dynamic firing interval of t is [I0+a, I0+b].
The state of TOPN (Extended States-“ES”) is a 3-tuple, where ES=(M, I, path) consists of a
marking M, a firing interval vector I and an execution path. According to the initial marking
M0 and the firing rules mentioned above, the following marking at any time can be
calculated. The vector--“I” is composed of the temporal intervals of enabled transitions and
TABPs, which are to be fired in the following states. The dimension of I equals to the
number of enabled transitions and TABPs at the current state. The firing interval of every
enabled transition or TABP can be got according to the calculation formula of EFT and LFT
in TOPN (Xu & Jia, 2006).
For enabling rules in TOPN, two different situations exist. A transition t in TOPN is said to
be enabled at the current state (M, I, path), if each input place p of t contains at least the
number of solid tokens equal to the weight of the directed arcs connecting p to t in the
marking M. If the TABP object is marked with a hollow token, it is enabled. At this time, its
ION is enabled. After the ION has been fired, the tokens in TABP are changed into solid
ones.
An object o is said to be fireable in state (M, I, path) if it is enabled, and if it is legal to fire o
next. This will be true if and only if the EFT of o is less than or equal to the LFT of all other
enabled transitions. Of course, even with strong time semantics, o’s being fireable in state
(M, I, path) does not necessarily mean that t will fire in the time interval I.

www.intechopen.com

Recent Advances in Multi-Robot Systems

254

2.3 Fuzzy Timed Object-oriented Petri net (FTOPN)

Similar to FTPN (Xu & Jia, 2005-1), fuzzy set concepts are introduced into TOPN (Xu & Jia,
2006). Then FTOPN is proposed, which can describe fuzzy timing effect in dynamic systems.
Definition 1: FTOPN is a six-tuple, FTOPN= (OIP, ION, DD, SI, R, I) where
1. Suppose OIP=(oip, pid, M0, status), where oip, pid, M0 and status are the same as those

in HOONet (Hong & Bae, 2000) and TOPN (Xu & Jia, 2006).

• oip is a variable for the unique name of a FTOPN.

• pid is a unique process identifier to distinguish multiple instances of a class, which
contains return address.

• M0 is the function that gives initial token distributions of this specific value to OIP.

• status is a flag variable to specify the state of OIP.
2. ION is the internal net structure of FTOPN to be defined in the following. It is a variant

CPN that describes the changes in the values of attributes and the behaviors of methods
in FTOPN.

3. DD formally defines the variables, token types and functions (methods) just like those
in HOONet (Hong & Bae, 2000) and TOPN (Xu & Jia, 2006).

4. SI is a static time interval binding function, SI: {OIP}→Q*, where Q* is a set of time
intervals.

5. R: {OIP} → r, where r is a specific threshold.
6. I is a function of the time v. It evaluates the resulting degree of the abstract object firing.

□
Definition 2: An internal object net structure of TOPN, ION = (P,T,A,K,N,G,E,F,M0)
1. P and T are finite sets of places and transitions with time restricting conditions attached

respectively.
2. A is a finite set of arcs such that P∩T=P∩A=T∩A=Φ.
3. K is a function mapping from P to a set of token types declared in DD.
4. N, G, and E mean the functions of nodes, guards, and arc expressions, respectively. The

results of these functions are the additional condition to restrict the firing of transitions.
So they are also called additional restricting conditions.

5. F is a special arc from any transitions to OIP, and notated as a body frame of ION.
6. M0 is a function giving an initial marking to any place the same as those in HOONet

(Hong & Bae, 2000) and TOPN (Xu & Jia, 2006). □
Definition 3: A set of places in TOPN is defined as P=PIP�TABP, where
1. Primary place PIP is a three-tuple: PIP =(P,R,I), where

• P is the set of common places similar to those in PN (Murata, 1989) (Peterson,
1991).

2. Timed abstract place (TABP) is a six-tuple: TABP= TABP(pn, refine state, action, SI, R,
I), where

• pn is the identifier of the abstract timed place.

