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1. Introduction

The goal of medical image segmentation is to partition a volumetric medical image into
separate regions, usually anatomic structures (tissue types) that are meaningful for a specific
task. In many medical applications, such as diagnosis, surgery planning, and radiation
treatment planning, determination of the volume and position of an anatomic structure is
required and plays a critical role in the treatment outcome.

1.1 Problem domain

Volumetric medical images are obtained from medical imaging acquisition technology, such
as CT, MRI, and PET, and are represented by a stack of 2D image slices in 3D space. The
tissue type surrounding the voxel determines its value. Within a volumetric medical image,
the variations in tissue type give rise to varying intensity. Typically this intensity is a
quantized scalar value also known as a gray level. While it is possible to consider more
general cases such as vector or tensor values, we will confine our discussion to the scalar
case. The segmentation problem is essentially a classification problem. A label representing
the region to which an image voxel belongs is assigned to each voxel. The assignment is,
however, subject to some constraints, such as piecewise continuity and smoothness; thus,
classification is difficult due to image acquisition artifacts.

1.2 Survey outline

This survey includes several fundamental image segmentation techniques that are widely
used in the area of computer vision with application to medical images. It also includes
recent developments over the last ten years that are based on these techniques. In particular,
this survey focuses on the general techniques that are not specific to certain anatomic organ
structure, techniques that are easily expandable to 3D, and techniques that can flexibly make
use of statistical information.

In this survey, segmentation techniques are broadly categorized into four groups (Fig. 1),
according to the use of image features: region-based, boundary-based, hybrid, and atlas-
based. Typically, region-based and boundary-based techniques exploit within-region
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Fig. 1. The four categories of medical image segmentation techniques and their selected
methods discussed in this survey.

similarities and between-region differences, respectively, whereas hybrid techniques use
both region and boundary-image features, and atlas-based techniques involve image
registration between an atlas and the image to be segmented. These four groups of
techniques are discussed in detail in sections 2, 3, 4, and 5. Many of these methods use
optimization techniques and partial differential equations (PDE). The optimization methods
and the solutions to PDEs, however, are beyond the scope of this survey. Finally, the
advantages and disadvantages of various types of techniques are discussed in section 6.

1.3 Notations
The following notations are used throughout the entire survey. An image f is defined over
its discrete image domain Q as

f(x)eiR,erciR?’. 1)
Let r;, i = 1,...,K, be the labels representing K regions in the image. A segmentation g is
defined over the image domain as

g(x)el{r|i=1,.,K}. (2)
Finally, Ri={x | g(x)=r},i=1, ..., Kare the K regions.
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2. Region-based methods

In region-based methods, a region can be defined by a predicate function P based on some
homogeneous property such that all voxels in a region satisfy the homogeneity criteria, that
is:

P(R;)=true,i=1,..., K. 3)
Segmentation is the partition of an image Q into K disjoint regions such that the following
conditions are satisfied:

K 4
a-Ur, (4)

i=1
RiNR;={),i%], ©)
P(R;UR;)=false, i # j. (6)

Eq. (6) states that the predicted outcome is different for any two different regions. Region-
based methods can be further categorized into five groups based on how the rules of
prediction are carried out: thresholding, region growing, region splitting and merging, and
classification.

2.1 Thresholding
Thresholding is the simplest and fastest region-based method. A region label is assigned to a
voxel by comparing its gray-level value to one or multiple thresholds. Thresholding can be
global, when a constant threshold is applied to whole image, or local or dynamic, when a
different threshold is used for different regions in the image. For simplicity and without loss
of generality, we assume a global single threshold € is used to segment the image into two
regions: 0:foreground and 1:background (when applicable, this two-class assumption will be
applied to other methods discussed in this survey).
A predicate function P can be defined as follows:
P(R)) = true,if VxeR,, f(x)=>0,
P(R,) = true,if VxeR,, f(x)<6. @)

Thus, the following rules are used for segmentation:

{1’0 if f(x)>0,

r, otherwise.

2.2 Choosing thresholds

The key factor that affects the segmentation result is the choice of threshold value.
Thresholds are usually determined by consulting a histogram. For a medical image, a
threshold can be obtained from a priori knowledge. In the case of CT images, voxel
intensities are given in Hounsfield Units (HU), and the ranges of HU for certain tissue types
are known (Table 1). For example, air is -1000, water is 0, and bone is usually larger than
250.
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Hounsfield Unit
Tissue Low high
Air -1000 -1000
Water 0 0
Fat -150 -10
Muscle 10 50
Bone 250 1000
Lung -100 -1000
Liver 40 60
Kidney 30 50

Table 1. Hounsfield unit range for various tissue types

Thresholds can also be chosen automatically. The automatic approaches can be further
separated into two groups. One group selects the threshold based on analyzing the shape of
the histogram. The other group finds the optimal thresholds by minimizing or maximizing
some merit function.

2.2.1 Based on analyzing peaks and valleys of the histogram

Assuming that the distribution is a bi-modal histogram, one can find the threshold by
finding its peaks and valleys. Rosenfeld and Torre (1983) analyze concavities by
constructing a convex hull of the histogram and calculating the difference between the
histogram and its convex hull. The threshold is chosen by locating the maximum difference
(Fig. 2). It can be described as follows:

Cuoncity = argmax{ [1(6) ~ 1" @)1} ©)

where £ is the intensity histogram of the image.

