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1. Introduction  
 

Exceptional properties of carbon nanotubes (CNTs) such as electrical, mechanical, chemical 
and thermal, attract growing attention and interest among different disciplines toward their 
usage in modern technologies. A more recent implementation of the concept is encountered 
within the field of bioengineering where researchers are focusing on the bioactivity and 
biocompatibility of CNTs. Carbon is the main component of biomolecules, and this makes 
CNT to be considered as a biocompatible material. Several studies report increase in the 
activity of living cells adjacent to CNTs. Electrical response of CNTs to mechanical loading 
makes them piezoelectric biosensors. Having the highest strength known so far, CNTs are 
believed to be an ideal reinforcement for composites. Use of such versatile functions of 
carbon nanotubes, as composite matrix reinforcements, may have the potential to apply this 
unique nano-structured material to tissue engineering issues such as replacement, healing, 
and growth (Abarrategi et al., 2008). At the same time, cell adhesion, viability, and 
accelerated growth support the idea of using CNTs as substrates for tissue regeneration 
(Lobo et al., 2008). These potentials and many others point at the suitability of CNTs for 
bone tissue engineering applications (Usui et al., 2008). For example, CNTs can be viewed as 
reinforcement to orthopedic materials such as bone cement (Marrs et al., 2006; 2007). It has 
also the ability to act as a biosensor to report bone growth adjacent to an implant (Sirivisoot 
& Webster, 2008). Having a density similar to graphite and much lower than that of other 
metallic bone scaffold materials, CNTs have been viewed as excellent stimulant scaffolds for 
growth and proliferation of osteoblasts, the bone forming cells (Zanello et al., 2006). 
Therefore, bone regeneration on CNT reinforced scaffolds is increasingly favored. This 
suggests making a mechanically enhanced nano-bio-composite for applications in both 
curative and preventative approaches in bone tissue engineering. 
In this chapter, first, a brief explanation about the bone structure as a biocomposite at 
different hierarchical levels and a quick review on bone mechanics and remodeling process 
will be provided. Next, the most important approaches to CNT applications in bone tissue 
engineering will be reviewed and a new area of applicable researches will be introduced. 
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This includes investigation on the idea of bone mineral phase formation on CNTs as a 
replacement for collagen fibers in the infrastructure of bone. The initial steps of such a study 
should include modeling and simulation of the phenomenon, since it is dealing with a living 
tissue and many difficulties come along with experimental studies. Therefore, modeling 
issues will be addressed and discussed based on the recent experimental findings on the 
potentials of CNT as a biocompatible reinforcement and scaffold for bone tissue growth. 
Some results of modeling will be presented and also some predictions of our theoretical 
model will be provided and discussed based on both mechanical and biological functions of 
bone tissue. 

 
2. Bone Structure, Mechanics and Remodeling Process 
 

Bone is the main constituent of the skeletal system and differs from the connective tissues in 
rigidity and hardness. The rigidity and hardness of bone enable the skeleton to maintain the 
shape of the body; to protect the vital organs; to supply the framework for the bone marrow; 
and also to transmit the force of muscular contraction from one part to another during 
movement (Cowin, 2001). It is made basically of the fibrous protein collagen, impregnated 
with a mineral closely resembling calcium phosphate (Currey, 2002). The mineral content of 
bone acts as a reservoir for ions, particularly calcium (almost 99% of the calcium of our body 
is stored in bone), and it also contributes to the regulation of extracellular fluid composition 
(Cowin, 2001). It also contains water, which is very important mechanically, some not well-
understood proteins and polysaccharides, living cells and blood vessels. The organic matrix 
of bone consists of 90% collagen, the most abundant protein in the body, and about 10% of 
various noncollagenous proteins (Behari, 1991). The protein part, mainly collagen type I, 
forms a model for the subsequent deposition of hyroxyapatite, the mineral phase of bone 
which provides rigidity to the structure. From mechanical point of view, bone is a non-
homogeneous and anisotropic material. Spongy and cortical bones can be considered as an 
orthotropic (with 9 independent material constants) and transversely isotropic materials 
(with 5 independent material constants), respectively. In the physiological range of loading, 
bone can be assumed as a linear elastic material, with negligible viscoelastic effects (Rouhi, 
2006a). Bone is stronger in compression than in tension, and much greater young’s moduli 
of elasticity than shear modulus (Bartel et al., 2006). 
The term composite is usually employed for those materials in which two or more distinct 
phases are separated on a scale larger than the atomic, and in which their material 
properties such as stiffness and strength are changed compared with those of a 
homogeneous material. On the basis of the definition of a composite and also by considering 
bone structure, it is evident that bone is a composite material. Bone, as a biocomposite, 
shows hierarchical structures at different scales (Lakes, 1996). For example, in cortical bone, 
on the microstructural level, there are osteon (or havesian systems), which are large hollow 
fibers (200 to 250 μm outer diameter) composed of concentric lamellae and of pores. The 
lamellae are made up of fibers, and the fibers contain fibrils. At the nanosclae, the fibers are 
a composite of mineral hydroxyapatite and the protein collagen. These well organized 
structural features have been associated with various unique structural properties. For 
instance, the stiffness of bone is related to the composite structure of mineral microcrystals 
and collagen (mostly type I) fibers (Lakes & Saha, 1979); and the cement lines as weak 
interfaces convey a degree of toughness to bone (Piekarski, 1970). 

 