• refine state is a flag variable denoting whether this abstract place has been refined
or not.

• action is the static reaction imitating the internal behavior of this abstract place.

• SI, R and I are the same as those in Definition 1.
Definition 4: A set of transitions in TOPN can be defined as T= TPIT�TABT�TCOT, where
1. Timed primitive transition TPIT = TPIT (BAT, SI), where

• BAT is the set of common transitions.

www.intechopen.com

A Novel Modeling Method for Cooperative Multi-robot Systems
Using Fuzzy Timed Agent Based Petri Nets

255

2. Timed abstract transition TABT= TABT (tn, refine state, action, SI), where

• tn is the name of this TABT.
3. Timed communication transition TCOT=TCOT (tn, target, comm type, action, SI).

• tn is the name of TCOT.

• target is a flag variable denoting whether the behavior of this TCOT has been
modeled or not. If target=”Yes”, it has been modeled. Otherwise, if target=”No”, it
has not been modeled yet.

• comm type is a flag variable denoting the communication type. If comm type
=”SYNC”, then the communication transition is synchronous one. Otherwise, if
comm type=”ASYN”, it is an asynchronous communication transition.

4. SI is the same as that in Definition 1.
5. refine state and action are the same as those in Definition 3.
Similar to those in FTPN (Xu & Jia, 2005-1), the object t fires if the foregoing objects come
with a nonzero marking of the tokens; the level of firing is inherently continuous. The level
of firing (z(v)) assuming values in the unit interval is governed by the following expression:

)()))((()(
1

vtswvxrTvz iii

n

i
Ι′→=

=

 (1)

where T (or t) denotes a t-norm while “s” stands for any s-norm. “v” is the time instant
immediately following v’. More specifically, xi(v) denotes a level of marking of the ith place.
The weight wi is used to quantify an input coming from the ith place. The threshold ri
expresses an extent to which the corresponding place’s marking contributes to the firing of
the transition. The implication operator (→) expresses a requirement that a transition fires if
the level of tokens exceeds a specific threshold (quantified here by ri).
Once the transition has been fired, the input places involved in this firing modify their
markings that is governed by the expression

 xi(v)=xi(v’)t(1-z(v)) (2)

(Note that the reduction in the level of marking depends upon the intensity of the firing of
the corresponding transition, z(v).) Owing to the t-norm being used in the above expression,
the marking of the input place gets lowered. The output place increases its level of tokens
following the expression:

 y(v)=y(v’)sz(v) (3)

The s-norm is used to aggregate the level of firing of the transition with the actual level of
tokens at this output place. This way of aggregation makes the marking of the output place
increase.
The FTOPN model directly generalizes the Boolean case of TOPN and OPN. In other words,
if xi(v) and wi assume values in {0, 1} then the rules governing the behavior of the net are the
same as those encountered in TOPN.

3. Agent Objects and Fuzzy Timed Agent Based Petri Nets

The active object concept (Guessoum & Briot, 1999) has been proposed to describe a set of
entities that cooperate and communicate through message passing. To facilitate
implementing active object systems, several frameworks have been proposed. ACTALK is

www.intechopen.com

Recent Advances in Multi-Robot Systems

256

one of the typical examples. ACTALK is a framework for implementing and computing
various active object models into one object-oriented language realization. ACTALK
implements asynchronism, a basic principle of active object languages, by queuing the
received messages into a mailbox, thus dissociating message reception from interpretation.
In ACTALK, an active object is composed of three component classes: address, activity and
activeObject (Guessoum & Briot, 1999).