Sezan (1990) carried out peak analysis by convolving the histogram with a smoothing kernel
for reducing sensitivity to noise and a differencing kernel for locating the peaks. The kernel
operation produces the peak detection signal. The start of a peak is indicated as the gray
level at which the detection signal has a zero-crossing to negative values represented by s;,
and the end of peak ¢; is defined to be the gray level at which the detection signal attains its
the local maximum between the starts of the two adjacent peaks. The thresholds can be set
anywhere between the two adjacent peaks, that is:

Tovsn =16, 16, = Ae; + (1= A)s;oq,i=1,.., KO<A<1}. (10)

Variations on this theme that apply to MR brain image segmentation are provided by
Aboutanos et al. (1999), who obtain a smoothed histogram via a Gaussian kernel followed
by curvature analysis of the presence of both valleys and sharp curvature points
corresponding to gray and white matters.
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Fig. 2. A histogram h and its convex hull h"!. The optimal threshold G.ncmwit, is chosen as the
point at which the distance between the histogram and its convex hull is maximal.

2.2.2 Optimal thresholding

When the threshold is chosen automatically, it is usually done so by applying some measure
of merit or objective function on the resulting partition. A special case of this is to apply the
measure of merit on the division of the image histogram resulting from the threshold. Otsu
(1979) minimizes within-class variance, which is equivalent to maximizing between-class
variance:

o3 (0) =0 - oy (0)

= )0 = )* + Zp(k) (e - 1)”, 1
k<0 K20 (11)
Ootsu =arg max{o'l% (0)}
0
where probability density p(k) is obtained from the histogram, and x1, 12, and u are the mean
of the two classes (k < € and k > 6) and the global mean, respectively. In some forms of
medical images, like CT and MR, the gray levels are discrete and finite, and therefore the
optimal threshold can be found by evaluating all the bins of the histogram. Kapur et al.
(1985) maximized the sum of the two classes of Shannon entropies:
p() 4o _P0) p(i) p()
) (=)~ 2 < log(— =)
S0 B 0 0 12)
i< i< i>0 i>6
Ridler and Calvard (1978) introduced an iterative method that finds the optimal threshold
such that the threshold is equidistant to the two class means. The iterative algorithm is
described below:

Okapur = arg max{—
0

Algorithm: Ridler & Calvard iterative method
1.Given an initial 8°. For example, fiax /2.

2. Atiteration i, compute the 2 class means and threshold
u§) =mean{ f(x)| f(x) < 0D}, pf" =mean{ f(x)| f(x) > 6D}

oli+1) _ (y(z +ﬂ11))/2
91+1

3.repeat 2 until | | become suffciently small.
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This algorithm is quite similar to the procedure used in K-means clustering, but as applied
to the image histogram. Clustering methods are discussed in section 2.5.

2.3 Summary of thresholding methods

The simplicity of thresholding methods leads to implementations that are extremely fast and
can even be implemented in hardware. The thresholds can be chosen using prior knowledge
or analyzing the shape of the histogram, or by finding optimal ones based on clustering. If
the threshold is chosen using only the image histogram then the method will not be senstive
to volume preserving transformations. However, it is sensitive to image artifacts that alter
the true intensity distribution. For more complete information about threshold selection,
readers are referred to Sezgin and Sankur (2004).

2.4 Region growing

Region growing starts with seeds on the images. Each seed represents a region. The region
grows by successively adding neighboring voxels based on the homogeneity predicate. A
generic region growing algorithm for one region is given below:

Algorithm: Region Growing
RegionGrow (seed)

1.region r = {seed}

2. while r.neighbors # {}
for each voxel x in r.neighbors, it P(x,r) = true then r.add(x).
end while

3.returnr

In seeded region growing, seed selection is decisive and is often done manually in medical
image applications. The difference between the many seeded region-growing methods lies
in the definition of the homogeneity criteria. Adam and Bischof (1994) use the distance
between the voxel value and the region’s mean value. Thus, they define a predicate as

P(x,r)=|f(x)— | < T, (13)

where T is a threshold that can also be chosen manually or even interactively, since the
mean can be calculated very quickly. Instead of growing a single region, Adam’s seeded
region growing also examines the situation of growing multiple disjoint regions. A set of
boundary voxels can be defined as

B={x|x2UR;,N(x)NUR; # ¢} , (14)

where N(x) is neighbors of voxel x. During the growing steps, a voxel is chosen from B and
added to the region r if the distance measure |f(x) - .| as defined in Eq. (13) is the smallest
among all regions.

Unseeded region growing was proposed by Lin et al. (2001), and their method does not
need region seed point initialization. The method starts with an arbitrary voxel and assigns
it to a region and grows the region using the generic region growing algorithm. If a
neighboring voxel does not meet the homogeneity criteria for the region, then the method
uses Adam’s method to add the voxel to another region that has the minimum distance to
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the voxel while maintaining the homogeneity criteria for that region. If such a region does
not exist, then a new region is created for the voxel and the new region starts growing as
well. The solution found might not be the optimal one, because a voxel might not be added
to the most closely related region if that region is created after the voxel was visited. It may
be necessary to re-evaluate the neighborhood of any newly created region.

2.5 Region splitting and merging

A different approach to region growing is region splitting and merging. The method was
presented by Horowitz and Pavlidis (1974). An image is initially split into four sub-images
(eight in 3D) if it does not meet some homogeneity criteria, e.g., in their method, | maxfr(x)-
minfr(x) | < T. The sub-image relationships can be represented as a quadtree (or octree in
3D). When a new region (sub-image) is created, it is checked to determine whether it can be
merged with its siblings if they have the same homogeneity properties. This is done
recursively on each sub-image until splitting and merging is no longer possible. The final
step merges adjacent regions across parent nodes that meet the uniformity criteria. The
resulting algorithm is presented below:

Algorithm: Region Splitting and Merging
RegionSplitMerge(R)

1. Split R into four (or eight in 3D) sub-regions if it does not meet the homogeneity
criteria. Merge children sub regions of the same parent node that meet these
criteria. If no splitting and merging possible, then return.