Bone is produced inside the body and is usually covered with cells throughout life. Because 
of its nonexpendable nature, all bone resorption and formation occurs at the bone surfaces, 
as opposed to soft biological tissues which can have both interstitial and appositional 
growth. Bone is a porous structure with different values of porosity depending on its 
macrostructure. At the macroscopic level, there are basically two types of bone structures: 
cortical (compact or Haversian) and cancellous (spongy, or trabecular) bone. Cortical bone is 
a dense, solid mass with only microscopic channels, and with a maximal density of about 1.8 
gr/cm3. Approximately 80% of the skeletal mass in the adult human is cortical bone, which 
forms the outer wall of all bones and is largely responsible for the supportive and protective 
function of the skeleton. The main structural unit of the cortical bone is called osteon. A 
typical osteon is a hollow cylinder with the outer and inner diameteres of about 200 (or 250) 
and 50 μm, respectively. An osteon is made up of 20 to 30 concentric lamellae, and 
surrounding the outer border of each osteon there is a cement line, a 1-2 μm thick layer of 
mineralized matrix deficient in collagen fibers, which it is believed they act as crack stoppers 
when cracks are present. On the other hand, cancellous (spongy or trabecular) bone is a 
lattice of narrow rods and plates (70 to 200 μm in thickness) of calcified bone tissue called 
trabeculae, with an average thickness of of 100-150 μm (Van der Meulen & Prendergast, 
2000). The trabeculae are surrounded by bone marrow that is vascular and provides 
nutrients and waste disposal for the bone cells. The symmetry of structure in cancellous 
bone depends upon the direction of applied loads. If the stress pattern in spongy bone is 
complex, then the structure of the network of trabeculae is also complex and highly 
asymmetric. Comparison of micrograph structures with the density maps show that low 
density, open cell, rod like structure develops in regions of low stress while greater density, 
closed cell, plate like structures occur in regions of higher density in cancellous bone 
(Gibson, 1985). There are no blood vessels within the trabeculae, but there are vessels 
immediately adjacent to the tissue. Trabecualr bone is less mineralized than cortical bone, 
and experimental evidence and data suggest that spongy bone is much more active in 
remodeling than in cortical bone (Guo & Goldstein, 1997). The major cellular elements of 
bone include osteoclasts (bone resorbing cells), osteoblasts (bone making cells), osteocytes (it 
is believed that they act as mechano-sensors), (Burger & Klein-Nulend, 1999) and bone-
lining cells (inactive cells on the resting surfaces of bone). While osteoblasts and osteoclasts 
have opposite functions and have different developmental origins, they exhibit several 
parallel features, particularly with respect to their life cycles. Osteoblasts and osteoclasts are 
both temporary cells with relatively short life spans (Parfitt, 1995). 
Skeletal development begins as mesenchymal condensations that appear early in the fetal 
period. These condensations ossify to form membrane bones through intramembranous 
ossification and cartilaginous bones through endochondral ossification. In both types of 
ossifications, bone formation is similar, beginning with an increase in the number of cells 
and fibers. The cells differentiate into osteoblasts, which lay down an unmineralized matrix, 
and the osteoid that mineralizes almost immediately. During growth, bone is formed in the 
necessary places and resorbed as needed to attain the final shape, in a process called 
modeling. Modeling involves resorption drifts and formation drifts that remove or add bone 
over wide regions of bone surfaces. Thus, in modeling bone resorbing and making cells act 
independently and at different spots. Modeling controls the growth, shape, size, strength, 
and anatomy of bones and joints. Collectively, modeling leads to increasing the outside 
cortex and marrow cavity diameters, shaping the ends of long bones. Modeling allows not 
only the development of normal architecture during growth, but also the modulation of this 
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cortex and marrow cavity diameters, shaping the ends of long bones. Modeling allows not 
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architecture and mass when the mechanical condition changes. When bone trains exceed a 
modeling threshold window, the minimum effective strain, modeling in the formation mode 
is turned on to increase bone mass and strength, and lower its strains toward the bottom of 
the window. When strains remain below the modeling threshold, mechanically controlled 
formation drifts stay inactive. As the forces on bone increases 20 times in size between birth 
and maturity, modeling in the formation mode keeps making bones strong enough to keep 
their strains from exceeding the modeling threshold, and therefore from reaching the 
microdamage threshold (Jee, 2001). In the adult age, the localized and independent activities 
of cells in modeling, are replaced by a distributed and coordinated work of the cells, 
resulting in a dynamic state called remodeling process. The actual remodeling occurs in two 
steps: the osteoclasts attach to the bone surface, dissolve the mineral, and later the organic 
phase of the bone, opening a hole that is subsequently filled by a number of osteoblasts, 
which produce the collagen matrix and secrete a protein which stimulates the calcium 
phosphate deposition. This state can be shifted in favour of bone formation or resorption by 
mechanical stimulation, hormonal effects, nutrition, or diseases among other factors (Rouhi, 
2006a). There are several reasons for the necessity of remodeling process, for examples: 
immature bone formed at the metaphyses is structurally inferior to mature bone; or the 
quality of adult bone deteriorates with time; or microcracks produced in bone by daily 
activity should be removed to attain a desired strength in bone; and/or ions concentration 
(e.g. calcium) should be adjusted to lie in an acceptable range; and, most likely, other factors 
that will be known in the future (Rouhi, 2006a). Assuming normal rates of adult bone 
remodeling, cortical bone has a mean age of 20 years and cancellous bone 1 to 4 years 
(Parfitt, 1983). Many diseases are related to global shift in the remodeling balance, for 
example: Osteoporosis, which is caused by increased osteoclast activity; Ostetrosis, which is 
an abnormal increase in bone density by reduced osteoclast activity, Osteopenia, which is 
the bone loss by decreased osteoblast activity. The treatment of these diseases is based on 
drugs that intend to restore the remodeling equilibrium. Most of the work on osteoporosis, 
probably the most important of these diseases, seems to be currently in the osteoclast 
inhibition side (Rodan & Martin, 2000; Teitelbaum, 2000; Rouhi et al., 2007). 
An early hypothesis about the dependence of the structure and form of bones on their 
mechanical function was proposed by Galileo in 1638 (Ascenzi, 1993). The nature of this 
dependence was first described in a semi-quantitative manner by Wolff (Wolff, 1886), who 
stated that remodeling of bone occurs in response to physical stresses or to the lack of them - 
in that bone is deposited in sites subjected to stress and is resorbed from sites where there is 
not enough stress. Several mechanisms have been proposed to relate changes in mechanical 
loads to the adaptive responses in bone, including (among many others): piezoelectric and 
streaming potentials (Gjelsvik, 1973a,b; Pollack et al., 1984); mechanical fatigue 
microdamage (Frost,1960; Carter & Hayes, 1977; Carter & Cayler, 1983; 1985; Martin, 1992; 
1995; Prendergast & Taylor, 1994); and extra- cellular fluid pressure gradient effects on bone 
cells (Cowin et al., 1991; 1995). Experimental evidence can be found in support of each of the 
above-mentioned mechanisms. In 1964, Frost subgrouped bone remodeling into surface and 
internal remodeling (Frost, 1964). Surface remodeling refers to the remodeling of bone on 
the external surfaces, i.e. on endosteal and periosteal surfaces. The phenomenological model 
for surface remodeling postulates a causal relationship between the rate of surface 
deposition or resorption and the strain in the surface of the bone (Cowin, 2003). On the basis 
of the fact that all bone resorption and formation occurs on bone free surfaces, a newly 
defined quantity so-called free surface density, was used instead of commonly used volume 

 

fraction in the adaptive elasticity theory (Cowin & Hegedus, 1976) and surface remodeling 
equations are resulted (Rouhi et al., 2004). Interestingly, in the newly developed model of 
surface remodeling, one can see a strong dependency between the rate of surface bone 
remodeling and the geometry of bone mass distribution. It is also well accepted that bone 
microdamages can initiate and also accelerate bone remodeling process (Taylor et al., 2007). 
Introducing a microcracks factor besides bone specific surface into adaptive elasticity 
theory, a much more complex form of bone remodeling equation will be resulted (Rouhi et 
al., 2006b), in which not only the mechanical stimuli, but also their rate and history play a 
role in the rate of bone remodeling process. 
A preliminary review on the bone structure, bone mechanics, and bone remodeling process, 
helps in better understanding of the bone tissue engineering problems. As the main subject 
of this chapter, the following section deals with most important applications of carbon 
nanotubes in bone tissue engineering. 