Figure 4. The FTOPN Model of ACTALK

ACTALK model is the basis of constructing active object models. However, active object
model is the basis of constructing multi-agent system model or agent-based system model.
So, as the modeling basis, ACTALK has been extended to different kinds of high-level agent
models. Because of this, ACTALK is modeled in Fig.4 by FTOPN.
In Fig.4, OIP is the describer of the ACTALK model and also represents as the
communication address. One communication transition is used to represent as the behavior
of message reception. According to the communication requirements, it may be
synchronous or asynchronous. If the message has been received, it will be stored in the
corresponding mail box, which is one first in and first out queue. If the message has been
received, the next transition will be enabled immediately. So mail box is modeled as abstract
place object in FTAPN. If there are messages in the mail box, the following transition will be
enabled and fired. After the following responding activity completes, some active behavior
will be conducted according to the message.
Fig.4 has described the ACTALK model based on FTOPN on the macroscopical level. The
detailed definition or realization of the object “Activity” and “Behavior” can be defined by
FTOPN in its parent objects in the lower level. The FTOPN model of ACTALK can be used
as the basic agent object to model agent based systems. That is to say, if the agent based
model—ACTALK model is used in the usual FTOPN modeling procedure, FTOPN has been
extended to agent based modeling methodology. So it is called fuzzy timed agent based Petri net
(FTAPN).

4. Learning in Fuzzy Timed Agent Based Petri Nets

The parameters of FTAPN are always given beforehand. In general, however, these
parameters may not be available and need to be estimated just like those in FTPN (Xu & Jia,

www.intechopen.com

A Novel Modeling Method for Cooperative Multi-robot Systems
Using Fuzzy Timed Agent Based Petri Nets

257

2005-1). The estimation is conducted on the base of some experimental data concerning
marking of input and output places. The marking of the places is provided as a discrete time
series. More specifically we consider that the marking of the output place(s) is treated as a
collection of target values to be followed during the training process. As a matter of fact, the
learning is carried out in a supervised mode returning to these target data.
The connections of the FTOPN (namely weights wi and thresholds ri) as well as the time
decay factors αi are optimized (or trained) so that a given performance index Q becomes
minimized. The training data set consists of (a) initial marking of the input places
xi(0),…,xn(0) and (b) target values—markings of the output place that are given in a
sequence of discrete time moments, that is target(0), target(1),…, target(K).
In FTAPN, the performance index Q under discussion assumes the form of Eq.(4).

 Q=∑
=

−
K

k

kykett
1

2))()(arg((4)

where the summation is taken over all time instants (k =1, 2,… , K).
The crux of the training in FTOPN models follows the general update formula in Eq.(5)
being applied to the parameters:

 param(iter+1)=param(iter)-γ∇paramQ (5)

where γ is a learning rate and ∇paramQ denotes a gradient of the performance index taken

with respect to all parameters of the net (here we use a notation param to embrace all
parameters in FTOPN to be trained).
In the training of FTOPN models, marking of the input places is updated according to
Eq.(6):

)()0(~ kTxx iii = (6)

where Ti(k) is the temporal decay. And Ti(k) complies with the form in Eq.(7). In what
follows, the temporal decay is modeled by an exponential function,

⎩
⎨
⎧ >−−

=
others

kkifkk
kT

iii

i
0

,))(exp(
)(

α (7)

The level of firing of the place can be computed as Eq.(8):

)))(((~

1
iii

n

i
swxrTz →=

=

 (8)

The successive level of tokens at the output place and input places can be calculated as that
in Eq.(9):

 y(k) = y(k-1)sz, xi(k) = xi(k-1)t(1-z) (9)

We assume that the initial marking of the output place y(0) is equal to zero, y(0)=0. The
derivatives of the weights wi are computed as the form in Eq.(9):

)

)(
)()(arg(2))()(arg(2

ii w

ky
kykettkykett

w ∂

∂
−−=−

∂

∂ (10)

where i=1,2,…, n. Note that y(k+1)=y(k)sz(k).

www.intechopen.com

Recent Advances in Multi-Robot Systems

258

5. A Modeling Example

5.1 A CMRS Model

In the etching tools, usually there is a Brooks Marathon Express (MX) (Lee & Lee, 2004)
CMRS platform made up of two transferring robots. These two cooperative robots are up to
complete transferring one unprocessed wafer from the input lock to the chamber and fetch
the processed wafer to the output lock. Any robot can be used to complete the transferring
task at any time. If one robot is up to transfer one new wafer, the other will conduct the
other fetching task. They will not conflict with each other. Fig. 5 depicts this CMRS FTAPN
model, where two agent objects (ACTALK) are used to represent these two cooperative
robots.

