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Improving the efficiency of Runge-Kutta
reintegration by means of the RKGL algorithm

Justin S. C. Prentice
Department of Applied Mathematics, University of Johannesburg
Johannesburg, Republic of South Africa

1. Introduction

Initial-value problems (IVPs) of the form

Do few)  wloo)=vo )

often arise in the simulation of physical systems, particularly if the system is time-
dependent. The numerical solution of these problems is often achieved using an explicit
Runge-Kutta (RK) method (Shampine, 1994; Butcher, 2000; Hairer et al., 2000), which
typically involves a large number of evaluations of the function f(x,y). This is the most
significant factor that determines the efficiency, or lack thereof, of the RK method. If it is
necessary to control the global error in the numerical solution, it may be necessary to use a
reintegration algorithm, which, as will be shown, would require at least three applications of
RK to the problem. Thus, it is easy to see that a reintegration process could be inefficient if a
large number of evaluations of f(x,y) is required. We note here that the more accurate an RK
method is, so the greater the number of evaluations of f(x,y) that is required. Demanding
very strict global tolerance via reintegration could be particularly expensive in terms of
computational effort. For this reason, local error control (to be discussed later) is preferred
over global error control and, consequently, very little work has been done regarding
reintegration. Indeed, Shampine has recently commented that such schemes “...are
generally thought to be too expensive...for production codes” (Shampine, 2005). To the best
of our knowledge, no attempt has been made to improve the efficiency of RK methods with
regard to reintegration, which is the topic of this paper.

We have developed a numerical method for nonstiff IVPs, designated RKGL, which is a
modification of a standard explicit RK method. The RKGL method has been designed to
reduce the number of function evaluations, relative to the underlying RK method. The
method also has an enhanced global order, relative to the RK method, which is a very
powerful mechanism for improving efficiency in the context of reintegration.

In this article we will show (a) how RKGL can be used to enhance the performance of the
reintegration algorithm, in comparison with RK methods, and (b) how RKGL can achieve
better accuracy than RK, for equal computational effort. Additionally, we will introduce a
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reintegration algorithm that we believe is original in nature. We must stress, however, that
our emphasis is on the relative efficiencies of the two methods, and the reintegration
algorithm used here is intended primarily as a vehicle to facilitate such efficiency analysis.

2. Scope and Structure

The objective of this article is to demonstrate the improvement in efficiency and accuracy of
the RKGL algorithm relative to the underlying RK method, and this will be achieved via
theoretical arguments and numerical examples. However, it is necessary that we also
describe the RKGL algorithm in some detail, and indicate a few important properties of the
algorithm. We will also describe the general idea of reintegration as a mechanism for global
error control. Some mathematical detail is inevitable, but in this regard we will be as
economical as possible. These discussions will be presented entirely in the next section, with
the sections thereafter devoted to efficiency analysis and numerical work.

3. Relevant Concepts

In this section, we describe concepts relevant to the current paper, and introduce
appropriate terminology and notation.

3.1 Runge-Kutta Methods

To solve an IVP of the form in (1) on an interval [4,b], using an explicit RK method, requires
that a set of discrete nodes {x;; i = 0,1,...,N}, with xo = a and xy = b, be defined on [a,b]. The
numerical solution y;+1 at the node x;+1 is obtained via the explicit RK method by

Yin zyi+hizpj jEyi+hiF(xiyi)' (2)

=1
where

kyq :f(xi/yi)
ko = f(xi +12hy; +hia2,lk1)

k. ;f(xi +y.hi Yy +h (asllk1 +ag ky +...+ag gk ))

In these equations, the function F(x,y) has been implicitly defined, and the various
coefficients {@, 3,7} are specific to the particular RK method being used. The parameter /; is

the spacing between x; and x;+1, and is known as the stepsize. We label the stepsize with a
subscript since, in general, it need not have uniform magnitude. The parameter s indicates
the number of stages of the method; each stage requires an evaluation of f(x,y). An RK
method is known as a one-step method since the solution y;+1 is computed using information
at the previous node only. We note here that the RK method is termed explicit since y;+1 does
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not appear on the right-hand side of (2); if it does, the method is termed implicit. In the
remainder of this article, the abbreviation RK indicates an explicit method.

RK methods are known to be consistent, convergent and stable with respect to roundoff
error (zero-stable). Moreover, an RK method of order r, denoted RKr, has global error

A=y —y(x)=00"), (4)

where y(x;) is the exact value at x;, and & is the average stepsize on [4,b]. It is always true that
s 21, so that greater accuracy in an RK method implies greater computational effort.

There does exist a class of RK methods, known as embedded methods, that offer greater
efficiency if a lower-order and higher-order method need to be used in tandem (Butcher,
2003). Such scenarios arise typically in error control algorithms, as will be described later.
From (2) we see that an RK method requires a linear combination of its stages; an embedded
method has the property that two different linear combinations of the same stages yield two
methods of different order. We usually speak of an RK(r,q) pair, which is an embedded
method containing both RKr and RKg.