 
3. Quick Review on CNT Applications in Bone Tissue Engineering 
 

Polymer matrix composites have recently been the focus of attention in many researches and 
a considerable number of such studies are dealing with the application of biopolymers. 
Acrylic bone cement, namely poly methyl-methacrylate (PMMA), is an example of a 
common biopolymer. This is a biomaterial widely used in orthopedic surgeries as a bone 
filling cement, though is extremely weak in comparison with natural bone tissue regarding 
mechanical properties. This becomes meaningful when the stresses applied to a load-
bearing bone in human daily activities are considered. Experimental and theoretical studies 
show that there is an increase in Young’s modulus and fracture toughness of PMMA when 
reinforced with CNTs (Marrs et al., 2006). The resulting composite also exhibits improved 
fatigue and fracture resistance by bridging and arresting cracks and also absorbing energy 
(Marrs et al., 2007). Embedding functionalized CNTs into PMMA matrix thus improves the 
clinical functions of bone cement, mechanically, while chemical functional groups on CNT 
surface and tips can induce cross-links to the surrounding matrix material and contribute in 
load transfer from PMMA matrix to CNT. This leads to further enhancement of the 
mechanical properties of the bone cement. 
Ninety-five percent of bone organic phase contains collagen (Judex et al., 1999). Collagen is a 
fibrous protein which exists in both soft and hard tissues, and plays a critical role in 
providing them with mechanical tensile strength. Although many researchers studying 
carbon nanotubes in collagen matrices are focusing on CNTs as scaffolds for muscle tissue 
engineering, the approach is most likely applicable in the area that is dealing with bone 
tissue. Scanning electron microscopy (SEM) observation shows physical interactions 
between CNT and collagen matrix, after mixing solubilized Type I collagen with the 
solution of carboxyl functionalized CNTs at different concentrations (MacDonald et al., 
2005). Type I collagen is an interesting biomolecule that has self-assembly properties and 
thus may be useful in inducing assembly and alignment of CNTs. Through applying 
mechanical strains, the mechanism of self-assembly and alignment offers possible 
production of ordered and anisotropic CNT composite materials (Voge et al., 2008). This, 
beside proven cell viability on such a scaffold, offers utilities of the composite for various 
medical applications. 
Bone, itself, in many studies is considered as a fiber reinforced ceramic matrix composite 
material for modeling purposes (Raeisi Najafi et al., 2007a,b; 2009). The complicated 
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beside proven cell viability on such a scaffold, offers utilities of the composite for various 
medical applications. 
Bone, itself, in many studies is considered as a fiber reinforced ceramic matrix composite 
material for modeling purposes (Raeisi Najafi et al., 2007a,b; 2009). The complicated 
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structure of bone should provide high strength, for body support, and go through the 
remodeling process in response to applied stresses caused by everyday normal and/or 
strenuous physical activity. Bone should also be porous so that oxygen and other nutrients 
can be available for internal cells, while, at the same time, this porosity must not reduce its 
resistance to fracture. Bone is also a main reservoir of minerals in the body. It is a composite 
of minerals, organics, and water. The fundamental nano-structure of bone is mineralized 
collagen. Type I collagen fibril (organic phase) in bone is made up of three polypeptide 
chains of amino acids in a triple helix. Such a triple-helical molecule can be viewed as a fiber 
with 1.5 nm in diameter and 300 nm in length. This stiff protein provides tensile strength of 
bone and is the main component of the matrix in which the mineral phase forms. Mineral 
component of bone is dahllite, or carbonated apatite )(OH))CO,(PO(Ca 263410

, in the form of 
plate-shaped crystals of 5025 nm, and a third dimension of about 1.5 to 4 nm. Long axis of 
the plate is generally parallel to bone axis, maximizing its compressive strength (Weiner & 
Wagner, 1999; Meyers et al., 2008). 
Hydroxyapatite (HAp), with a chemical formula of )(OH))(PO(Ca 26410

 is a bioceramic 
material, often used for clinical bone grafting and implantation. HAp has the ability to bond 
chemically with living bone tissue because of its chemical, compositional, biological, and 
crystal structure similarities to native apatite, bone mineral phase, in the human skeleton. 
Furthermore, the bioactivity and biocompatibility of HAp inspire osteoblast adhesion and 
proliferation (Rabiei et al., 2007). However, brittle HAp is fragile in tension and offers low 
fracture toughness in comparison with natural bone, and thus is unsuitable for main load 
bearing sites. On the other hand, excellent mechanical and biological characteristics of CNTs 
suggest the chance of strengthening and toughening HAp, while keeping its bioactivity 
(White et al., 2007). Measurements on HAp-CNT composite coatings fabricated by laser 
surface alloying show increase in elastic modulus and hardness of HAp due to adding CNT 
(Chen et al., 2006). Scratching tests also indicate enhanced wear resistance and lower friction 
coefficient as a result of raising the amount of CNTs in the composite (Chen et al., 2007). 
Therefore, HAp-CNT composite is introduced as a favorable coating material for load-
bearing metallic implants. Bending strength and fracture toughness of sintered HAp-CNT 
composite is reported to improve compared to pure HAp (Li et al., 2007). Scattered CNTs in 
HAp coating by plasma spraying method, result in promotion of fracture toughness and 
crystallinity of the composite. Higher crystallinity leads to enhanced precipitation of apatite 
over the CNT surface, observed by SEM. Moreover, unlimited growth of cultivated human 
osteoblast cells is also detected near the CNT surface (Balani et al., 2007). 
CNTs, on the other hand, can be considered as the mineralization site for HAp. Carboxyl 
functionalized CNTs (CNT–COOH) are used to chemically synthesize HAp, as an effective 
template. This is due to the capability of carboxylate ions (COO–) to absorb calcium ions 
(Ca2+) and contribute in HAp crystallization as a result of exposure to phosphate ions (PO43-) 
(Aryal et al., 2006a). The method is also examined using simulated body fluid to provide 
physiological conditions. These synthesized composites are found to chemically resemble 
natural bone. Initiation of HAp nucleation is shown (by physico-chemical characterization 
of the composites) to take place within carboxyl group (Aryal et al., 2006b). 
Other chemically functionalized CNTs are shown to be capable of conducting the scaffold 
role for artificial bone material growth, as well. Nucleation and crystallization of HAp is 
observed on functionalized CNTs with phosphonates and poly amino-benzene sulfonic acid 