 (a) The Agent Based FTAPN Model (b) The Behavior Model in Every Agent
Figure 5. The FTAPN Model

Figure 6. The Relevance

Fig.5 (a) has depicted the whole FTAPN model. The agent object—“ACTALK” is used to
represent every robot model. Different thresholds are used to represent the firing level of the
behavior conducted by the corresponding robot (agent). They also satisfy the unitary
requirements and change according to the fuzzy decision in the behavior of every agent in
Fig.5 (b). In the model of Fig.5 (b), three communication transition objects are used to
represent the behavior for getting different kinds of system states. These states include the
state of the other robot, its own goal and its current state, which can be required by the
conductions of the communication transitions tA1, tA2 and tA3. When one condition has
been got, the following place will be marked. In order to make control decisions (transition
object tA4) in time, all of these state parameters are required in the prescriptive time
interval. However, the parameter arrival times complies with the rule in Fig.5 (a). The other
two kinds of information comply with that in Fig.5 (b). After the decision, a new decision

www.intechopen.com

A Novel Modeling Method for Cooperative Multi-robot Systems
Using Fuzzy Timed Agent Based Petri Nets

259

command with the conduction probability will be sent in this relative interval and it also
affects which behavior (transfer or fetch) will be conducted by updating the threshold in
Fig.5 (a).

5.2 Application Analysis

Table.1 summarizes the main features of FTAPN and contrast these with the structures with
which the proposed structures have a lot in common, namely MAS and FTOPN. It becomes
apparent that FTAPN combines the advantages of both FTOPN in terms of their learning
abilities and the glass-style of processing (and architectures) of MAS with the autonomy.

Characteristics MAS FTOPN FTAPN

Learning
Aspects

Significant dynamic
learning abilities.
Dynamic learning and
decision abilities are
supported in every
autonomous agent.

Significant learning
abilities. Distributed
learning (training)
abilities are supported
in different
independent objects on
various system model
levels.

Significant dynamic
learning abilities.
Distributed dynamic
learning and decision
abilities are supported
in every autonomous
agent.

Knowledge
Representation
Aspects

Transparent
knowledge
representation (glass
box processing style)
the problem (its
specification) is
mapped directly onto
the topology of the
agent model.
Additionally, agents
deliver an essential
feature of continuity
required to cope with
dynamic changes
encountered in a vast
array of problems
(including
autonomous decision
tasks)

 Glass Box Style
(Transparent
Knowledge
Representation) and
Black Box Processing is
supported at the same
time. The problem (its
specification) is
mapped directly onto
the topology of
FTOPN. Knowledge
representation
granularity
reconfiguration reacts
on the reduction of
model size and
complexity.

Glass Box Processing
Style and Black Box
Processing style are all
supported. The
problem (its
specification) is
mapped directly onto
the topology of
FTAPN, which can not
only represent
dynamic knowledge,
but also deal with
dynamic changes with
well-defined
semantics of agent
objects, places,
transitions, fuzzy and
temporal knowledge.

Table 1. MAS, FTOPN and FTAPN: a comparative analysis

5.3 Application Aspects of FTAPN

 Owing to the nature of the facet of temporal knowledge, fuzzy sets and object-oriented
concepts in this extension of PN, they become viable models in a wide range of engineering
problem augmenting the already existing high level Petri nets, cf. (Hong & Bae, 2000) (Xu &
Jia, 2005-1). Two main and commonly categories of models are worth elaborating here.

www.intechopen.com

Recent Advances in Multi-Robot Systems

260

5.3.1 Models of Multi-agent Systems

 The multi-agent paradigm and subsequently a variety of models are omnipresent in a
number of areas. In a nutshell, in spite of the existing variety of improved models, it still
lacks of a powerful modeling method, which can bridge the gap between model and
practical implementations. Petri nets come with objects, temporal knowledge and fuzzy sets
can use active objects to model generic agents with situatedness, autonomy and flexible.
This helps us to use the object to reduce the complexity of MAS systems and the dynamic
learning and decision to support the autonomy of agents.

