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1. Introduction

A macroeconomic model can be analyzed in an economic regulation framework, by using
stochastic optimal control techniques [Holbrook, 1972; Chow, 1974; Turnovsky, 1974;
Pitchford & Turnovsky, 1977; Hall & Henry, 1988]. This regulator concept is more suitable
when uncertainty is involved [Leland, 1974; Bertsekas, 1987]. A macroeconomic model
generally consists in difference or differential equations which variables are of three main
types: (a) endogenous variables that describe the state of the economy, (b) control variables
that are the instruments of economic policy to guide the trajectory towards an equilibrium
target, and (c) exogenous variables that describe an uncontrollable environment. Given the
sequence of exogenous variables over time, the dynamic optimal stabilization problem
consists in finding a sequence of controls, so as to minimize some quadratic objective
function [Turnovsky, 1974; Rao, 1987]. The optimal control is one of the possible controllers
for a dynamic system, having a linear quadratic regulator and using the Pontryagin’s
principle or the dynamic programming method [Preston, 1974; Kamien & Schwartz, 1991;
Serensen & Whitta-Jacobsen, 2005]. A flexible multiplier-accelerator model leads to a linear
feedback rule for optimal government expenditures. The resulting linear first order
differential equation with time varying coefficients can be integrated in the infinite horizon.
It consists in a proportional policy, an exponentially declining weighted integral policy plus
other terms depending on the initial conditions [Turnovsky, 1974]. The introduction of
stochastic parameters and additional random disturbance leads to the same kind of
feedbacks rules [Turnovsky, 1974]. Stochastic disturbances may affect the coefficients
(multiplicative disturbances) or the equations (additive residual disturbances), provided
that the disturbances are not too great [Poole, 1957; Brainard, 1967; Astréom, 1970; Chow,
1972; Turnovsky, 1973, 1974, 1977; Bertsekas, 1987]. Nevertheless, this approach encounters
difficulties when uncertainties are very high or when the probability calculus is of no help
with very imprecise data. The fuzzy logic contributes to a pragmatic solution of such a
problem since it operates on fuzzy numbers. In a fuzzy logic, the logical variables take
continue values between 0 (false) and 1 (true), while the classical Boolean logic operates on
discrete values of either 0 or 1. Fuzzy sets are a natural extension of crisp sets [Klir & Yuan,
1995]. The most common shape of their membership functions is triangular or trapezoidal.
A fuzzy controller acts as an artificial decision maker that operates in a closed-loop system
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in real time [Passino & Yurkovich, 1998]. This contribution is concerned with optimal
stabilization policies by using dynamic stochastic systems. To regulate the economy under
uncertainty, the assistance of classic stochastic controllers [Astrom , 1970; Sage & White,
1977, Kendrick, 2002] and fuzzy controllers [Lee, 1990; Kosko, 1992; Chung & Oh, 1993;
Ying, 2000] are considered. The computations are carried out using the packages
Mathematica 7.0.1, FuzzyLogic 2 [Kitamoto et al., 1992; Stachowicz & Beall, 2003;
Wolfram, 2003], Matlab R2008a & Simulink 7, & Control Systems, & Fuzzy Logic 2 [Lutovac
et al., 2001; The MathWorks, 2008]. In this chapter, we shall examine three main points about
stabilization problems with macroeconomic models: (a) the stabilization of dynamical
systems in a stochastic environment, (b) the PID control of dynamical macroeconomic
models with application to the linear multiplier-accelerator Phillips’ model and to the
nonlinear Goodwin’s model, (c) the fuzzy control of these two dynamical basic models.