 

in the solution phase. Mineral ions attracted to these functional groups on CNTs can lead to 
enhanced HAp self-assembly compared to carboxylated CNTs (Zhao et al., 2005). 
CNTs are close in size to the triple helical collagen fibrils which can act as templates for 
nano-sized HAp crystallization when functionalized and are also capable of providing 
structural tensile strength to the HAp-matrix composite material. However, due to the 
differences in mechanical behavior of CNTs and collagen fibers under loading, there is a 
serious necessity to look into the mechanical response of such an artificial bone nano-
composite to physiological loading for possible future applications. It is consequently 
essential to prepare a mechanical model of CNT reinforced HAp. The model can be utilized 
to obtain a preliminary evaluation of the suitability of such an artificial bone tissue under 
physiological loading conditions. 
In the following section, therefore, a model for the HAp-CNT composite is provided by 
incorporating cross-links which represent the bonds between CNT (reinforcement) and HAp 
(matrix) through functionalized sites. The cross-links are taken to be responsible for load 
transfer between the two phases of the composite. This model is to provide preliminary 
predictions for effective Young’s modulus of HAp-CNT composite. The model can also be 
developed to predict tensile axial strength and consequently the energy absorbed prior to 
fracture (fracture toughness) of the CNT reinforced bone tissue. 

 
4. Establishment of the Model 
 

In the presented model, carboxylated CNT is considered as the substratum on which the 
bone mineral phase, i.e. HAp, forms. To explore the model, first, a brief description of the 
mechanism of HAp formation on this scaffold is required. The carbon atom of the carboxyl 
group (–COOH) is attached to a carbon atom on the CNT which already has three sp2 
covalent bonds with three adjacent carbon atoms on the CNT surface. This happens while 
the hybridization of the carbon atom on the CNT bonded to the carbon atom on functional 
group changes to sp3 (Odegard et al., 2005). Therefore, carboxyl group attaches to the CNT 
through a sp3 carbon-carbon (C-C) bond (see Fig. 1). 
 

 
Fig. 1. Illustration of a –COOH functional group on CNT surface (PourAkbar Saffar et al., 
2009a) 
 
Carboxyl group loses hydrogen and obtains a negative electrical charge. The negative 
charge is evenly distributed on the two remaining oxygen atoms, causing an unstable 
configuration. This negative charge is tending to attract positively charged calcium ions. 
After that, by exposing this unstable assemblage to phosphate and hydroxide ions, it is 
anticipated to form a similar type of calcium phosphate to what is called HAp on the CNT 
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structure of bone should provide high strength, for body support, and go through the 
remodeling process in response to applied stresses caused by everyday normal and/or 
strenuous physical activity. Bone should also be porous so that oxygen and other nutrients 
can be available for internal cells, while, at the same time, this porosity must not reduce its 
resistance to fracture. Bone is also a main reservoir of minerals in the body. It is a composite 
of minerals, organics, and water. The fundamental nano-structure of bone is mineralized 
collagen. Type I collagen fibril (organic phase) in bone is made up of three polypeptide 
chains of amino acids in a triple helix. Such a triple-helical molecule can be viewed as a fiber 
with 1.5 nm in diameter and 300 nm in length. This stiff protein provides tensile strength of 
bone and is the main component of the matrix in which the mineral phase forms. Mineral 
component of bone is dahllite, or carbonated apatite )(OH))CO,(PO(Ca 263410

, in the form of 
plate-shaped crystals of 5025 nm, and a third dimension of about 1.5 to 4 nm. Long axis of 
the plate is generally parallel to bone axis, maximizing its compressive strength (Weiner & 
Wagner, 1999; Meyers et al., 2008). 
Hydroxyapatite (HAp), with a chemical formula of )(OH))(PO(Ca 26410

 is a bioceramic 
material, often used for clinical bone grafting and implantation. HAp has the ability to bond 
chemically with living bone tissue because of its chemical, compositional, biological, and 
crystal structure similarities to native apatite, bone mineral phase, in the human skeleton. 
Furthermore, the bioactivity and biocompatibility of HAp inspire osteoblast adhesion and 
proliferation (Rabiei et al., 2007). However, brittle HAp is fragile in tension and offers low 
fracture toughness in comparison with natural bone, and thus is unsuitable for main load 
bearing sites. On the other hand, excellent mechanical and biological characteristics of CNTs 
suggest the chance of strengthening and toughening HAp, while keeping its bioactivity 
(White et al., 2007). Measurements on HAp-CNT composite coatings fabricated by laser 
surface alloying show increase in elastic modulus and hardness of HAp due to adding CNT 
(Chen et al., 2006). Scratching tests also indicate enhanced wear resistance and lower friction 
coefficient as a result of raising the amount of CNTs in the composite (Chen et al., 2007). 
Therefore, HAp-CNT composite is introduced as a favorable coating material for load-
bearing metallic implants. Bending strength and fracture toughness of sintered HAp-CNT 
composite is reported to improve compared to pure HAp (Li et al., 2007). Scattered CNTs in 
HAp coating by plasma spraying method, result in promotion of fracture toughness and 
crystallinity of the composite. Higher crystallinity leads to enhanced precipitation of apatite 
over the CNT surface, observed by SEM. Moreover, unlimited growth of cultivated human 
osteoblast cells is also detected near the CNT surface (Balani et al., 2007). 
CNTs, on the other hand, can be considered as the mineralization site for HAp. Carboxyl 
functionalized CNTs (CNT–COOH) are used to chemically synthesize HAp, as an effective 
template. This is due to the capability of carboxylate ions (COO–) to absorb calcium ions 
(Ca2+) and contribute in HAp crystallization as a result of exposure to phosphate ions (PO43-) 
(Aryal et al., 2006a). The method is also examined using simulated body fluid to provide 
physiological conditions. These synthesized composites are found to chemically resemble 
natural bone. Initiation of HAp nucleation is shown (by physico-chemical characterization 
of the composites) to take place within carboxyl group (Aryal et al., 2006b). 
Other chemically functionalized CNTs are shown to be capable of conducting the scaffold 
role for artificial bone material growth, as well. Nucleation and crystallization of HAp is 
observed on functionalized CNTs with phosphonates and poly amino-benzene sulfonic acid 