3.2 Gauss-Legendre Quadrature
Gauss-Legendre (GL) quadrature is an algorithm for numerically evaluating the integral of a
continuous function (Burden & Faires, 2001). Indeed, we have

v

[Fley(oax zhécjf(x,-,y(xj ) 6)

u

for m-point GL quadrature (denoted GLm). Here, the x; are m nodes on [u,v] (given by the
roots of the mth degree Legendre polynomial on [-1,1] and then translated to [u,v]); I is the
average separation of these nodes; and the C; are appropriate weights. GL quadrature is open
quadrature in the sense that the quadrature nodes are interior to the interval of integration
[u,0]. In (5), we write y(x;), although in the context of the RKGL algorithm we actually use y;.
The error associated with GLm quadrature is O(h2m+1).

3.3 The RKrGLm Algorithm

The RKrGLm algorithm (Prentice, 2008; Prentice, 2009) is best described with reference to
Figure 1. The interval of integration [a,b] is subdivided into N’ subintervals, denoted H;
where j =1, 2,..., N". On each subinterval we define m nodes suitable for GLm quadrature.
The numerical solution at these nodes (indicated RK in the figure) is obtained using RK; the
solution at the endpoint of each subinterval H; is determined using GLm. Defining p = m+1,
we have

Yin =Y +IF(xy:), (6)

where i = (j-1)p, (j-1)p+1,..., (—1)p+m—1 at the RK nodes, and
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(J=Dp+m
YVip =Ygap+h 2Cif i) )
i=(j-1)p+1
at the GL nodes.
RK GL RK GL
— |
a7x0 M Ym  Xp  Xp+1 Yptm  Xap b
\ \ / \\ V /
H H,

Fig. 1. Schematic depiction of the RKrGLm algorithm.

We have shown that RKrGLm is consistent, convergent and zero-stable. It is clear that
RKrGLm does not require any evaluations of f(x,y) at each GL node {x,,x2,, etc.}, which is a
clear reduction in computational effort. Furthermore, the global error in RKrGLm has the
form

A, = Al + B2 = Ofpmineiam) ) ®)

so that if we choose r and m such that 2m > r+1, the global error is of order h™!  which is one
order better than the underlying RKr method.

In Figure 2 we show, for example, the global error for RK5 and RK5GL3 applied to a test
problem (which will be described later). The growth of the RK error is evident, whereas the
RKGL error is quenched (at each GL node; see Figure 1), thus slowing its rate of growth. The
technicalities of this error quenching need not concern us here; it is due to the factor /1 in (7).
Rather, this example shows how RKGL improves the global accuracy of its underlying RK
method. Furthermore, since there is no need to evaluate f(x,y) at each GL node, the RK5GL3
calculation in this example required less computational effort than RK5. Indeed, the relative
computational effort for this example is 3/4, a saving of some 25%, and furthermore, the
maximum global error is about five times smaller.

3.4 Local Error Control (LEC)

We must discuss the concept of local error control (Hairer et al., 2000), since it plays a role in
the reintegration process.

For an RKr method, we define the local error at x;+1 by

€iy1 = [V(xi)+hiF(xi/y(xi))]_y(xi+1): O(hz'r+1)- )

Note that the local error is one order higher than the global error. Note also that the exact
value y(x;) is used in the RK method in the square brackets. As such, the local error is the RK
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global error

Fig. 2. Global errors for RK5 and RK5GL3. The greater accuracy of RK5GL3 is clear.

error made on the subinterval [x;x;+1], assuming that the exact solution is known at x;. The
local error is controlled by adjusting the stepsize h;. If we assume

€1 =Liah™, (10)
where L;+ is the local error coefficient, then control of the local error clearly requires a good
estimate of Lj+1.

We will consider a type of error estimation that requires the use of two RK methods of
differing order, such as a RK(r,q) pair. This will be described in section 3.5.2.

3.5 Reintegration
Reintegration relies on the fact that as the stepsize tends to zero, so the global error also
tends to zero. A numerical method that exhibits this property is said to be convergent. Since
RK and RKGL are known to be convergent, they are suitable for the application of a
reintegration algorithm.
A reintegration algorithm typically consists of three phases:

1. Determining a node distribution in a systematic way.

2. Error estimation at these nodes.

3. Reintegration using a refined node distribution.
Phase 1 involves LEC and will be discussed at the end of this section. For now, we assume
that a numerical solution has been obtained using some uniform stepsize - which we term
the initial stepsize. Assume also that a good estimate of the global error at each node has been

made. If a tolerance 0 is imposed, then a new stepsize h" is determined from

A
h = 0.9(%] , (11)

max|Gi

where G; is the constant of proportionality in (4), the so-called global error coefficient (this
coefficient is dependent on x, but not on /). The factor 0.9 is a “safety factor’ to cater for the
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possibility of underestimating the magnitude of G;. The RK method is then reapplied using
this new stepsize. Clearly, the need to reapply the method is the source of the computational
effort that we hope to reduce using RKGL.