5.3.2 Models of Complex Real-time Systems

 In models of complex real-time systems as usually encountered in industrial practice, the
scale of the system module may be too complicated to be analyzed and the readings of
different system state or sensors may be available at different time. The former may lead to
the state explosion, while the latter needs adjustment of relevance of the information
gathered at different time scales. The object models with temporal information degradation
(aging) helps to abstract complicated model and quantify the confidence of the inferred
results.

6. Conclusions and Future Work

CMRS is a kind of usual manufacturing equipments in manufacturing industries. In order to
model, analyze and simulate this kind of systems, this chapter proposes fuzzy timed agent
based Petri net (FTAPN) on the base of FTOPN (Xu & Jia, 2005-1) and FTPN (Pedrycz &
Camargo, 2003). In FTAPN, one of the active objects— ACTALK is introduced and used as
the basic agent object to model CMRS, which is a typical MAS. Every abstract object in
FTOPN can be trained and reduced independently according to the modeling and analysis
requirements for OO concepts supported in FTOPN. The validity of this modeling method
has been used to model Brooks CMRS platform in etching tools. The FTAPN can not only
model complex MAS, but also be refined into the object-oriented implementation easily. It
has provided a methodology to overcome the development problems in agent-oriented
software engineering. At the same time, it can also be regarded as a conceptual and practical
artificial intelligence (AI) tool for integrating MAS into the mainstream practice of software
development.
State analysis needs to be studied in the future. An extended State Graph (Xu & Jia, 2005-2)
has been proposed to analyze the state change of TOPN models. With the temporal fuzzy
sets introduced into FTAPN, the certainty factor about object firing (state changing) needs to
be considered in the state analysis.

7. Acknowledgement

This work is jointly supported by the National Nature Science Foundation of China (Grant
No: 60405011, 60575057) and the China Postdoctoral Foundation for China Postdoctoral
Science Fund (Grant No: 20040350078) in China.

www.intechopen.com

A Novel Modeling Method for Cooperative Multi-robot Systems
Using Fuzzy Timed Agent Based Petri Nets

261

8. References

Agha, G., Hewitt, C.(1985). Concurrent Programming Using Actors: Exploiting Large Scale
Parallelism, Lecture Notes in Computer Science, No. 206, S.N. Maheshwari,ed.,
Springer-Verlag, New York, 1985, pp.19–41.

Battiston, E., Cindio, F.D., Mauri, G.(1988). OBJSA Nets: a class of high-level nets having objects
as domains, Proceedings of APN’88, Lecture Notes in Computer Science, Vol.340,
pp.20-43

Briot, J.P. (1996). An Experiment in Classification and Specialization of Synchronization Schemes,
Lecture Notes in Computer Science, No. 1107, pp. 227–249.

Cao, Y.U.; Fukunaga, A.S.; Kahng, A.B.; Meng, F. (1997); Cooperative Mobile Robotics:
Antecedents and Directions, Autonomous Robots, Vol.4, pp.7–27

Castelfranchi, C. (1995).A Point Missed in Multi-Agent, DAI and HCI, Lecture Notes in
Artificial Intelligence, No. 890, pp. 49–62

Chainbi, W.(2004) ; Multi-agent systems: a Petri net with objects based approach. In: Proceedings
of IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
Beijing, pp.429 – 432

Gasser,L.(1992). An Overview of DAI, Distributed Artificial Intelligence, N.A. Avouris and L.
Gasser, eds., Kluwer Academic, Boston, 1992, pp. 1–25.