 

in the solution phase. Mineral ions attracted to these functional groups on CNTs can lead to 
enhanced HAp self-assembly compared to carboxylated CNTs (Zhao et al., 2005). 
CNTs are close in size to the triple helical collagen fibrils which can act as templates for 
nano-sized HAp crystallization when functionalized and are also capable of providing 
structural tensile strength to the HAp-matrix composite material. However, due to the 
differences in mechanical behavior of CNTs and collagen fibers under loading, there is a 
serious necessity to look into the mechanical response of such an artificial bone nano-
composite to physiological loading for possible future applications. It is consequently 
essential to prepare a mechanical model of CNT reinforced HAp. The model can be utilized 
to obtain a preliminary evaluation of the suitability of such an artificial bone tissue under 
physiological loading conditions. 
In the following section, therefore, a model for the HAp-CNT composite is provided by 
incorporating cross-links which represent the bonds between CNT (reinforcement) and HAp 
(matrix) through functionalized sites. The cross-links are taken to be responsible for load 
transfer between the two phases of the composite. This model is to provide preliminary 
predictions for effective Young’s modulus of HAp-CNT composite. The model can also be 
developed to predict tensile axial strength and consequently the energy absorbed prior to 
fracture (fracture toughness) of the CNT reinforced bone tissue. 

 
4. Establishment of the Model 
 

In the presented model, carboxylated CNT is considered as the substratum on which the 
bone mineral phase, i.e. HAp, forms. To explore the model, first, a brief description of the 
mechanism of HAp formation on this scaffold is required. The carbon atom of the carboxyl 
group (–COOH) is attached to a carbon atom on the CNT which already has three sp2 
covalent bonds with three adjacent carbon atoms on the CNT surface. This happens while 
the hybridization of the carbon atom on the CNT bonded to the carbon atom on functional 
group changes to sp3 (Odegard et al., 2005). Therefore, carboxyl group attaches to the CNT 
through a sp3 carbon-carbon (C-C) bond (see Fig. 1). 
 

 
Fig. 1. Illustration of a –COOH functional group on CNT surface (PourAkbar Saffar et al., 
2009a) 
 
Carboxyl group loses hydrogen and obtains a negative electrical charge. The negative 
charge is evenly distributed on the two remaining oxygen atoms, causing an unstable 
configuration. This negative charge is tending to attract positively charged calcium ions. 
After that, by exposing this unstable assemblage to phosphate and hydroxide ions, it is 
anticipated to form a similar type of calcium phosphate to what is called HAp on the CNT 
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surface through the carboxyl functionalized site. This mechanism is believed to be 
responsible for the initiation of HAp precipitation on CNT surface (Aryal et al., 2006a,b). 
The calcium phosphate–like material induces ionic interaction with –COO’s head due to 
oppositely charged ions at the contact sites. Further supply of mineral ions can lead to 
growth of the HAp in different directions. Other probable functional sites on the CNT may 
also contribute simultaneously in local HAp deposition on the CNT and this, in turn, will 
result in the formation of a homogeneous and continuous mineral material surrounding the 
CNT (see Fig. 2). 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. (a) –COOH functionalized CNT; (b) Attraction of calcium, phosphate, and hydroxide 
ions; and (c) HAp formation around CNT (PourAkbar Saffar et al., 2009a) 
 
To derive the model, a representative volume element (RVE) of the CNT-HAp composite is 
considered. For building the RVE, a tip-functionalized (carboxylated) armchair (8,8) single 
walled carbon nanotube (SWCNT) with a length of 2L is assumed onto which the HAp 
matrix is assembled. The CNT is considered as an elastic cylindrical beam element with a 
diameter of 1.08 nm for (8,8) SWCNT, at the center of the RVE. Two C–C covalent bonds are 
assumed at the two tips of the RVE, inducing bonding between CNT and HAp matrix. They 
are presented as elastic beam elements, referred to as cross-links, using a structural 
mechanics approach introduced by (Li & Chou, 2003). Each cross-link has total strain energy 
equal to the C–C bonding energy in sp3 hybridization. Since electrostatic interactions within 
an ionic solid are strong enough, the ionic bonding area between carboxylate ion and HAp 
phase is taken as a continuous region in the model. HAp matrix in the RVE is, thus, 
assumed as a homogeneous, continuous hollow cylindrical beam element, and concentric 
with the CNT. The C–C bond length is taken to be 0.1522 nm (Cornell et al., 1995) (Fig. 2). 

(a) (b) 

(c) 

 

Outer diameter of this element is determined according to the CNT volume fraction in the 
RVE. 
 

 
Fig. 3. RVE of HAp formed on tip-functionalized CNT 
 
The cross-link is responsible for stress transfer from HAp matrix to the CNT, and thus, takes 
part in the reinforcing mechanism in the composite when subjected to an axial load. Elastic 
constants for CNT and HAp are indicated in Table 1. 
 

 Young’s Modulus 
(GPa) Poisson’s Ratio 

SWCNT  1010  0.28 
HAp Matrix  130  0.3 

Table 1. Elastic constants of SWCNT and HAp matrix 
 
For evaluating the characteristics of cross-link beam element, a connection between 
molecular and structural continuum mechanics is used. The method has been previously 
applied for simulating SWCNTs as space-frame structural elements, where covalent bonds 
are treated as beam elements. In this approach, the total atomic bonding energy in the C-C 
covalent bond is set equal to total strain energy of a uniform beam with length l and circular 
cross-sectional area A (Tserpes & Papanikos, 2005). If relatively negligible electrostatic forces 
and non-bonding interactions are discarded, the total bonding energy can be expressed as: 
 

   UUUU rtotal  (1) 

rU , 
U , and 

U  are the energies due to stretch, bending, and sum of dihedral angle and out-
of-plane torsion interactions, respectively. If the bond stretching increment, the bond angle 
variation, and the angle variation of bond twisting are represented by r ,  , and  , 
respectively, then each energy can be expressed as: 
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where in molecular mechanics, rk , k , and k  represent the resistance force constants for 
the bond stretching, bending, and torsion, respectively. So, direct relationships between 
molecular and structural mechanics parameters can be determined as: 
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surface through the carboxyl functionalized site. This mechanism is believed to be 
responsible for the initiation of HAp precipitation on CNT surface (Aryal et al., 2006a,b). 
The calcium phosphate–like material induces ionic interaction with –COO’s head due to 
oppositely charged ions at the contact sites. Further supply of mineral ions can lead to 
growth of the HAp in different directions. Other probable functional sites on the CNT may 
also contribute simultaneously in local HAp deposition on the CNT and this, in turn, will 
result in the formation of a homogeneous and continuous mineral material surrounding the 
CNT (see Fig. 2). 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. (a) –COOH functionalized CNT; (b) Attraction of calcium, phosphate, and hydroxide 
ions; and (c) HAp formation around CNT (PourAkbar Saffar et al., 2009a) 
 