However, the control mechanism described here seeks to control the absolute error, whereas
it is the relative error

C—ylx

yi—yx) )
Yi

that we should rather attempt to control, since finite-precision computing devices

distinguish between numerical values in a relative sense only. Hence, we have

lvi—vlx;) |G,

|%'| Yi

h' < max[

G.
— |h". 13
y,) (13)

Now, if we impose a tolerance ¢ on the relative error, we have the condition

lv: —y(x;)

|y‘| 353|]/i—]/(xiX35|]/i| (14)

which becomes problematic when y; is very close to zero (because the stepsize that would
then be required would be intolerably small). To counter this, we replace the term on the

right in (14) by max{04,0r |yi| } = where 64 is a so-called absolute tolerance and 0r is a relative

tolerance, and these tolerances are not necessarily the same. Hence, the tolerance is 64 when

Or |yi| < 0a, and 6r |yi| otherwise. The expression forh  now becomes

Og

n :0.9(—J % where GM =max |Gi|

(%
max( 6, , yig

This ensures that G; is never divided by a number smaller than 6, /6 , and that, under this

GM

condition, the denominator is maximized - which, of course, yields the smallest upper

bound forh" . We often use a uniform tolerance 8, as in 6 = 64 = x.

3.5.1 Global Error Estimation

It is clear that the estimate of the global error (Phase 2) is a very important part of the
reintegration algorithm. The ability to make a reliable estimate of this quantity is crucial to
the effectiveness of the algorithm. The favoured approach is to use a method of higher order
to obtain a solution that is then held to be more accurate than that obtained with the lower
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order method. If yi(r) and yi(7) denote lower-order (RKr) and higher-order (RKg) solutions,
respectively, at x;, then we have

=G, ( ) Gi(qhn? (16)

Here, y(x;) is the exact solution, G;j(r) and G;(q) indicate global error coefficients for the lower-
and higher-order methods, respectively, and q is the order of the higher-order method
(obviously, g > r). The approximation in (16) holds if / is sufficiently small. In other words, if
methods of differing order are used to obtain numerical solutions at each node on the
interval of integration, then (16) can be used to estimate the global error coefficient in the

lower-order solution, which is then used in (11) or (15) to determine/ . This method of
reintegration - using two methods of differing order - will form the basis of the
reintegration algorithm, designated LHR, that we will use in this paper. The LHR algorithm
is based on the reintegration process described in section 3.5, and from this point onwards
we will refer generically to that reintegration process as LHR, culminating in a complete
description of LHR in section 5.3.

Until now, we have assumed that the initial stepsize h is known, and we have described the
reintegration algorithm accordingly. But how does one choose a suitable initial stepsize h? If
h is too large the asymptotic expressions for the error, as in (4), become unreliable since
higher-order terms in the error expansion make significant contributions; if & is too small,
we might use many more nodes than is necessary, which is inefficient, and if 1 is extremely
small, problems in the RK method itself, due to roundoff, will persist.

A possible solution to this problem involves the use of LEC, before estimating the global
error. This approach allows an appropriate stepsize to be determined systematically. Before
discussing this, we must describe error estimation in the local error control procedure.

3.5.2 Local Error Estimation via Local Extrapolation
Local error estimation can be achieved by using a higher-order method, say RKg, in similar
manner to that described previously. Indeed, we have

%+1
h = 0_9{MJ (17)

1
i+1

into which relative LEC has been incorporated, and where L;+; is estimated from

Yin (”)_%41 (‘7) z+1( )h A Liq (q)h?”

LW Y

We have retained the subscript on the stepsize to emphasize that, due to the nature of this
type of LEC, the stepsize can vary from subinterval to subinterval - it does not need to be
constant, as we have assumed previously. We point out that if the local error estimate is less
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than or equal to the tolerance, then no stepsize adjustment is necessary, and we proceed to
the next subinterval. Nevertheless, it is certainly possible to determine a new stepsize, even
if the error estimate satisfies the tolerance, and a new solution using this stepsize can be
determined. We refer to this procedure as forced LEC (FLEC). In this case, the resultant
stepsizes on [a,b] are all consistent with the desired tolerance; none of them are any smaller
than is necessary.

A particularly important feature of this algorithm concerns the propagation of the higher-
order solution. Since the algorithm relies on the exact solution being known at x;, as in (9),
we must always use the more accurate RKg solution at x; as input for both the RKr and RKg
methods. Hence, the RKr and RKg solutions at xi+1 are both generated using yi(q). This
feature is known as local extrapolation (LeVeque, 2007).

3.5.3 Starting stepsize
To implement either the LEC or FLEC algorithm, it is necessary to estimate a starting stepsize
ho. A practical way to do this is to assume L; =1, so that

hO = (6loc )1/r+1 (19)

if 0joc is the desired accuracy in the local error.

3.5.4 Initial Stepsize Estimation

The idea here is to use FLEC with a moderate tolerance to obtain a node distribution, and
then to compute an average stepsize that can be used in Phase 2 of the reintegration
algorithm. This is the so-called initial stepsize referred to previously, not to be confused
with the starting stepsize described in the previous section. We propose that, if ultimately a

global tolerance of § is required, then a local tolerance of 0, = V6 should be used (we are

assuming, of course, that 6 <1). Assume that this results in a non-uniform node distribution
{xo,x1,x2,...,xn}, which has an average stepsize h. We now assume that the solution has a
maximum global error of No,. so that an error coefficient may be determined from

G =No,,, / h" . This allows a new stepsize to be determined, as in (15), where we treat 0,,. as

a global tolerance, and this new stepsize is then used as the initial stepsize.