2. Stabilization of dynamical systems under stochastic shocks
2.1 Optimal stabilization of stochastic systems

2.1.1 Standard stabilization problem

The optimal stabilization problem with deterministic coefficients is presented first. This
initial form, which does not fit to the application of the control theory, is transformed to a
more convenient form. In the control form of the system, the constraints and the objective
functions are rewritten. Following Turnovsky, let a system be described by the following
matrix equation

Y =AY +AY ,+.+AY +BU+BU,  +.+BU_ . (1

The system (1) consists in ¢, target variables in instantaneous and delayed vectors Y and
q, policy instruments in instantaneous and delayed vectors U . The maximum delays are
m and n for Y and U respectively. The squared g, X ¢, matrices A are associated to

the targets, and the ¢, X ¢, matrices B are associated to the instruments. All elements of

these matrices are subject to stochastic shocks. Suppose that the objective of the policy
maker is to stabilize the system close to the long-run equilibrium, a quadratic objective
function will be

S, -¥) M(Y,-¥)+3 (U, - U)N(u,-0),

where M is a strictly positive definite costs matrix associated to the targets and N a
positive definite matrix associated to the instruments. According to (1), the two sets Y and

U of long-run objectives are required to satisfy
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I—iAj v=YB,U.
Jj=1

i=0

Letting the deviations be Yt ~Y= Y, and Ut -U= u,, the optimal problem is

min (i y My, + i u'tNutj
t=1 t=1

s.t. 'y, =AYy, tAy, ,+.+Ay, +Bu +Bu_ +..+Bu_ .

(2)

2.1.2 State-space form of the system
The constraint (2) is transformed into an equivalent first order system [Preston & Pagan,
1982]

X, =AX,, +Bv,

where X, =(¥,,¥, 5Y, 25 Y, oW, W, 5o W, ) is the @ X1 state vector with

g = mq, + ng, . The control vector is V, = U, . The block matrix A and the vector B are
defined by

A, A, A, | B, B, B B
I 00 0 0 0 iy
n o1 ] i ] [T 3
L]
- a n L 1 L[] 0 .. 0 ] Be
— I
n 0 0 1] ] [T o
moon .0 ] | I | A |
Y . 0
0 0o ... 0 L[] 0w T 0 C

Any stabilization of a linear system requires that the system be dynamically controllable
over some time period [Turnovsky, 1977]. The condition for the full controllability of the
system states that it is possible to move the system from any state to any other.

Theorem 2.1.2 (Dynamic controllability condition). A necessary and sufficient condition for

a system to be dynamically controllable over some time period 7 = g is given by the

dynamic controllability condition

rank (B |AB|...| Ag_lB) =g.
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Proof. In [Turnovsky, 1977], pp. 333-334. O

The objective function (3) may be also written as

i X M'x, +i v.Nv, -0,
t=1

1=1
where @ includes past Y ’s and U’s before # =1. Letting M=M/m and N=N/n ,
the block diagonal matrix M’ is defined by

o0 .0 0 N

\ /
The stabilization problem, (2) is transformed to the control form

min, (i X M'x, + i v Nv, j

t=1 =1

s.t. x,=Ax, ,+Bv,.

*
Since the matrices M and N are strictly positive, the optimal policy exits and is unique.

2.1.3 Backward recursive resolution method
Let a formal stabilization problem be expressed with a discrete-time deterministic system

min_ i(y;Myt +x Nx, ), M,N2>0 .
t=l1

s.t. 'y, =Ay, , +Bx,.

In the quadratic cost function of the problem, the 7 state vector Yy and the 7 control vector
X are deviations from long-run desired values, the positive semi-definite matrices M X

and N are costs with having values away from the desired objectives. The constraint of
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Optimal Economic Stabilization Policy under Uncertainty 445

and anm.

The objective of the policy maker is to stabilize the system close to its long-run equilibrium.
To find a sequence of control variables such that the state variables ¥y can move from any

the problem is a first order dynamic system lwith matrices of coefficients A "

initial Y, to any other state Yy, the dynamically controllable condition is given by a rank of

a concatenate matrix equal to #
rank (B| AB|...[A"'B)=n.

The solution is a linear feedback control given by

Xt = Rtytfl’
where we have
R,=—(N+B'SB) (B'S,A)
S,,=M+RNR,+(A+BR,) S, (A +BR,)
S, =M

The optimal policy is then determined according a backward recursive procedure from

terminal step T to the initial conditions, such as

M,

stepT: S, =
R, =—(N+B'S,B) " (B'S,A).

stepT-1: S, , =M+R,NR, +(A+BR,) S, (A+BR,),
R, ,=—(N+B'S, B) ' (B'S, A)

step1: S, =M+R,NR, +(A+BR,)S,(A+BR,),
R, =—(N+B'SB) ' (B'S,A)

1 Any higher order system has an equivalent augmented first-order system, as shown in 2.1.2 . Let a
second-order system be the matrix equation

y = A\y,,. + Azy/iZ + B”x, + leH.