2. For each sub region R;, RegionSplitMerge(R;).

3. If R=Q (finished for the whole image), check adjacent regions in the quadtree
(octree) across parent nodes and merge those that meet the homogeneity
criteria.

2.6 Summary of region growing and splitting and merging

These methods are less sensitive to image noise then thresholding methods because of the
use of regional properties and the resulting segmentation is piece-wise continuous. Some
region homogeneity criteria involve thresholds as well. However, if the region mean is used
as the homogeneity measure, since it can be calculated efficiently, the threshold can be

Fig. 3. CT liver segmentation using region growing shows boundary leakage. The seed point
is marked as a cross.
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selected interactively to obtain suitable segmentation. These methods perform quite well
when segmenting organs, such as lungs or bony structures, that have well-defined
boundaries. Boundary leakage remains problematic for these methods with structures
having blurred boundaries (Fig. 3.) Type of splitting used and initial seed points are factors
to the results. The results need not be translation or rotation independent. With these
methods it is hard to state clearly what objective function or measure of merit the final result
minimizes.

2.7 Classification methods

This section describes a number of common techniques used for pattern recognition. It does
not cover all classification techniques, but rather focuses on techniques widely used in
medical image segmentation. This includes unsupervised clustering algorithms, such as K-
means and fuzzy c-means, and supervised Bayesian methods, such as maximum likelihood
and Markov random fields.

2.7.1 Clustering

Similar to image segmentation, clustering involves dividing a set of objects into groups
(clusters) so that objects from the same group are more similar to each other than objects
from different groups. Often, similarity is determined by a distance measure, such as the
Euclidean distance or Mahalanobis distance. Given a known number of clusters K and
number of data points N, the matrix

Ugun =i} k=1,.,Kandi=1,..,N, (15)

represents the partitions of the data set, where uy; describes the membership of data point x;
in cluster ¢. The clustering is considered hard if uy; is either 1 (is a member of) or 0 (is not a
member of) and is determined by Boolean membership functions; or as fuzzy if partial
membership is allowed with continuous membership functions. Let vy be the centroid of
cluster ct. Then vi can be calculated from

N N
U = DugXi/ Xug, k=1,...,K. (16)
i=1 i=1

2.7.1.1 K-means
K-means is also called hard c-means. The membership value uy must satisfy

K N
vk, Vi, u; ={0,1}, Vi, Yuy; =1,and Vk,0< Y uy; <N. (17)
k=1 i=1
By defining a distance function dj;, for example, the Euclidean distance is
dki = ||xl- — Uk P (18)
then the task is to find U that satisfies the membership constraints in (16) and minimizes
K
JU,0)=3 di. (19)
k=1x;ec,

A common way to find U is by using the iterative method was proposed by Lloyd (1982).
The algorithm is described below:
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Algorithm: K-means clustering

1. Given number of clusters K, initialize centroid v for each cluster k randomly or
heuristically.

2. Calculate each u;; in membership matrix U. uy; = 1 if x; is closest to cluster k based on the
selected distance measure d (e.g. Eq. 18), otherwise uy; = 0.

3. Recalculate cluster centroids from U using Eq. 16.

4. Repeat 2-3 until all cluster centroids (or matrix U) are unchanged since the last iteration.

2.7.1.2 Fuzzy c-means

Fuzzy c-means (FCM) is a generalization of k-means. Unlike hard membership in k-means,
it allows the data points to be partially associated with more than one cluster , showing a
certain degree of membership to each cluster. The membership value uy; must satisfy:

K N
Vk,Vi,0<uy; <1,Vi, Yup; =1,and Vk,0< Yuy; <N. (20)
k=1 i=1

Note that these conditions only differ from k-means' in the first condition.
One of the most widely used FCM algorithms was proposed by Bezdek (1981). In this
algorithm, the objective function to be minimized is

K
InU,0)= 3 Su"dy . (20)
k=1x;ec;
where m > 1 controls the degree of fuzziness. The larger the m, the fuzzier the membership
assignments. If m is close to 1, then the cluster with centroid closest to the point is given
more weight than the other clusters. Unlike hard membership in k-means, the membership
value and centroid are calculated as follows:

-2 /(m-1)
K| d.
Uy = z [d—kl\] , (21)
J=1 Y
O = 'Zlukl Xi / 'Zlukl . (22)
i= i=

The iterative algorithm is similar to the k-means algorithm in 2.7.1.1, except that Egs. (21)
and (22) are used for calculating U and the centroids, and the algorithm stops when

maxQuki(”) —uy, (17D |)< ¢, for some constant ¢ . (23)

For medical image segmentation, some spatial constraints may be needed in order to
generate regions that have piecewise continuity. Fig. 4 shows the comparison of
segmentations of noisy brain images using fuzzy c-means with and without spatial
information.

Several approaches address this problem. Pham (2002) added a penalty term in Eq. 20 for
inconsistency assignments in the local neighborhood of a voxel. If voxel i is assigned to
cluster k, the penalty term is the sum of the voxel i's neighbors' membership values of
clusters other than cluster k, as defined below
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Fig. 4. (a) fuzzy c-mean segmentation without a spatial constraint (b) with a spatial
constraint to preserve the piecewise continuity (arrows). Reprint from Chuang et al. (2006)
with permission from Elsevier.