In this section, we have described the principles behind typical reintegration, with reference
to the RK method. In the next section, we study the efficiency of reintegration, including
RKGL-based reintegration.

4. Efficiency Analysis

Here, we will present a theoretical analysis of the relative efficiencies of the LHR
reintegration method discussed previously, for both RK and RKGL. We will attempt to
count both the number of evaluations of f(x,y), and the number of arithmetical operations
involved in each method. In the next section, we will present numerical work demonstrating
this efficiency analysis.

To facilitate our efficiency analysis, we define various symbols in Table 1.
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Symbol Meaning Symbol Meaning
D Length of interval of Ay Number of arithmetic operations
integration [a,b] in f(x,y)
Ark Global error using RKr Aq Number of arithmetic
operations, per node, using
RKrGLm
ArkcL | Global error using RKrGLm Az Number of arithmetic
operations, per node, using RKr
Nq Number of nodes on [a,b] for D, NiF; = total number of function
RKrGLm, excluding first evaluations on [4,b], using
node RKrGLm
N» Number of nodes on [a,b] for D, N, F, = total number of function
RKr, excluding first node evaluations on [a,b], using RKr
Fi Number of evaluations of ¥, NjA; = total number of
f(x,y), per node, using arithmetic operations on [a,b],
RKrGLm using RKrGLm
F> Number of evaluations of ¥, N>A; = total number of
f(x,y), per node, using RKr arithmetic operations on [a,b],
using RKr

Table 1. Definition of miscellaneous symbols to be used in the efficiency analysis.

Consider the first subinterval H; for RKrGLm (see Figure 1). There are m + 1 nodes on this
interval at which numerical solutions must be determined (it is not necessary to determine
Yo since this is the given initial value). RKr, with s stages, is applied to find solutions at m of
these nodes, and the GLm algorithm requires the evaluation of f(x,y) at the mth node itself.
This means that ms + 1 function evaluations are required by RKrGLm on H;. This holds for
all subsequent subintervals. Since there are m + 1 nodes on each subinterval (we exclude the
first node, since we regard it as being part of the previous subinterval), we have
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E - ms+1
Y om+1 (20)
Fz =S

where the expression for F> is due to the fact that RKr is an s-stage method. Note that F; < F»
for s > 1, and that F; = F; only when s = 1.

Referring to the RKr method in (2) and (3), we see that multiplication of f(x,y) by h is
performed s — 1 times; in the argument of f(x,y), multiplication by & occurs s — 1 times, and
addition of yh to x occurs s — 1 times; in the y-component of f(x,y) there are s(s — 1)/2
multiplications and an equal number of additions; and finally, in (2), there are s
multiplications and s additions. This all gives

Ay =s® +4s—2+5A . (21)
For RKrGLm on each subinterval H;, we use RKr m times and then we compute the solution

at the endpoint (see (5)) by means of one evaluation of f(x,y), m multiplications (by the
weights), m — 1 additions, one multiplication by / and one more addition. Hence,

2
m\s® +4s—-2+sA, |+2m+1+ A

m+1
22
mA, +2m+1+ A (22)
B m+1 '
Note that
P1 :QlAl (23)
Pz :QzAz
where
mA, +2m+1+ A,
(24)

S

= :Qz(s'Af): s? +4s-2+5A;

are method- and problem-dependent proportionality constants.

Since we are interested in comparing the efficiencies of the two methods, we must consider
the ratios of their respective arithmetical operations, function evaluations and global errors.
Hence, we define the quantities
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R, =1
@,
W

R,=—L

"=y (25)

The first of these is the ratio of the total number of function evaluations, and the second is
the ratio of the total number of arithmetical operations, over the whole interval [a,b]. As
such, these ratios measure the relative efficiency of the two methods. The third ratio is that
of the maximum global errors for the two methods. For Ry we have

r+1 r
RA=Gmlr=[Q6Jm 26)
Gy, G,
where
D D h N
hy=— hy=— O=—L=—"2
! N, ? N, h, N, (27)

We see that Ry must tend to zero as h tends to zero; this simply means that as Arkar is made
smaller (by reducing h;), so RKGL inevitably becomes more accurate than RK. In (26), the
coefficients G; and G> can be absolute error coefficients, as in (11), or relative error

coefficients, such as G} in (15).

To make a sensible comparison of the two methods, we require that the global error
(absolute or relative) of each satisfy some user-defined tolerance §, and then compute the
ratio Rr. If both methods satisfy the tolerance, we have ArxcL= Ark = 0, so that Ry = 1. Hence,

1r
R,=1=|8m] M Ny (28)
G2 hl NZ

Using ®; = N1Fy, ®; = NoF; and (27), we find

1r
&_Maiafql%w

N, E | KRG,

E G 1r 1 l/r2+r , (29)
=| = = = (ARKGL)l/r "

K\ G, G,

where we have used
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1/r2+r
r+ r 1 rar
Agkar =Gy RS (h1 )1/ = (G_] (ARKGL )1/ . (30)
1

So we have
Ry o (8)7. (31)

This is an important result. It shows that as we seek stricter tolerances, so Rr becomes
smaller, i.e. RKrGLm becomes ever more efficient than RKr. For example, if » = 4 and 0 =
10-5, then Ry « 0.56, and if 6 = 10710, then R o« 0.32.