Then, we have the augmented first-order system

y Al A2 B] yl BH
z =y |[=]1 0 0 y +] 0 |v
X 0 0 0 X |
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step 0 : =M +RNR, +(A+BR,)S (A +BR)),

S()
R,=-(N+B'SB) (B'S,A)

2.1.4 The stochastic control problem

Uncorrelated multiplicative and additive shocks: The dynamic system is now subject to
stochastic disturbances with random coefficients and random additive terms to each
equation. The two sets of random deviation variables are supposed to be uncorrelated 2. The
problem (3) is transformed to the stochastic formulation ( also [Turnovsky, 1977]).

min, E[y/My, +x/Nx, |
st. y,=(A+®)y,_ +(B+¥)x,+¢, MN2>0,

The constant matrices A and B are the deterministic part of the coefficients. The

n m

random components of the coefficients are represented by the matrices ® —and ¥ .

Moreover, we have the stochastic assumptions : the elements ¢l.jt,l//l.jt and &, are
identically and independently distributed (i.i.d.) over time with zero mean and finite

variances and covariances. The elements of (I)t are correlated with those of W, the

t 7’
matrices (I), and ¥ ,are uncorrelated with €, . The solution is a linear feedback control
given by

X, = R Yo

where 3

2 The deviations X,,Y,are about some desired and constant objectives X',Y such that
x =X -Xandy =Y-Y.

3 A scalar system is studied by Turnovsky [Turnovsky,1977]. The optimization problem is
given by

minE[my:+nxf], mn>0 st y/:(a+(p,)y‘+(b+y/,)x te,
.« . . . 2 2 . o e
where ¢,y areii.d. with zero mean, variances o, o, and correlation coefficient p .

The optimal policy is x, =r y _ , where r = - (a bs+ awawps) [(n+b's+ cr;s)

and where § is the positive solution of the quadratic equation

{(1 -a - 0'; )(b2 + 0'; ) + (ab + O'wO'Wp)Z } s
+{n(1—a2 —crj)—m(b2 +0';)}s—mn =0.
A necessary and sufficient condition to have a unique positive solution is (with p =0)
. i aZbZ
o <l-a+

b +o

2
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R=—(N+B'SB+E[¥'SY]) (B'SA+E[¥'S®]),

and S is a positive semi-definite solution to the matrix equation
S=M+R'NR+(A +BR) S(A+BR)+E[(CI)+‘~PR)' S(<I>+‘PR)}.

Correlated multiplicative and additive shocks: The assumption of non correlation in the
original levels equation, will necessarily imply correlations in the deviations equation. Let
the initial system be defined in levels by the first order stochastic equation

Y, =(A+®)Y,_ +(B+¥)X, +¢,
and the stationary equation

Y =AY +BX'.

* *
By subtracting these two matrix equations and letting ¥y, =Y, -Y and X, =X -X,

we have

y, :(A+CI)t)y, | (B+‘P)x +s

where the additive composite disturbance €' denotes a correlation between the stochastic
component of the coefficients and the additive disturbance. The solution to the stabilization
problem takes a similar expression as in the uncorrelated case. We have the solution

x, =Ry, +p,

where
R=—(N+B'SB+E[¥'S¥]) (B'SA+E[¥'S®]),
p=—(N+B'SB+E[¥'S¥]) (B'k+E[¥'S¢]),
and S is positive semi-definite solution to the matrix equation

S=M+R'NR+(A+BR)S(A+BR)+E|(®+¥R)S(®+¥R)|,

and K is solution to the matrix equation

k=(A+BR)k+E| (0+¥R) Se|

where the variabilities 0 and 0 vary inversely. Moreover, the stabilization requirement is
satisfied for any a,b (b £ 0) and any k such that -1 <a+bk <1.
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The optimal policy then consists of a feedback component R together to a fixed component
P. The system will oscillate about the desired targets.