To derive the model, a representative volume element (RVE) of the CNT-HAp composite is 
considered. For building the RVE, a tip-functionalized (carboxylated) armchair (8,8) single 
walled carbon nanotube (SWCNT) with a length of 2L is assumed onto which the HAp 
matrix is assembled. The CNT is considered as an elastic cylindrical beam element with a 
diameter of 1.08 nm for (8,8) SWCNT, at the center of the RVE. Two C–C covalent bonds are 
assumed at the two tips of the RVE, inducing bonding between CNT and HAp matrix. They 
are presented as elastic beam elements, referred to as cross-links, using a structural 
mechanics approach introduced by (Li & Chou, 2003). Each cross-link has total strain energy 
equal to the C–C bonding energy in sp3 hybridization. Since electrostatic interactions within 
an ionic solid are strong enough, the ionic bonding area between carboxylate ion and HAp 
phase is taken as a continuous region in the model. HAp matrix in the RVE is, thus, 
assumed as a homogeneous, continuous hollow cylindrical beam element, and concentric 
with the CNT. The C–C bond length is taken to be 0.1522 nm (Cornell et al., 1995) (Fig. 2). 
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Outer diameter of this element is determined according to the CNT volume fraction in the 
RVE. 
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The cross-link is responsible for stress transfer from HAp matrix to the CNT, and thus, takes 
part in the reinforcing mechanism in the composite when subjected to an axial load. Elastic 
constants for CNT and HAp are indicated in Table 1. 
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Table 1. Elastic constants of SWCNT and HAp matrix 
 
For evaluating the characteristics of cross-link beam element, a connection between 
molecular and structural continuum mechanics is used. The method has been previously 
applied for simulating SWCNTs as space-frame structural elements, where covalent bonds 
are treated as beam elements. In this approach, the total atomic bonding energy in the C-C 
covalent bond is set equal to total strain energy of a uniform beam with length l and circular 
cross-sectional area A (Tserpes & Papanikos, 2005). If relatively negligible electrostatic forces 
and non-bonding interactions are discarded, the total bonding energy can be expressed as: 
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Here, E and G are the Young’s modulus and shear modulus of elasticity for the beam 
element. Cross-sectional area, moment of inertia, and polar moment of inertia, for a 
cylindrical beam with a diameter of d can be obtained as A=πd2/4, I=πd4/64, and J=πd4/32, 
respectively. The values of molecular mechanics parameters for a C–C covalent bond in sp3 
hybridization are found to be rk = 4.39×10-7 N/nm, k = 8.76×10-10 N.nm/rad2, and k = 
2.78×10-10 N.nm/rad2 (Cornell et al., 1995; Jorgensen & Severance, 1990). Therefore, the 
values for d, E, and G are obtained as 0.179 nm, 2.67 TPa, and 0.42 TPa, respectively. 
Once the RVE model is built as a combination of elastic elements in series and parallel 
orders, the problem can be tackled for axial loading condition to determine the mechanical 
response of the RVE in the form of elastic deformation (PourAkbar Saffar et al., 2008). This, 
thus, can give the effective axial Young’s modulus of the RVE. Uniform axial loading causes 
deformation in the RVE elements. Clearly, larger deformation occurs in the element 
representing HAp due to its lower Young’s modulus in comparison with the CNT, although 
this deformation is significantly smaller than non-reinforced HAp under similar loading 
condition. The difference in HAp and CNT deformation causes stretching in the cross-link. 
Therefore, cross-link participates in the reinforcing mechanism by transferring stresses from 
the HAp matrix to the CNT. 
A criterion can be assumed for the determination of the axial tensile strength of the RVE. In 
this approach, the axial tensile stress applied on the RVE cross-section leads to a 
combination of stresses within each element, since the linking beam element transfers 
stresses from the matrix to the reinforcement. The resulting stresses in either HAp matrix or 
the C-C bond representing element may exceed the ultimate value, i.e., defined tensile 
strength for that element, and cause failure. Therefore, the value of axial tensile stress which 
causes failure in either HAp or C-C bond can be calculated as the tensile strength of the RVE 
(PourAkbar Saffar et al. 2009b). Here, failure of the RVE is supposed to occur without any 
non-linear deformations. 
The effective Young’s modulus defines the slope of the stress-strain curve, when neglecting 
the non-linear response of the chemical bonding and assuming overall linear elastic 
behavior for the RVE. On the other hand, the same assumption leads to the determination of 
the fracture strain at the point in which fracture strength is known. As a result, the area 
under the stress-strain curve, up to the fracture point, can be obtained as fracture toughness. 
This is a critical parameter which describes the energy dissipated prior to fracture. 

 
5. Modeling Results 
 

The head cross-linked model illustrated in Fig. 3 predicts different values of the RVE 
effective axial Young’s modulus for various CNT volume fractions and RVE lengths (CNT 
aspect ratio = 2L/D). Fig. 4 illustrates plots of the Young’s modulus versus CNT volume 
fraction for different RVE lengths. Results of current model, as seen in Fig. 4, can be 
compared to that of classical micromechanics models for composite materials. For the sake 
of comparison, Rule-of-Mixtures predictions (Voigt, 1889; Reuss, 1929), Hashin-Shtrikman 
upper and lower bounds (Hashin & Shtrikman, 1961a,b; 1962a,b; 1963), and Mori-Tanaka 
model results (Mori & Tanaka, 1973) for the composite consisting of CNT and HAp are also 
provided in Fig. 4. 

 

 

 
Fig. 4. RVE effective axial Young’s modulus predicted by some classical models and the 
cross-linking model with respect to CNT volume fraction 
 