We are now in a position to study the efficiency of the LHR method. Such efficiency will be
studied in terms of arithmetical operations; by virtue the linear relation (23), our analysis
holds for function evaluations as well.

4.1 Efficiency of the LHR Algorithm

We have described the essentials of the LHR algorithm with regard to RK; the
implementation using RKGL is similar. We use two methods, RKrGLm and RKgGLm, where
the latter has higher order (i.e. r < g, as before). Note that both methods use GLm
quadrature, meaning that they have a common node distribution. Hence, global error
coefficients can be determined at each node, and a new stepsize satisfying a tolerance 6 can
be found.

Assume that an initial average stepsize h; is used to find numerical solutions using RKrGLm
and RKgGLm (i.e. we are considering Phase 2 of LHR). We refer to an average stepsize since
the RKGL nodes are not uniformly spaced. Hence, we have

Wi =N Ay

32
W] =N, Af %2)

where the superscripts indicate RKrGLm or RKgGLm. A new stepsize gives a new node

distribution of N I nodes, where

« D
N = * /J
1=y (33)
so that
W =N, AT (34)

This is the number of arithmetic operations required by the reintegration phase of the LHR
algorithm (Phase 3). The total number of arithmetic operations, for Phases 2 and 3, in the
RKGL implementation of LHR is then
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Y=y W g (35)

Analogous quantities may be derived for the RKr and RKg implementation, using the same
initial stepsize h; (for RK this stepsize is uniform), giving

Y, =W, + @)+, (36)

It must be noted that the new stepsize 1, is not necessarily equal to /1, .

Now consider

WAL WAL W NA -
WA W AW, N ’

The first two of these ratios give the relative efficiencies (in terms of arithmetical operations)
for RKrGLm and RKr, and RKgGLm and RKg, as regards the error estimation phase of LHR
(Phase 2). The third ratio gives the relative efficiency of RKrGLm and RKr, as regards Phase
3 of LHR. Since RKGL requires fewer arithmetical operations per node than RK, we have

that the first two ratios are certainly never greater than one. The factor in the third ratio
leads, as in (29)—(31), to

IP; ‘l/r2+r
o (0 . 38
) )

All of this shows that the RKGL implementation of LHR must become more efficient than
the RK implementation, as stricter tolerances are imposed.
Additionally, it is possible to include a quality control mechanism in LHR. In such

mechanism, we use RKgGLm or RKg to obtain a numerical solution using stepsizes h;

or h, . This solution can then be used to check the error in the solution obtained with RKr or

RKrGLm. If this quality control reveals that the imposed tolerance has not been satisfied,
then a new stepsize can be determined and further reintegration can be done. Quality

control necessarily requires N;A] or N,A] additional arithmetical operations. Additional
reintegration, if required, may be regarded as a fourth phase of LHR, and will require more
than N;A] + N;JA? or N,A} + N,A] additional arithmetical operations.

4.2 Initial Stepsize
To implement FLEC using RKr and RKg requires A} +2A] arithmetical operations per

node. Using RKrGLm and RKqGLm requires A{ +2A{ operations per node. Hence, the

RKGL implementation is more efficient than the RK implementation. Of course, for the sake
of comparison, we have assumed, as previously, that the average stepsize for the two
methods is the same. This is not unreasonable, since both methods (RKr and RKrGLm) have
the same order (r + 1) in their local errors.
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A note with regard to RKGL local error control: consider the subinterval H;. We obtain
solutions at the nodes using RKrGLm and RKqGLm, with 1y as input. We estimate the error
at each node; effectively, this is an estimate of the global error on H;. We assume that these

errors are proportional to hj*', where I is the average stepsize on Hj, and then determine a

new stepsize ii; . The length of the new subinterval is (m+1)h; . RKgGLm is then used to

find solutions at the nodes on this new subinterval, and the solution so obtained at x, is used
as input for RKrGLm and RKgGLm on the next subinterval H». In a sense, then, we control
global error per subinterval, with local extrapolation at the endpoint of each subinterval,
exploiting the fact that the global order of RKrGLm is the same as the local order of RKr.

It is clear from the foregoing analysis that the three-phase reintegration algorithm will most
likely be more efficient when implemented using RKrGLm, than when using RKr. This is
due partly to the design of RKrGLm, through which fewer arithmetical operations per node
are required, and partly to the higher global order of RKrGLm. In the next section we will
demonstrate this superior efficiency.

4.3 Accuracy for Equal Effort
It is instructive to consider the accuracy of the two methods, assuming equal computational
effort. In such case we have R4 =1, and so

A
2

r+1

A r+1 1 1+1/r -
Arkar =|| =2 | | =] Gy |[(Ar)™
RKGL (Az J [Gz J 1 ( RK) (40)

which shows that the RKGL error is improved, relative to the RK error, by a factor of
(A )"

5. Numerical Examples
We will use the equations
L 1(1 - lj on [0,20] with y(0)=1

dx 4 20 (1)

d—y—y on [0,10] with y(0)=1

dx

to demonstrate the theoretical results obtained in the previous section. These have the
solutions
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20
1+19¢7/* (42)
y(x)=e*

y(x)

respectively. The first of these (which we call P1) is one of the test equations used by Hull et
al. (Hull et al, 1972), and is also the equation that we used to generate the plots in Figure 2.
The second (P2) is the Dahlquist equation (with A = 1).