2.2 Stabilization of empirical stochastic systems

2.2.1 Basic stochastic multiplier-accelerator model

Structural model: The discrete time model consists in two equations, one is the final form of
output equation issued from a multiplier-accelerator model with additive disturbances, the
other is a stabilization rule [Howrey, 1967; Turnovsky, 1977]

Y +bY +cY , =G, +¢

to

G=gY,+gY,+B,

where Y denotes the total output, G the stabilization oriented government expenditures,

B a time independent term to characterize a full-employment policy [Howrey, 1967] and &
random disturbances (serially independent with zero mean, constant variance) from

decisions only. The policy parameters are g,, g, and Yisa long run equilibrium level*.

Time path of output: Combining the two equations, we obtain a second order linear
stochastic difference equation (SDE)

Y +(b—-g)Y  +(c—g)Y :E+gt,

where B is a residual expression. Provided the system is stable3, the solution is given by

=1 j+l _ _j+l
B n v

Y = Cr' +C,ry —¢,_,t=12,..
t 1—(b—gl)—(c—g2)+( n 2r2)+j§0 h=n Frop =05

where C, C, are arbitrary constants given the initial conditions and r,, r, the roots of the

characteristic equation: B b= (—biw/ b? _4C) /2. The time path of output is the sum of

three terms, expressing a particular solution, a transient response and a random response
respectively.

4 The stabilization rule may be considered of the proportional-derivative type [Turnovsky,
1977] rewriting G as G = (g, -g)(¥Y -Y)-g (¥ -7.).

5 A necessary and sufficient condition of a linear system is that the characteristic roots lie
within the unit circle in the complex plane. In this case, the autoregressive coefficients will
satisfy the set of inequalities

{1+b+c—gl -g,>0,1-b+tc+g —g >0,1-c+g, >O}

The region to the right of the parabola in Figure 1 corresponds to values of coefficients b
and ¢ which yield complex characteristic roots.
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2.2.2 Stabilization of the model
Iso-variance and iso-frequencies loci: Let the problem be simplified to [Howrey, 1967]

Y+bY ,+cY ,=4 +¢,. (4)

Figure 1 shows the iso-variance and the iso-frequencies contours together with the
stochastic response to changes in the parameters b and ¢ . Attempts to stabilize the system

may increase its variance ratio O ; /o 52 . As coefficient b, ¢ being held constant, the peak

is shifted to a higher frequency.

b

o

(a ) | in cpp [Cyche per poriod) ( b}

Fig. 1. Iso-variance (a) and iso-frequencies (b) contours

Asymptotic variance of output: Provided the stability conditions are satisfied (the
characteristic roots lie within the unit circle in the complex plane), the transient component
will tend to zero. The system will fluctuate about the stationary equilibrium rather than
converge to it. The asymptotic variance of output is

l+c+g, o
(1-c-g)((1+e+e,) ~(b+g))

2 _
asy o, =

Speed of convergence: The transfer function (TF) of the autoregressive process (4) is given

by
T(w)= (1 +be " +ce )_1 :

We then have the asymptotic spectrum

T(@)F=(1+5° +¢* +2b(1+¢)cos 0+ 2ccos 20) .
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The time-dependent spectra are defined by

-1 Jj+l Jj+l
v —r ”
| T(w,0) =) 2 ¢,
=0 h—h

In this application, the parameters take the values b=-—1.1,¢=.5, O'j =1 as in

[Howrey, 1967]. Figure 2 shows how rapid is the convergence of the first ten log-spectra to
the asymptotic log- spectrum. [Nerlove et al., 1979].

W T (@, % t=1,5

AN

0 1.416

Fig. 2. Convergence to the asymptotic log- spectrum

Optimal policy: Policies which minimize the asymptotic variance are such gl* =—b and
g ; = —C . Then we have

v 2 _ 2
Yt —Y—l—é‘t and 0, =0,.
The output will then fluctuate about Y with variance & j .

3. PID control of dynamical macroeconomic models

Stabilization problem are considered with time-continuous multiplier-accelerator models:
the linear Phillips fluctuation model and the nonlinear Goodwin’s growth model ¢.