Gasser, L, Briot,J.P.(1992). Object-Oriented Concurrent Programming and Distributed Artificial
Intelligence, Distributed Artificial Intelligence, N.A. Avouris and L. Gasser, eds.,
Kluwer Academic, Boston, 1992, pp. 81–108.

Guessoum, Z., Briot, J.P.(1999). From active objects to autonomous agents, IEEE Concurrency,
Vol.7, No.3, pp. 68 – 76

Hong, J.E., Bae, D.H.(2000). Software Modeling And Analysis Using a Hierarchical Object-
oriented Petri net, Information Sciences, Vol.130, pp.133-164

Jennings, N.R., Sycara, K., Wooldridge, M.(1998). A Roadmap of Agent Research and
Development, Autonomous Agents and Multi-Agent Systems, Vol.1, pp.7–38

Lee，J.H., Lee, T.E.(2004). SECAM: A Supervisory Equipment Control Application Model for

Integrated Semiconductor Manufacturing Equipment, IEEE Robotics & Automation
Magazine,Vol. 11, No. 1, pp.41 - 58

Maruichi, T., Ichikawa, M., and Tokoro, M. (1990). Decentralized AI, Modeling Autonomous
Agents and Their Groups, Elsevier Science, Amsterdam, 1990, pp. 215–134.

Murata, T.(1989). Petri Nets: Properties, Analysis and Applications. Proceedings of IEEE,
Vol.77, No.4, (April 1989) pp.541-580

Pedrycz, W., Camargo, H.(2003). Fuzzy timed Petri nets, Fuzzy Sets and Systems, Vol.140, No.
2, pp. 301-330

Peterson, J.L.(1991). Petri Net Theory and the Modeling of Systems, Prentice-Hall, N.Y., USA
Shoham, Y. (1993). Agent-Oriented Programming, Artificial Intelligence, Vol. 60, No.1, pp.

139–159.
Xu, H., Jia, P.F.(2005-1). Fuzzy Timed Object-Oriented Petri Net, Artificial Intelligence

Applications and Innovations (Proceedings of AIAI2005), Springer, pp.148-160,
N.Y., USA

Xu, H., Jia, P.F.(2005-2). Timed Hierarchical Object-Oriented Petri Net, GESTS International
Transactions on Computer Science and Engineering, vol. 24, No.1, pp.65-76

www.intechopen.com

Recent Advances in Multi-Robot Systems

262

Xu, H., Jia, P.F.(2006). Timed Hierarchical Object-Oriented Petri Net-Part I: Basic Concepts and
Reachability Analysis, Lecture Notes In Artificial Intelligence (Proceedings of
RSKT2006), Vol. 4062, pp.727-734

Yonezawa, A., Tokoro. M.(1987), Object-Oriented Concurrent Programming, A. Yonezawa
and M. Tokoro, eds., The MIT Press, Cambrige, Mass., 1987.

www.intechopen.com

Recent Advances in Multi Robot Systems

Edited by Aleksandar Lazinica

ISBN 978-3-902613-24-0

Hard cover, 326 pages

Publisher I-Tech Education and Publishing

Published online 01, May, 2008

Published in print edition May, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

To design a team of robots which is able to perform given tasks is a great concern of many members of

robotics community. There are many problems left to be solved in order to have the fully functional robot team.

Robotics community is trying hard to solve such problems (navigation, task allocation, communication,

adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve

as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team

architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection,

dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters

introducing both basic research and advanced developments. Topics covered include kinematics, dynamic

analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hua Xu (2008). A Novel Modeling Method for Cooperative Multirobot Systems Using Fuzzy Timed Agent

Based Petri Nets, Recent Advances in Multi Robot Systems, Aleksandar Lazinica (Ed.), ISBN: 978-3-902613-

24-0, InTech, Available from:

http://www.intechopen.com/books/recent_advances_in_multi_robot_systems/a_novel_modeling_method_for_c

ooperative_multirobot_systems_using_fuzzy_timed_agent_based_petri_nets

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