We will use three sets of values for r and g : (1,9) = (2,3), (3,4) and (4,5). In other words, we
have the pairs of methods RK2 and RK3, RK3 and RK4, RK4 and RKS5. In each case, the
higher order method is used for error estimation. Moreover, the methods RK2, RK3 and RK4
are independent - not embedded - so that RK2 and RK3 constitute a tandem pair, as do RK3
and RK4 (Butcher, 2003). The pair RK4 and RK5 is an embedded pair, due to Fehlberg
(Kincaid & Cheney, 2002), and so, to avoid notational confusion, we will indicate this pair
by RKF4 and RKF5. Note that RK4 and RKF4 are not the same. The corresponding RKGL
pairs are RK2GL2 and RK3GL2, RK3GL3 and RK4GL3, RKF4GL3 and RKF5GL3. Note that
the choice of m in each case is the smallest m such that » + 1 < 2m, subject to the condition
that m must be the same for both methods within any given pair.

To begin with, we determine the quantities Fi, F», A1, Az, Q1 and Q; for these methods, using
Ar = 4 (see the RHS of P1 in (41)). These are all shown in Tables 2 and 3. In these tables, s
denotes the number of stages in the RK method.

S F](m=2) A1(m=2) F1(m=3) A1(1’l’l=3) F | A
2 1.67 15.00 1.75 16.25 2 |18
3 2.33 23.67 2.50 26.00 3 |31
4 3.00 33.67 3.25 37.25 4 | 46
5 3.67 45.00 4.00 50.00 5 | 63
6 4.33 57.67 4.75 64.25 6 | 82
Table 2. Number of function evaluations and arithmetical operations per node, with As= 4.

s | Qi(m=2) | Q (m=23) Q)

2 0.1111 0.1077 0.1111

3 0.0986 0.0962 0.0968

4 0.0891 0.0872 0.0870

5 0.0815 0.0800 0.0794

6 0.0715 0.0739 0.0732

Table 3. Proportionality constants €2; and €, with A;= 4.

We see in Table 3 that the constants of proportionality between the number of function
evaluations and arithmetical operations are essentially the same for RK and RKGL, for each
of the values of s considered.

In Table 4 we show the ratio of the number of function evaluations and arithmetical
operations per node for RK and RKGL, again with A= 4.
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s | FfFa(m=2) | AyA; m=2) | FyfFs(m=3) | Aj/A; (m = 3)
2 0.833 0.833 0.875 0.903
3 0.779 0.763 0.833 0.839
4 0.750 0.732 0.813 0.810
5 0.733 0.714 0.800 0.794
6 0.722 0.703 0.792 0.784

Table 4. Ratio of number of function evaluations and arithmetical operations per node for
RK and RKGL, with Af=4.

From Table 4 we see that, as far as function evaluations and arithmetical operations per
node are concerned, RKGL is always more efficient than RK. The best case here is when s = 6
and m = 2, for which the ratio of arithmetical operations per node is about 70%, and that of
function evaluations per node is about 72%. For phases 1 and 2 of the reintegration
algorithm, where the number of nodes used by RK and RKGL is essentially the same, the
ratios in Table 4 are indicative of the relative effort of the two methods. Clearly, the gain in
using RKGL is in the vicinity of 10% to 30%. It could be argued that this is not actually all
that impressive - indeed, as we will see in the next section, the most significant gain is to be
had in Phase 3 of the reintegration algorithm, where the higher order of RKGL is exploited.
In problem P2 we have A= 0, and, for completeness’ sake, the appropriate parameters are
shown in Tables 5-7.

s | F1 (m = 2) A1 (m = 2) F (m = 3) A (m = 3) F | A
2 1.67 8.33 1.75 9.25 2 110
3 2.33 14.33 2.50 16.00 3 119
4 3.00 21.67 3.25 24.25 4 |30
5 3.67 30.33 4.00 34.00 5 143
6 4.33 40.33 4.75 45.25 6 | 58

Table 5. Number of function evaluations and arithmetical operations per node, with As= 0.

s | Q(m=2) | Q(m=23) Q)

2 0.2000 0.1892 0.2000

3 0.1628 0.1563 0.1579

4 0.1385 0.1340 0.1333

5 0.1209 0.1176 0.1163

6 0.1074 0.1050 0.1034

Table 6. Proportionality constants €2; and €, with As= 0.

s | FyfF,(m=2) | AfAy(m=2) | Fy/F2(m=3) | AyfAz (m=3)
2 0.833 0.833 0.875 0.925
3 0.779 0.754 0.833 0.842
4 0.750 0.722 0.813 0.808
5 0.733 0.705 0.800 0.791
6 0.722 0.695 0.792 0.780

Table 7. Ratio of number of function evaluations and arithmetical operations per node for

RK and RKGL, with A= 0.
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5.1. Efficiency Curves

In Figures 3 and 4 we show R4 as a function of the imposed tolerance 0, for each of the test

problems.
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Fig. 3. R4 as a function of tolerance 0, for the indicated values of 7, for test problem P1.
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Fig. 4. R4 as a function of tolerance ¢, for the indicated values of r, for test problem P2.