¢ The use of closed-loop theory in economics is due to Tustin [Tustin, 1953].
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3.1 The linear Phillips’ model

3.1.1. Structural form of the Phillips’ model
The Phillips'model [Phillips, 1954; Allen, 1955; Phillips, 1957; Turnovsky, 1974; Gandolfo,

1980; Shone, 2002] is described by the continuous-time system
Z()=C(t)+1(t)+G(¢), (
C(t) = c Y () —u(?), 6
I =-p(10)-vY), (
Y =-a(Y()-Z()), (8

where [ and Y denote the first derivatives w.r.t. time of the continuous-time

N

)
)
)
)

variables /() and Y (f) respectively. All yearly variables are continuous twice-
differentiable functions of time and all measured in deviations from the initial equilibrium
value. The aggregate demand Z consists in consumption C, investment [/ and
autonomous expenditures of government GG in equation (5). Consumption C depends on
income Y without delay and is disturbed by a spontaneous change # at time =0 in
equation (6). The variable #(Z) is then defined by the step function u(#) =0, for £ <0

and u(t) =1 for ¢ >1. The coefficient C is the marginal propensity to consume. Equation
(7) is the linear accelerator of investment, where investment is related to the variation in
demand. The coefficient V is the acceleration coefficient and /3 denotes the speed of

response of investment to changes in production, the time constant of the acceleration lag
. -1 . . . . .
being [~ years. Equation (8) describes a continuous gradual production adjustment to

demand. The rate of change of production Y at any time is proportional to the difference
between demand and production at that time. The coefficient & is the speed of response of
production to changes in demand. Simple exponential time lags are then used in this model 7.

3.1.2. Block-diagram of the Phillips’ model

The block-diagram of the whole input-output system (without PID tuning) is shown in
Figure 3 with simulation results. Figure 4. shows the block-diagram of the linear multiplier-
accelerator subsystem. The multiplier-accelerator subsystem shows two distinct feedbacks :
the multiplier and the accelerator feedbacks.

7 The differential form of the delay is the production lag « /(D +a) where the operator D is

the differentiation w.r.t. time. The distribution form is
Y(£) = f W) Z(t-7)dr,

Given the weighting function W(f) = e ', the response function is F(f)=1—e * for
the path of Y following a unit step-change in Z.
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shoek

simulation
over 8 yeacs |

Fig. 3. Block-diagram of the system and simulation results

g millipliag Losp
lliui.l: rmu-q
ET‘L—...- o B
nt r e
PP
tramfar Function actmlaritor loop

Fig. 4. Block diagram of the linear multiplier-accelerator subsystem

3.1.3. System analysis of the Phillips’ model
The Laplace transform of X (¢) is defined by

X(s)= L[ X(1)]= f e X (1) dt.

Omitting the disturbance #(?), the model (5-8) is transformed to

Z(s)=C(s)+1(s)+G(s), (9)
C(s)=cY(s), _ (10)
sl (s)=—pB1(s)+ PvsY(s), an
sY(s)=—aY(s)+aZ(s). (12)
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_Y(s) a(s+/f)
S G(s) st+(a(l-o)+ f-apv)s+af(l-c)

H(s)

Taking a unit investment time-lag with ff =1 together with & =4, ¢ = Z and v = g,

we have
s+1
H(s)=20———.
55" —=2s+5
The constant of the TF is then 4, the zero is at § =—1 and poles are at the complex

conjugates § =.2+ j. The TF of system is also represented by H(j®). The Bode
magnitude and phase, expressed in decibels (20 loglo ), are plotted with a log-frequency

axis. The Bode diagram in Figure 5 shows a low frequency asymptote, a resonant peak and a
decreasing high frequency asymptote. The cross-over frequency is 4 (rad/sec). To know
how much a frequency will be phase-shifted, the phase (in degrees) is plotted with a log-
frequency axis. The phase cross over is near 1 (rad/sec). When @ varies, the TF of the
system is represented in Figure 5 by the Nyquist diagram on the complex plane.