Although primary configuration presumes head cross-linked RVEs, in an alternative 
configuration, this can be in the shape of additional C-C bonds with the matrix on the CNT 
surface, since functionalization is practically feasible on both CNT heads and sidewalls. A 
simple case is considered here for a RVE of a length of 10 nm, with 4 equidistance cross-
links evenly distributed throughout the length. Results of the simulation for this case and 

www.intechopen.com



Carbon Nanotubes in Bone Tissue Engineering 487

 

 k
l
GJk

l
EIk

l
EA

r  ,,  (3) 
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element. Cross-sectional area, moment of inertia, and polar moment of inertia, for a 
cylindrical beam with a diameter of d can be obtained as A=πd2/4, I=πd4/64, and J=πd4/32, 
respectively. The values of molecular mechanics parameters for a C–C covalent bond in sp3 
hybridization are found to be rk = 4.39×10-7 N/nm, k = 8.76×10-10 N.nm/rad2, and k = 
2.78×10-10 N.nm/rad2 (Cornell et al., 1995; Jorgensen & Severance, 1990). Therefore, the 
values for d, E, and G are obtained as 0.179 nm, 2.67 TPa, and 0.42 TPa, respectively. 
Once the RVE model is built as a combination of elastic elements in series and parallel 
orders, the problem can be tackled for axial loading condition to determine the mechanical 
response of the RVE in the form of elastic deformation (PourAkbar Saffar et al., 2008). This, 
thus, can give the effective axial Young’s modulus of the RVE. Uniform axial loading causes 
deformation in the RVE elements. Clearly, larger deformation occurs in the element 
representing HAp due to its lower Young’s modulus in comparison with the CNT, although 
this deformation is significantly smaller than non-reinforced HAp under similar loading 
condition. The difference in HAp and CNT deformation causes stretching in the cross-link. 
Therefore, cross-link participates in the reinforcing mechanism by transferring stresses from 
the HAp matrix to the CNT. 
A criterion can be assumed for the determination of the axial tensile strength of the RVE. In 
this approach, the axial tensile stress applied on the RVE cross-section leads to a 
combination of stresses within each element, since the linking beam element transfers 
stresses from the matrix to the reinforcement. The resulting stresses in either HAp matrix or 
the C-C bond representing element may exceed the ultimate value, i.e., defined tensile 
strength for that element, and cause failure. Therefore, the value of axial tensile stress which 
causes failure in either HAp or C-C bond can be calculated as the tensile strength of the RVE 
(PourAkbar Saffar et al. 2009b). Here, failure of the RVE is supposed to occur without any 
non-linear deformations. 
The effective Young’s modulus defines the slope of the stress-strain curve, when neglecting 
the non-linear response of the chemical bonding and assuming overall linear elastic 
behavior for the RVE. On the other hand, the same assumption leads to the determination of 
the fracture strain at the point in which fracture strength is known. As a result, the area 
under the stress-strain curve, up to the fracture point, can be obtained as fracture toughness. 
This is a critical parameter which describes the energy dissipated prior to fracture. 

 
5. Modeling Results 
 

The head cross-linked model illustrated in Fig. 3 predicts different values of the RVE 
effective axial Young’s modulus for various CNT volume fractions and RVE lengths (CNT 
aspect ratio = 2L/D). Fig. 4 illustrates plots of the Young’s modulus versus CNT volume 
fraction for different RVE lengths. Results of current model, as seen in Fig. 4, can be 
compared to that of classical micromechanics models for composite materials. For the sake 
of comparison, Rule-of-Mixtures predictions (Voigt, 1889; Reuss, 1929), Hashin-Shtrikman 
upper and lower bounds (Hashin & Shtrikman, 1961a,b; 1962a,b; 1963), and Mori-Tanaka 
model results (Mori & Tanaka, 1973) for the composite consisting of CNT and HAp are also 
provided in Fig. 4. 

 

 

 
Fig. 4. RVE effective axial Young’s modulus predicted by some classical models and the 
cross-linking model with respect to CNT volume fraction 
 
Although primary configuration presumes head cross-linked RVEs, in an alternative 
configuration, this can be in the shape of additional C-C bonds with the matrix on the CNT 
surface, since functionalization is practically feasible on both CNT heads and sidewalls. A 
simple case is considered here for a RVE of a length of 10 nm, with 4 equidistance cross-
links evenly distributed throughout the length. Results of the simulation for this case and 
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also Rule-of-Mixtures (Voigt) results for different values of CNT volume fraction (from 1 to 
10%) are illustrated in Fig. 5. 
 

 
Fig. 5. Young’s modulus versus CNT volume fraction predicted by Rule-of-Mixtures and the 
current model having 4 equidistance cross-links in 10 nm RVE length 
 
Fig. 6 illustrates the case that cross-links are distributed in the RVE length holding equal 
distances of 4 nm from each other. This means that each 4 nm increase in the RVE length 
adds a cross-link to the RVE. This configuration is regarded for a CNT volume fraction of 
10%. 
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Fig. 8. Axial tensile strength versus CNT volume fraction 

 
6. Discussions on the Model Predictions 
 

Ordinary outputs of developed models for predicting mechanical properties of fiber-
reinforced composites include consideration of microstructural Young’s, shear, and/or bulk 
moduli with respect to volume fraction of reinforcement phase. Rule-of-Mixtures gives two 
general cases of isostrain and isostress arrangements of material constituents proposed by 
(Voigt, 1889) and (Reuss, 1929), respectively. Voigt suggests the upper limit of a range of 
elastic constants, while the lower limit of this range is given by Reuss’s model. Results of 
other classical models lie between Rule-of-Mixtures estimated limits. So-called Hashin-
Shtrikman upper and lower bounds (Hashin & Shtrikman, 1961a,b; 1962a,b; 1963) for the 
composite material behavior are the most adopted bounds for the overall properties of 
composites. Mori and Tanaka proposed their well-known method (Mori & Tanaka, 1973), 
matching Hashin-Shtrikman’s lower bound for the composite behavior in certain conditions. 
The key point in different approaches is the pre-assumed interaction between composite 
phases. Voigt’s model, assuming perfect bonding between matrix and reinforcement, 
considers isostrain condition in which deformations of the elements are equal at every 
contact point between the two phases. Perfect bonding assumption in such a situation, 
provides the uppermost limit of effective properties of the composite. However, the cross-
linking model presented here, represents the inter-phase interaction only at cross-links sites 
which results in a significant deviation from Voigt’s prediction. When interface contact is 
less perfect, as is the case for our cross-linking model compared to isostrain model, it is 
expected to see a weaker reinforcing mechanism and so a smaller value for the Young’s 
modulus of the composite. 