N K
=y Yut Y X qum,wherer:{1,...,K}\{k}. (24)
2i=1k=1 " jeN,qeQ,

Mohamed et al. (1999) modified the distance measure by incorporating the cluster
assignments of neighboring voxels weighted by the distance between the reference voxel
and its neighbor. The distance measure is defined below:

jeN; JeN;

X;—X

i @)
With this distance measure, the total effect of the neighboring pixels pulls their neighbor
toward the same class.

2.7.1.3 Summary of clustering methods

Clustering methods are suitable for segmenting a site where the means of the intensity
distributions of the tissue types are well separated. A common application is MRI brain
image segmentation. The centers of T1-T2 intensity clusters of white matte (W), gray matter
(G), cerebrospinal fluid (C), air (A) and fat (F) are shown in Fig. 5. In addition, a spatial
constraint is needed to overcome the noise artifact. Since the data is grouped by positions in
a feature space, there is no guarantee that points on the same cluster need to be close
spatially. It is possible to add position into the feature space but this introduces the
requirement of specifying a prior to balance continuity in feature space (homogeneity) with
continuity in space (proximity.)

2.7.2 Bayesian

Bayesian approaches treat the class assignment of the voxels as random variables and rely
on probability to derive probabilistic models for images. Usually, Bayesian decision theory
is the tool for classification. Here we slightly change the notation. Let x; be the random
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12 CSF

A >
T1

Fig. 5. Centers of clusters of T1-T2 intensity of various tissue types in an MRI brain image.

variable for class assignment of voxel i, let y; be the random variable for an image feature
(e.g., intensities) at voxel i, and let wy represent the class k, k =1,..., K.

2.7.2.1 Maximum Likelihood (ML) and Expectation Maximization (EM)
Maximum likelihood methods assume that the voxel intensities are independent samples
from a mixture of probability distributions of classes. For a Gaussian mixture model, the set
of class parameters are

0 = {0k 16 = (4, 0%, P(ay)),k =1,..., K}, (26)
where g is the mean, oy is the standard deviation and P(«x) is the prior for class k.
The maximum likelihood estimation problem is, given some observed data y, find the &that
makes the data most likely, that is

0" =argmaxP(Y =y |0). 27)
0
The likelihood function is given by
N N K
LO)=p(y10)=I1p(y;|0)= kalp(yi | wy, Ok )p(wy.) (28)
i i=1k=

Since y is the observed data and is fixed, the likelihood function is viewed as a function of 6.
When estimating the mixture model parameters, a good method is the EM algorithm
discussed by Dempster et al. (1977). The algorithm is an iterative procedure:

Algorithm: EM algorithm for maximum likelihood estimation of Gaussian mixture
model

1. Initial @, p(y;|wy,0;)and p(wy), k=1,.,K, are given from training data or
obtained from a histogram.

2. E-Step
Calculate p(wy |y;,0) based on Bayes’ rule:

p(yi | wie, O)p(wy)

K
le(yi |w;,0;)p(w))
1=

p(wy | y;,0) =

3. M-Step
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Let fi; = p(wy | y;,0) obtained in E-step . Calculate new P(wy),y,0yas
follows:

1(%' — 1) fii

M=z
M=z

2ZYifui
1fki/ﬂk ==y and oy = N
i Zlfki
i=

i=1

Il
Y

1

Mz

1
p(wy) "N,

i
Mz

4. Repeat E-Step and M-Step until 6 does not change.

2.7.2.2 Maximum a posteriori (MAP) and Markov Random Field (MRF)
Using Bayes’s rule, the a posteriori probability is given as

_pyl0p(x)
p(x1y) o)) (29)
Since y is observed and fixed, we get
peely) < p(y | 0)p(x). (29)

Maximizing the a posteriori (MAP) estimation is equivalent to maximizing p(y|x)p(x).
Again, if independence between voxels is assumed, the optimal segmentation is obtained by
. N
X =argmax leog(p(yi | x;)) +log(p(x)) - (30)
X 1=
The prior p(x) can be modeled by an undirected graphical model-Markov Random Field
(MRF) (Basag 1986; Geman and Geman 1984; Grieg et al. 1989). By the Hammersley-Clifford
theorem, the prior can be written as a product of clique potential functions as follows:
1

p(x) = El}wc(xc) : (31)

where ¢ are the maximum cliques in the graph, and 1, is strictly positive. Thus, it is usually
expressed as an exponential:

We(x) =exp(=E(x.)) . (32)
where E is called an energy function.

Considering the image domain based on the lattice structure with a four-connected (2D)
(Fig. 6) or six-connected (3D) neighborhood system, by definition, the maximum clique
consists of two neighboring voxels. Thus, we can define an energy function for the clique at
each voxel i in terms of functions ¢; and ¢:

E(x;)=ae(x;)+ Xi,X:).
(x;) = apy(x;) 'B]g\]fh( irX;) (33)
For simplicity, we set « to 0. Finally, we can rewrite Eq. (30) as
% N N
x' =argmax Slog(p(y; %))~ B T ¢a(xi,%;). (34)
X i=1 i=1jeN,

To achieve the piecewise continuity preferred in the segmentation, ¢; can be simply defined
as a delta function to penalize the discontinuity:
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Fig. 6. Sub-graph at node i in the 2D lattice image. Each pair of {j, j}, jeN;, is a maximum
clique.