In each of these figures, two features are obvious: R4 decreases as 6 decreases, and, for any 6,
Ra increases with increasing 7. Both of these features are easily understood in terms of (38).
Note that 2 + r equals 6, 12 and 20 for the values of r considered here. We see that Ry is less
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than one for all values of r and 6 for P2, but for P1 the RKF4GL3 method is somewhat less
efficient than RKF4 for large tolerances. This is due to the fact that, in this case, the global
error coefficient for RKF4GL3 is twice as large as that for RKF4. We see in (29) that the ratio
of global error coefficients does play a role in determining Ra. For the smallest tolerance
considered here, R, is approximately 0.3 or less, for all r in both test problems, and for r = 2
we have R4 = 0.0052 (P1) and R4 = 0.0013 (P2). These results serve to indicate just how much
more efficient RKGL can be, particularly when very strict tolerances are imposed on the
problem.

5.2. Equal Effort
From (40) we have

r+1 1+1/r
ln(ARKGL ) = (1 + 1jln(ARK )+ lnﬁﬁl (LJ G, ]
r A, G,

so that a plot of In(Aggq ) against In(Agy ) will yield a straight line with slope 1+1/r.

(43)

Recall that this holds for the case of equal effort (R4 = 1). In Table 8 we show numerical
results for the test problems.

P1

r | 1+1/r (theory) | 1+1/r (actual)
2 1.50 1.5002

3 1.33 1.3331

4 1.25 1.2536

P2

r | 1+1/r (theory) | 1+1/r (actual)
2 1.50 1.4910

3 1.33 1.3303

4 1.25 1.2439

Table 8. Slopes of equation (43) for the test problems.

There is good agreement between theory and experiment. As an example of the improved

accuracy for RKGL, we found that for problem P1 with r = 3, Agg =6x10"" and

5.3. The LHR Algorithm

Lastly, we apply the complete LHR algorithm to the test problems. We impose tolerances of

6=10"° and 6 =10""? on the relative global error. The four phases, as described previously,

of LHR comprise the following;:

1. Phase1 - application of FLEC with a moderate tolerance of V6 on the relative local

error.
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2.
3.

4,
The results are summarised in Tables 9-12, where we show the number of arithmetical
operations for each phase, and the ratio Ra. Of course, the number of function evaluations is
easily obtained from these data by means of the proportionality constants in Tables 3 and 6.

Phase 2 - determining relative global error coefficients using a uniform node

distribution with average stepsize determined from Phase 1.

Phase 3 - reintegration with a new stepsize determined from Phase 2, and quality

control.

Phase 4 - Further reintegration, if necessary, also with quality control.

P1 5=10"°
r=2 r=3 r=4
RK RKGL RK RKGL | RK | RKGL
Phase 1 1520 748 984 804 656 1028
Phase 2 4067 1160 1232 1012 492 1028
Phase 3 105154 | 16356 | 11550 | 5819 | 1886 | 1799
Phase 4 0 19952 0 8349 | 2296 | 2056
Total 110741 | 38216 | 13766 | 15984 | 5330 | 5911
R,=¥,/%, 0.345 (0.156) 1.161 (0.504) 1.109 (0.895)
Table 9. Arithmetical operations for LHR applied to P1 with 6 = 10°°.
P1 5=10""
r=2 r=3 r=4
RK RKGL RK RKGL | RK | RKGL
Phase 1 15440 2992 4920 2412 2296 2056
Phase 2 131418 6844 10549 3542 2296 1799
Phase 3 107845227 | 1938476 | 1246014 | 240603 | 70520 | 35466
Total 107992085 | 1948312 | 1261483 | 246557 | 75112 | 39321
R, =Y,/%, 0.018 (0.018) 0.195 (0.193) 0.523 (0.503)
Table 10. Arithmetical operations for LHR applied to P1 with 6 = 10712,
P2 6=10"°
r=2 r=3 r=4
RK RKGL RK RKGL RK RKGL
Phase 1 2784 2553 2054 3612 1044 2172
Phase 2 12818 6460 3822 6279 928 2172
Phase 3 410959 | 43316 | 38514 | 17388 | 5394 4525
Phase 4 0 0 0 0 6554 0
Total 426561 | 52329 | 44390 | 27279 | 13920 | 8869
R, =¥,/¥, 0.123 (0.105) 0.615 (0.451) 0.637 (0.839)

Table 11. Arithmetical operations for LHR applied to P2 with 6 =107°.
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P2 5=10""
r=2 r=3 r=4

RK RKGL RK RKGL RK RKGL
Phase 1 29232 11322 12403 11610 5104 6154
Phase 2 435841 46784 41503 26565 6612 7240
Phase 3 415844688 | 4466920 | 4050340 | 576863 | 209148 | 80545
Total 416309761 | 4525026 | 4104246 | 615038 | 220864 | 93939
R, =%, /¥, 0.011 (0.011) 0.150 (0.142) 0.425 (0.385)

Table 12. Arithmetical operations for LHR applied to P2 with 6 =10""%.