 

According to Fig. 4, the Young’s modulus of the RVE of CNT-HAp predicted by the cross-
linking model, lies under Voigt’s model result and adjacent to Hashin-Shtrkman bounds. 
For a CNT aspect ratio of 5, with RVE at the same length as CNT, the cross-linking model 
adapts interestingly near the Hashin-Shtrikman’s upper bound. It is apparent that by 
increasing aspect ratio, the results obtained by the current model approach those of Voigt. 
When the aspect ratio is approaching 100 or higher, this model’s results match roughly the 
Voigt’s prediction illustrated as a straight line in Fig. 4. This is in agreement with the general 
concept that increasing the CNT volume fraction and/or length leads to an improved 
reinforcement (Thostenson et al., 2005; Haque & Ramasetty, 2005). 
The Young's modulus predicted by the present model, even for a very small aspect ratio, e.g. 
for a CNT aspect ratio of 2, lies above the Hashin-Shtrikman's lower bound which is also far 
above Reuss's prediction. This is caused by the cross-linking, and it is contrary to the 
isostress situation which is based on Reuss’s assumption that both matrix and fibers carry 
the same amount of load. In the current model, however, the cross-link carries just part of 
the load which is caused by a combination of parallel and series elements. The phenomenon 
can be explained by considering the apparent difference between the Young’s moduli of 
CNT and the matrix. 
When increasing dilute volume fractions (see Figs. 4b and 5), model deviation from Voigt’s 
prediction increases. This difference is directly related to the perfect bonding assumption in 
Voigt’s model which results in overestimating the Young’s modulus. In the cross-linking 
model, however, it is assumed that the only interaction between matrix and CNT is through 
cross-links, unlike the assumption made by Voigt, i.e., at every point throughout the contact 
surface there is a perfect bond between fibers and the matrix. Interesting to note that 
Young’s moduli predicted by various models here, get closer for high CNT volume 
fractions; and approach a unique value when the volume fraction is 1. However, this is not 
of immediate interest, since empirical studies tend to concentrate on lower volume fractions 
of CNTs in such nano-composites (Thostenson et al., 2005; Haque & Ramasetty, 2005). 
Voigt, Hashin-Shtrikman, and Mori-Tanaka models tend to predict similar curves for the 
Young’s modulus versus volume fraction, independent of RVE lengths. The presented 
model, however, indicates that the longer the CNT, the more efficient the reinforcement 
becomes. In addition, longer CNTs have the potential to support a greater number of cross-
links. The cross-linking model shows that an increase in the number of cross-links will 
increase the Young’s modulus and in its limit will approach the value predicted by the Voigt 
formulation. If the number of cross-links distributed uniformly along the RVE goes to 
infinity, the interaction can be considered as perfect bonding. So, for such a critical 
condition, similar results are expected from both Voigt and the cross-linking models. 
According to Fig. 6, the greater the number of cross-links, the stronger is the interaction 
between composite phases. The effect of increasing the CNT length, however, is much more 
apparent than the effect of increasing the number of cross-links in constant RVE length, as 
can be seen in Fig. 7. This could raise the issue of comparing the reinforcement efficiency of 
tip and side wall functionalized CNTs. The important point here is that adding more 
functional groups to the CNT surface alters the regular cylindrical shape of the CNT as a 
result of changes in hybridization of carbon atoms on its surface. Although the current 
model fails to describe this phenomenon, but on the basis of experimental observation and 
theoretical predictions, such modification can adversely affect nanotube properties due to 
induced structural defects (Balasubramanian & Burghard, 2005). 
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Results show a significant increase in both axial Young’s modulus and tensile strength of the 
HAp when reinforced with CNT. A simple comparison leads to the understanding that 
fracture toughness of the synthesized HAp-CNT is several times higher than that of the 
natural bone which is structurally composed of HAp and collagen fibers (PourAkbar Saffar 
et al. 2009b) (see Fig. 9 as an example). Fracture toughness as a measure and indicator of the 
capacity of a material to resist failure, is an important parameter that can be used to 
determine to which category of materials, a material belongs. It is well known that pure 
HAp is a brittle material, while bone tissue behaves in a quasi-brittle manner (Raeisi Najafi 
et al., 2009), and this is due to the collagen inclusion as a flexible phase which can increase 
bone toughness. The enhanced elastic properties of CNTs in the HAp matrix, however, 
introduce the doubt on change of the material behavior as to ductile. Microcracking is a 
common toughening mechanism in bone, as a quasi-brittle material, which occurs near the 
main crack tip to resist the crack growth (Raeisi Najafi et al., 2007a,b; 2009). Moreover, it is 
well accepted that microcracks and microdamages in bone can initiate and accelerate bone 
remodeling process in which there will be a break for the crack propagation and can 
encourage making new bony material at the deteriorated sites (Rouhi et al., 2006; Vahdati & 
Rouhi, 2009). It seems reasonable, by considering the differences between the mechanical 
properties of the natural and artificial bone (HAp-CNTs), to assume that the rate of bone 
remodeling process will be altered, and possibly disturbed when CNTs replace the collagen 
fibers in natural bone tissue. 
Assuming that CNT reinforcement increases bone fracture toughness, and decreases 
possibility of microcracks generation, another aspect of future researches should also be 
addressing whether the HAp-CNT composite is more suitable than collagen I–HAp from 
bone remodeling point of view or this can be seen as a drawback for the artificial bone. 
 
 

 
 

Fig. 9. Schematic stress-strain curves for HAp-CNT, HAp-collagn fiber, and pure Hap 
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Although promising results are shown in initial steps toward the bioapplications of CNTs as 
scaffolds for bone growth, more investigations need to be done to address the question of: 
“Is replacing collagen fibers by CNTs beneficial for bone from the bone adaptation point of 
view or can be seen as a disturbing factor in the remodeling process?” This study is 
therefore aimed at exploring the mechanical characteristics of the HAp-CNT composite in 
order to lay emphasize on the importance of the evaluation of the biological related effects 
of CNT reinforcement in such an artificial bone tissue. 

 
7. Summary 
 

The idea of HAp precipitation on functionalized CNTs suggests a new avenue in bone tissue 
engineering. For instance, implanting functionalized CNTs as solutions or substratum in the 
bone injury site may result in generation of the composite material. This could exemplify an 
appropriate application of the concept, to bone tissue therapy. A critical investigation of the 
applicability of CNTs as a reinforcement to a living tissue could thus find tangible potentials 
in preventative or post traumatic measures. This approach, however, necessitates a 
multidisciplinary research encompassing such subjects as Mechanical and Biomedical 
Engineering. The interaction between the mechanical behavior of the living tissue and the 
biological functions in the organism is almost totally accepted. This work is therefore aiming 
to evaluate such applications by exploring the mechanical properties of the HAp-CNT 
composite. 
As the very first step in evaluating the mechanical response of the composite, a model has 
been presented here to obtain the effective axial Young’s modulus of a RVE of HAp formed 
on functionalized CNT. This study predicts close behavior of the material to those suggested 
by classical micromechanical models. This model predicts higher Young’s moduli and 
tensile strengths for RVEs with higher CNT contents and/or aspect ratios, as it is expected 
based on current knowledge of fiber composite materials. When CNT length increases, 
possibly, there may exist more cross-links distributed on the CNT surface in addition to 
those on the CNT tips, resulting in a stronger interfacial force and so bigger Young’s 
modulus and tensile strength, as our model predicts in this study. Although initial results 
are promising, further careful studies are necessary to find out whether they support or cast 
doubt on the proposed suggestion of CNT application as bone tissue engineering scaffold. 
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