1 ,if xi# X;
(/)2(xi,xj)=5(xi,xj)= o otherwise. (35)

The maximization is usually done by simulated annealing or the iterated conditional modes
(ICM) algorithm (Basag 1986). However, if the segmentation is a two-class problem, it can be
done using a graph min s-t cut algorithm (Greig et al. 1989). A graph with N+2 nodes is
constructed from an image grid. The additional two nodes s and t represent the two classes.
Each node is connected to s and t and its neighbors with edges. The cost of each edge is
assigned based on the first term and second term defined in Eq. (34). Fig. 7 shows the edge
cost assignment. The maximization can then be obtained by finding the min s-t cut; and the
nodes are partitioned into two groups, with one group remaining connected s representing a
class and the other group remaining connected to ¢ representing the other class. Kolmogorov
and Zabih (2004) studied the energy functions that can be minimized using a graph cut.

3. Boundary-based methods

In this section, the survey focuses on deformable models that are widely used and studied in
medical image segmentation because of their contour connectivity.

Deformable models are curves or surfaces defined in an image domain that change their
shape under the influence of force. The forces are usually internal, from the curve or surface
itself, or external, from the image data. Boundary-based methods can be divided into two
groups, depending on how the curve and surface are defined: the parametric (explicit)
deformable model, which is also called active contour; and the non-parametric (implicit)
deformable model, which is also called level set or geometric active contour.

3.1 Parametric deformable model (active contour)

Active contours, also known as “snakes” (Kass et al. 1988), are parametric curves
represented by c(s) =(x(s), y(s)), 0 < s <1, in the 2D image domain (for simplicity). The model
is active because it always minimizes the following energy function as the shape of the

contour changes
E(c)= 1IEm(C(S)) + A (c(s))ds - (36)
0
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Fig. 7. Edge cost assignment for the graph cut based segmentation. Finding the minimum
cost of its s-t cut is equivalent to maximizing the objective function in Eq. (34).

Here, E;, is the internal energy due to the bending of the contour, and E. is the external
energy from the image data and external constraints. 4 is a weighted constant. E;, can be
written:

En=(a@le @) + sl o )/2. ©7)

The internal energy is meant to enforce the smoothness of the curve and is composed of a
first-order term c' controlled by o(s) and a second-order term c" controlled by f(s). The
second-order term causes the snake to act like a thin-plate. Setting a point to zero allows the
snake to build up a corner around the point. In practice, (s) and f(s) are often chosen to be
constants. The external energy can be the image force that attracts the contour toward some
image features, like edges, as defined below:

Ee, =—|Vf]. (38)
To reduce the noise artifacts and extend the range of the image force, we can use edges on
an image smoothed with a Gaussian kernel:
Eex = _|V(GO' * f} : (39)
The problem of finding a curve c that minimizes Eq. (36) is known as the calculus of
variation problem. The curve must satisfy the following Euler-Lagrange equation:
aC”(S)+,BC””(S)_ﬂd§J=0- (40)
c
One much discussed point about snakes is their inability to find the boundary when the
initial contour is placed too far away from the actual boundary location. One solution is
increasing oin Eq. (39) to allow the snake to come to equilibrium from a longer range at
coarse scale and then slowly reducing oto allow tracking of the boundary at a finer scale.

Another solution proposed by Xu and Prince (1997) is a gradient vector field (GVF), which is

a diffusion of image edge map. Let e be the edge map of image f. The GVF v=(u, v) is the
vector field that minimizes the following energy function:

E=[[u@? +u? +u® +u,2)+|Vel*|v—Ve|* dxdy (41)
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Fig. 8. An edge map (left) and its gradient vector field (right). Gradient vector field basically
is the diffusion of the edge map. This allows the contour points to be pulled to the edge from
longer distance.

Thus, even in the homogeneous regions of the image, the GVF has vectors that vary
smoothly and point toward edges. This diffused field replaces the -VE,, in Eq. (40) to guide
the positioning of the snake. Fig. 8 shows an example of an original map and its gradient
vector field.

The snake is always attracted to the strong edge in the above external image forces.
However, this may not be good behavior for medical image segmentation. For example, the
active contour for the lower contrast boundary may be attracted to the nearby higher
contrast structures (Fig. 9). To solve this problem, Fenster and Kender (2001) used a
statistical image energy function. The statistical term measures the distance between the
distributions of the intensities and gradients along the contour sector’s normal direction and
the distributions from training data. Let the two image features defined in this method be

fe=f(c(s)
Vi =t (s)- VF(c(s)-
Assume that the distributions of the two image features are normal: N(z4, o1) and N(o, 02).

Here i and o are given and obtained from the training contours. Then, the external energy
of the active contour is defined as

(42)

(fc_ful)z +(Vfcl _’UZ)Z
2 o 2
2

E, = ds. (43)

o1

c

3.2 Non-parametric deformable model (level set, geometric active contour)

The parametric deformable model has difficulty handling the change in topology of the
unknown object to be segmented. Non-parametric deformable models are based on curve
convolution theory and level set methods (Osher and Sethian 1988, Sethian 1999.) The curve
is represented implicitly as a level set function with the extra dimension of time. The
evolution of curve and surface is independent of parameterization and, therefore, the
topological changes can be handled automatically.

Given a level set function with the moving curve u as its zero level set at any time ¢, we have

$u(t), 1) = 0. (44)
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Fig. 9. Active contour to segment a phantom's spine is attracted by the stronger edges of the
surrounding bones.