In these tables, the ratio R, is the ratio of the total number of arithmetic operations
(indicated in bold) for each value of r. The ratio R, in parentheses is that for Phase 3 only,

except for v = 4 in Table 9, where it has been computed for Phase 4. Phase 4 was required in
Table 9 (for the RKGL methods) and in Table 11 (for RKF4), and in those cases the ratio R,

includes the contribution from Phase 4. The arithmetical operations count for Phase 3
includes quality control, i.e. the contribution due to the higher order method.
All values of R, for Phase 3 only are less than one, and in only two other cases the overall

value of R, is greater than one. In both of these cases, seen in Table 9, this is due to the

need for Phase 4 reintegration. Generally, the RKGL implementation of LHR is more
efficient than the RK implementation. This is particularly evident when r and 6 are small, as
in tables 10 and 12. The preliminary phases (1 and 2) of LHR contribute most significantly to
the overall computational effort when 0 is relatively large, but when 0 is small the
computational load is due almost entirely to Phase 3 (and Phase 4, if necessary).

We have confirmed that all applications of LHR described in the above tables have yielded
numerical solutions that satisfy the imposed tolerances. In this sense, LHR has proved to be
100% effective. These results are shown in Table 13. In Figure 5 we show, for example,
relative global error profiles for both the RK and RKGL implementations of LHR, with
regard to problem P1. For the sake of clarity, we only show the solutions obtained by
RK3GL3 and RKF4GL3 in Figure 6. The other error profiles are similar. Note the ‘zigzag’
character evident in Figure 2 is also present in these solutions. Due to space restrictions, we
have not shown similar plots for problem P2.

r=2 r=3 r=4
6 RK RKGL RK RKGL RK RKGL
107 85x107 73x107 ¢ 9.2x107 71x107 ¢ | 6.7x107 ¢ | 95x107

Amax
P1) | 102 | 82x10™" 8.1x10™" 76x10™" 9.7x10™ | 88x10™ | 93x10™"

10°° 8.3x107 8.0x107 8.5x107 78x107 | 7.0x107 ¢ | 9.8x10”
Amax
(P2) | 107 | 80x10" | 75x10™ | 75x10" | 69x10™" | 75x10" | 7.6x10™"

Table 13. Maximum relative global error Apmax using LHR, for the indicated tolerances 0. The
symbol ¢ indicates that Phase 4 of LHR was required.
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Fig. 5. (Left) Relative global errors for tolerances §=10"° (upper) and & =10""* (lower), for
the RK version of LHR, applied to problem P1. (Right) Relative global errors for tolerances

§=10"° (upper) and §=10"" (lower), for the RKGL version of LHR, applied to problem P1.
Upper plot: RK3GL3, lower plot: RKF4GL3.

6. Conclusion and Scope for Further Work

We have studied the RKGL algorithm for the numerical solution of IVPs, with regard to
improving the efficiency of global error control via reintegration. Our theoretical
investigations have shown that the RKrGLm method requires fewer arithmetical operations
and function evaluations per node, than its underlying RKr method. Moreover, since the
RKrGLm method is of one order higher than RKr, we have shown that the relative efficiency
of the two methods is proportional to the (r2+r)th root of the user-defined tolerance imposed
on the problem. Hence, as this tolerance becomes stricter, so the RKrGLm method becomes
more efficient. This effect is more pronounced for small r, which is of great benefit, since it is
usually true that lower order methods are computationally expensive.

In a similar vein, we have shown that when computational effort is equal, the accuracy of
the RKrGLm method can be expected to be better than that of RKr.

Various numerical experiments have demonstrated these properties; in particular, the LHR
algorithm for controlling relative global error has been shown to be generally more efficient
when implemented using RKrGLm, than when using RKr.

6.1. Further Work
There are a number of issues that need to be considered with regard to the research
presented in this paper:
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e The need for the use of Phase 4 suggests that the global error coefficient has not
been correctly estimated in Phase 3. Of course, Phase 4 represents a correction
phase and so is important, but it is also computationally expensive. The only
reason the RKGL version was less efficient than the RK version in Table 9 was the
need to use Phase 4. A better estimate of the global error coefficient in Phase 3
could have prevented this.

e The use of §,, =+/0 in Phase 1 is not necessarily optimal. A case in point is for
LHR applied to P1 with r = 2 and §=10": Here, when §,,, =10~ , Phase 4 was

required. However, with 6, =10™*, Phase 4 was not required and the total

arithmetical operations count was only 21957.

e The effect of the length of the interval of integration should be investigated. A
larger interval will require more nodes, and it is clear from Tables 9-12 that when
the number of nodes used in Phase 3 is much larger than that used in Phases 1 and
2, the efficiency will be due essentially to Phase 3 only (and Phase 4, if needed). For
r = 4, the improvement in relative efficiency of RKGL might be more significant
over larger intervals of integration.
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