Using the chain rule, we have
0¢ ou
—~ +Vo-—=0. 45
ot ¢ ot )
In contour evolution theory, the evolution of the contour along its normal direction can be
characterized by the following equation:
ou
—n=F (46)
ot
where 7 is an inward unit normal and F is a speed function that determines the speed of the
moving curve. Assuming that ¢ < 0 inside the zero level set curve and ¢ > 0 outside, the
inward unit normal to the level set curve is given by

ne-Y9

V4]

With Eq. (45) and Eq. (46), Eq. (47) can be converted into the following final curve evolution
equation:

(47)

99 _
=V (47)

The two most common and most-studied deformations in curve evolution theory are
curvature deformation and constant deformation. Their respective speed functions are given

by:

F = &k, where ¢ is a positive constant and k is the curvature , and (48)

F =V,, where V, is a constant . 49)

The curvature k at zero level set is given by
V _ bal] ~208, 00+ byt
= 75 .
Vi s

In the application of image segmentation, most non-parametric deformable model methods
allow the curve evolution equation to be modified in two ways: changing the speed function
F and adding additional constraints. A good survey of these methods is provided by Suri et
al. (2002). Some methods that include regional terms will be reviewed in the next section.

k=V

(50)
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Caselles et al. (1993) and Malladi et al. (1995) independently proposed a geometric active-
contour model based on the following curve evolution equation:
0
0 )+ Vo)Vl 51)
Here c(x) is
c(x) = L r .
1+[V(Gy (1) * f()
c(x) can be viewed as a stopping force based on the edge image feature. This multiplicative
term slows down the moving curve when the curve is near the boundary. A problem with
this model is that if the boundary has gaps or is blurry the curve passes the boundary and
will not be pulled back to the correct boundary. Caselles et al. (1997) and Yezzi et al. (1997)
add an additional term in the equation that allows the curve to be pulled back:

% — c(x)(k+ Vo)|Ve|+ Ve V4. (53)

(52)

Note that Vc = - | VG, * f| behaves like the external force of active contour model in Eq. (39).
It attracts the curve to the boundary and is projected onto the normal direction of the
contour propagation front so that the curve can be pulled back if it passes the boundary. Fig.
10 illustrates this idea.

3.3 Summary for boundary based methods

The advantage of boundary based methods, in particular, the contour evolution methods, is
the piece-wise continuity. Active contour methods are quite sensitive to the initial
conditions and cannot handle changes in contour topology. Level set methods, on the other
hand, handle the topology problem naturally through the implicit zero level set function.
They, however, are more computationally expensive due to the iterative optimization
methods for solving complex PDE. With the increasing energy or force terms introduced in
these methods, users need to specify the parameters used in these terms that are not easily
understandable. This makes the algorithms unintuitive to users in clinical practice.

4. Hybrid methods

Hybrid methods use both boundary and regional information for image segmentation.
Many of them are the deformable models discussed in previous sections with extensions
that include regional information level set methods with regional forces (4.1). Recently
developed methods view image segmentation as a graph partition problem that minimizes
an energy function (4.2) and is coupled with a purely statistical framework (4.3).

4.1 Level set methods with regional forces

These algorithms modify the propagation speed V) in the original level set segmentation to
include a regional force. An elegant example is provided by Baillard et al. (2000). In this
approach, probability density functions inside and outside the structure are responsible for
creating a pull/push force on the propagating front.
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Vc

A boundary x
Fig. 10. Pull back force. The arrows show the gradient of c in Eq (53).

Let g(x) € {in, out} be the two classes of regions, let pi.(y) be the probability density function
of gray-level y to be estimated inside the curve, and po.«(y) be the probability density
function outside the curve. The bi-directional propagation force is estimated as

VO :Sign{apin(y)_(l_a)pout(y)} . (54)
Here, sign(z) = 1if z > 0, otherwise sign(z) = -1 . This determines the moving direction of a

voxel on the propagation front based on the probability that it belongs to the outside or the
inside region. The stopping force c(x) in Eq. (51) is also modified to be

c(x)=t(Pr(x| f,8)), (55)

where,
| 1-4p® ifp<05
Hp) = {4(1 -p)® otherwise’ and =
(A-a)pin(f(x)) ,if g(x) =out
b (x| f.) | o () + (L= @)piy () 7)

apout(f(x))
oyt (f(x)) + (1= @)pin(f(x))

,if g(x)=in '

Pr is called the transitional probability. This stopping term can be understood in the
following way: if x on the propagation front is outside the curve and the transitional
probability shows that it is likely inside the region, then the curve is crossing the boundary.
Therefore, the evolution speed will slow down at x. Note that the parameters of probability
density functions are estimated adaptively by stochastic-EM (SEM) without the need for
training data. The method has shown impressive results for brain image segmentation.

4.2 Graph cut methods that minimize an energy function with both regional and
boundary terms

Motivated by Greig’'s MAP-MRF formulation (1989) of an energy function with regional
information and an MRF-shaped smoothness prior, Boykov and Jolly (2001) replace the
smoothness term ¢, in Eq. (34) with a boundary term:

N N
E=-Ylog(p(y; |x:))+ AL T Byd(x;,x)), (58)
i=1 i=1jeN;
where Bj; is
|yi —]/j|2 1 (59)
Bjj = exp(- ) -
20 dist(i, j)
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Fig. 11. Graphical model of Conditional Random Fields. Each tuple (v, x;, x)) is a maximum
clique.

This boundary term encourages strong edges of the target region, that is, if the contrast of
intensity between neighboring voxel i and j is high, they are more likely to be assigned to
two different classes.

This energy function can be minimized by graph min-s-t cut as well for target object and
background two-class segmentation as described in section 2.7.2.2. The method uses an
interactive tool to specify the hard constraints via paintbrushes that identify the voxels
inside the target region and those outside. Colorization utilizes a similar idea (Levin and
Lischinski 2004). For the target or background “seed” voxels specified by the user, a high
cost is assigned to the edges connecting those nodes to the class node s or t so that these
nodes cannot be partitioned to the other class.

Freedman and Zhang (2005) adopted a similar approach that includes a regional term
derived from the probabilistic atlas as a shape prior. The position of the voxel is included as
the image feature and is used to estimate the probability of where the voxel resides as the
target or background region from the probabilistic atlas in the training data.

4.3 Condition Random Fields

The major drawback of using MRF as a model for labeling voxels (unknown data) is the
difficulty of using intensity information (observed data) around the voxel’s neighbors. To
make use of the information, independence assumptions about the observation samples
must be modeled. The problem is addressed by Lafferty et al. (2001) with the formation of a
formal extension of MRF called Conditional Random Field (CRF).

CRF is an MREF, but globally conditioned by the observed image y. This is accomplished by
including y in the undirected graphical model and connecting y to all the unknown random
variables of x in the random field (Fig. 11). Thus, each tuple of {(y, x;, xj)|i # j, jeNj} is a
maximum clique. Similar to Eq. (31) and (32) in MREF, using the Hammersley-Clifford
theorem, we have

P 1Y) = Tye(xery) (60)

and
we(xe,y) =exp(—E(xc,y)), (61)

The maximum a posterior (MAP) estimation of Eq. (60) is equivalent to minimizing the
energy function
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Fig. 12. Synthetic image for comparison of Boykov's method and Hu's method. The target
is the inner rectangle. The second image shows that Boykov's method is meant to attract
high contrast boundaries and thus mis-segment the regions (the two small rectangles.)
Additional brush strokes are needed to remove the mis-segmented regions (the third
image.) Hu's method correctly segments the target region once the boundary statistics are
trained (the fourth image.)

E(x,y)= %E(xc,y) / (62)

Similar to Eq. (33), the energy function can then be defined over the clique with respect to
voxel i as
N N
E(x,y)=Zo(xi, )+ BE X ¢a(xi,X},Y), (63)
i=1 i=1jeN;
With this formation, also motivated by Greig et al. and Boykov et al., Hu et al. (2008) define
the following potential functions using the framework of CRF:

o1(xi,y) =-Inp(y; | x;)
P2 (xi,xj,y)=—Inp(y;,y;|x; #x;)
Note that ¢; in the above equation is identical to the regional term in Grieg's and Boykov’s
energy function, whereas ¢, can be viewed as a boundary term that describes the probability

that neighboring voxels i and j belong to different regions. Those probabilities can be
estimated from training data locally during the segmentation process.

(64)

With Eq. (64), CRFs become a purely statistical framework for image segmentation. This
addresses the problem of Boykov’s method using contrast as the boundary term that is
sensitive to noise and tends to segment the target object boundary along a high contrast
edge (Fig. 12.) This heuristic boundary term is usually not suitable for medical applications.

5. Atlas-based methods

Deformable atlases are adaptable templates that reflect the anatomy of new subjects and
thus allow automated segmentation of the structures in new scans. Model-driven methods
(e.g., the active shape model) build explicitly geometric models that are parameterized.
Segmentation is achieved by adjusting the poses and parameters for controlled deformation
in the target image. Intensity driven methods, on the other hand, involve image registration
techniques to compute an anatomically correct coordinate transformation between a target
image and an already segmented image. We will discuss these two approaches in general in
the following two sections.
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5.1 Atlas as average shape: active shape model/active appearance model

The active shape model (Cootes and Taylor 1992) constructs a shape prior model to enhance
the performance of deformable models. By aligning training shapes in the same model space
and using principal component analysis (PCA), any shape Y (set of landmark points) in the
training set can be approximated by

Y~Y+PbT, (65)

where P is the matrix of the first m eigenvectors and b=(by, b, ..., by) is the weighting vector -

the shape parameters. Initially, the mean shape Y is used as the initial curve in the new
scan. The deformation is computed using the standard deformable models described in
Section 3. At each iteration, the displacement from the curve in the previous iteration is used
to calculate the corresponding pose (rotation, translation, and scale), as well as the shape
parameters, to obtain a new curve to be deformed in the next iteration. In this way, only
deformations that are similar to the shapes in the training set are allowed. The iterations
stop when the changes of poses and shape parameters are not significant.

The active appearance model (Cootes at al. 1998) extends this paradigm to incorporate the
image intensity prior along with the shape prior, i.e.,

~ T
g=g+Pb." . (66)

To obtain these intensity parameters, image registration between the training data is needed.
Further, PCA is applied to the combined shape and intensity parameters.

Instead of using a set of landmark points on the surface of the target object as the
representation of the shape, Pizer et al. (2003) used a medial axis shape representation. The
shape is represented by a set of “atoms” on the medial axis (sheet in 3D), with arms
extended to control the surface formation. Instead of calculating the pose and parameters of
the shape as in the active shape model, the pose and parameters of the atoms are calculated.
The major advantage of this shape representation is scalability of the surface mesh. Thus,
multi-scale deformation is possible.

5.2 Atlas as individual image

In this approach, an atlas is a spatial map of anatomical structures, which is usually derived
from a reference image by manual segmentation. The automatic segmentation is generated
by registering an image to an atlas, that is, by computing a correct coordinate mapping
between the two. Then the voxels can be labeled according to the transformation mapping.

An intensity similarity measure is chosen, such as cross correlation or the more robust
mutual information (MI) (Maes et al. 1997), for the registration. The displacement field is
obtained by minimizing the differences between the two images based on the similarity
measure with some smoothness constraints on the displacement field. The smoothness
constraints can be determined using a Gaussian or an elastic model, such as thin-plate and
viscous-fluid. Image registration itself is a subject of active research. Pluim and Fitzpatrick
(2003) give a review of image registration methods.
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Fig. 13. (a) Atlas-based segmentation using a single atlas. Each voxel is displaced into the
atlas based on the displacement field u from the registration and labeled accordingly. (b)
Using multiple atlases, one registration is done for each atlas. The best registration is used to
label the voxel.

The most straightforward strategy for selection of an atlas is to use a segmented image from
a single (model) individual (Fig. 13(a)). The strategy could be random or based on such
heuristic criteria such as image quality or normality of the subject. One can also use multiple
individual atlases to register the target image one by one and choose the best atlas for
segmentation (Fig. 13 (b)). Usually, the accessible number is the final value of the
registration criterion or image similarity measure.

In the pattern recognition community, multiple independent classifiers can be combined
and together consistently achieve classification accuracy. Rohlfing and Maurer (2004) use
the same concept to combine the results from multiple atlases to obtain the final
segmentation. The coordinate transformation of registration is continuous and does not map
grid points of the image to grid points in the atlas. Therefore, interpolation is required. The
simplest interpolation is nearest-neighbor interpolation. A more sophisticated technique
used to label data is partial volume (PV) interpolation, originally proposed by Meas et al. to
generate histograms used for MI. The voxel is labeled based on a frequency histogram of
labels from multiple atlases displaced within the voxel's volume. Let H, be the frequency
histogram for the labels of voxel x on the target image, for a registration u; the histogram is
updated as follows

H., (L (x+u(x)))=H, (L (x+u(x)))+wy ,k=1,2,3,4 for 2D

4 67
w=d/ 2, ©7
i=
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where Ly is the label of the four (2D) voxels forming the cell that contains x+u(x), and dy is
the distance from x+u(x) to these voxels. The best label for a voxel is the label that has
highest frequency.

6. Discussion

No single method can best handle all the anatomic structures in medical image
segmentation. Typically, methods discussed in this survey are modified to segment a
particular structure; or a method can take advantage of other methods to serve an
intermediate purpose.

Threshold-based methods are the fastest, simplest, and easiest to implement, so they are still
indispensable in modern commercial software. They are useful for segmenting structures
that have separated intensity distribution from the other structures. Such structures are the
outer body, lung, and bone. The drawback of thresholding is that it does not guarantee
piecewise continuity and is sensitive to the artifacts mentioned in section 1. However, it can
be used as a starting point for other methods, such as seed points for region growing.

Region-growing methods are also fast if the mean intensity is used in the region
homogeneity predicate, and therefore an interactive tool can be implemented. Region-
growing methods also guarantee piecewise continuity, work quite well in finding high-
contrast boundaries, and are less sensitive to noise then thresholding. The major problem is
leakage if the boundary is blurred, and they are sensitive to start point position.

Cluster-based methods are easy to implement and perform well with a spatial constraint,
especially for MR brain image segmentation. They may not work on CT images, since the
intensity distributions of many organs overlap (Table 1.) Just like thresholding, clustering-
based methods could also be used as a starting point for other techniques, such as
generating an initial contour for a deformable model.

Deformable model-based methods are very popular in medical imaging. These methods also
guarantee piecewise continuity, and with level set methods, the topology changes are
handled naturally. Deformable model-based methods incorporating statistical regional
information show promising results. However, many of them require tuning the parameters;
and there is a trade-off between convergence speed and stability under the iterative
optimization scheme.

Graph cut-based methods that minimize an energy function are fast and guarantee that one
will find a global optimum for two-class segmentation. The results show the advantages (Hu
et al. 2008) of using a probabilistic framework, such as conditional random fields (CRFs),
with both statistical regional and boundary potentials. Unfortunately, multiple region
segmentation using graph cut (K-cut) is NP hard (recently, Grady (2006) used a random
walker for multiple region segmentation based on graph cut theory). However, multiple
region segmentation can be done recursively by the two-class segmentation. This framework
can also incorporate other methods, such as an atlas for additional regional properties.
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Model-driven, atlas-based methods are not prone to noise and leakage because of the shape
constraints from the training set. The major drawbacks are that the intensive labor for
building the training set and matching the model to the image can be time-consuming,
especially for complex structures that require many shape and intensity parameters to be
calculated. The image registration-based atlas method is straightforward. However, it is
based on image similarity and can be adversely affected when structures, such as air
cavities, surgical implants, or surgically removed structures, differ between target and study
images. The best application of these methods is intra-patient segmentation, such as in 4D
CT images. One can segment the anatomic structures in the image set at one respiration
phase, then propagate the segmentations by registration to the images at other phases
(Pevsner et al. 2006). This procedure is extremely useful for studying organ or tumor motion
and deformation during the treatment session.

In conclusion, the fundamental aspects of medical images -- the modalities of image
acquisition, complexity of anatomical structures, the non-rigid nature of organ motion and
deformation -- and increasing information from advanced modern imaging techniques make
the segmentation difficult and challenging. It may not be possible to delineate certain
structures without some degree of anatomical knowledge by a human, let alone with a
computer. Hybrid methods, with both regional and boundary features, that utilize statistical
information and are guided by expert users should shape the future of automatic medical
image segmentation.
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