LELE g B s ]
I

iy g

Fiwma'sry posienc] Fow by

Fig. 5. Bode diagram and Nyquist diagram of the transfer function

3.1.4 PID control of the Phillips’ model
The block-diagram of the closed-loop system with PID tuning is shown in Figure 6. The PID

controller in Figure 7 invokes three coefficients. The proportional gain K pe(t ) determines

the reaction to the current error. The integral gain

K. = J;e(r)df

bases the reaction on sum of past errors. The derivative Gain K, ¢ determines the reaction

to the rate of change of error. The PID controller is a weighted sum of the three actions. A
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larger K , Will induce a faster response and the process will oscillate and be unstable for an

excessive gain. A larger K ; eliminates steady states errors. A larger K 4 decreases

overshoot [Braae & Rutherford, 1978] 8A PID controller is also described by the following TF
in the continuous s-domain [Cominos & Nunro, 2002]

The block-diagram of the PID controller is shown in Figure 7.

H.(s)=K, +£+st.
s

'II L] E
Controller

’ Error

Setpoint

P

Proportional

Output

Fig. 7. Block diagram of the PID controller

8 The Ziegler-Nichols method is a formal PID tuning method: the / and D gains are first set
to zero. The P gain is then increased until to a critical gain K at which the output of the
loop starts to oscillate. Let denote by 7' the oscillation period, the gains are set to .5K_

for a P —control, to 45K+ 1.2Kp /T, fora PI-control, to .6K + 2Kﬂ /T + Kﬂ]:' /8 fora

PID — control.
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3.2 The nonlinear Goodwin’s model

3.2.1. Structural form of the Goodwin’s model

The extended model of Goodwin [Goodwin, 1951; Allen, 1955; Gabisch & Lorenz, 1989] is a
multiplier-accelerator with a nonlinear accelerator. The system is described by the
continuous-time system

Z() = C(0)+ 1(t), (13)
C(t)=cY(t)—u(z), (14)
I=-p(1(1)-B(1)), (15)
B(t):CD(vY), (16)
Y=—a(Y(t)-Z(1)). (17)

The aggregate demand Z in equation (13) is the sum of consumption C and total

investment / 9. The consumption function in equation (14) is not lagged on income Y . The
investment (expenditures and deliveries) is determined in two stages: at the first stage,

investment [/ in equation (15) depends on the amount of the investment decision B with
an exponential lag; at the second stage the decision to invest B in equation (16) depends
non linearly by ® on the rate of change of the production Y . Equation (17) describes a

continuous gradual production adjustment to demand. The rate of change of supply Y is
proportional to the difference between demand and production at that time (with speed of
response & ). The nonlinear accelerator @ is defined by

(V) = M(ﬂ 1},

Le" +M

where M is the scrapping rate of capital equipment and L the net capacity of the capital-
goods trades. It is also subject to the restrictions

B=0i Y=0,B—>L asY —>+0, B—>—M as Y —> —0,

The graph of this function is shown in Figure 8.

9 The autonomous constant component is ignored since Y is measured from a stationary
level.
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g B
®(.)
vy
— -'_f—'—— 1f
M

Fig. 8. Nonlinear accelerator in the Goodwin’s model

3.2.2. Block-diagrams of the Goodwin’s model
The block-diagrams of the nonlinear multiplier-accelerator are described in Figure 9.

Step Scope

Bl

ol T(u) -

Ind Clutd

Fig. 9. Block-diagram of the nonlinear accelerator

3.2.3 Dynamics of the Goodwin’s model

The simulation results show strong and regular oscillations in Figure 10. The Figure 11
shows how a sinusoidal input is transformed by the nonlinearities. The amplitude is
strongly amplified, and the phase is shifted.
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Fig. 10. Simulation on the nonlinear accelerator

Fig. 11. Simulation of a sinusoidal input

3.2.4 PID control of the Goodwin’s model

Figure 12 shows the block-diagram of the closed-loop system. It consists of a PID controller
and of the subsystem of Figure 9. The simulation results which have the objective to
maintain the system at a desired level equal to 2.5. This objective is reached with oscillations
within a time-period of three years. Thereafter, the system is completely stabilized.
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Error signal

Desired level

Fig. 12. Block-diagram and simulation results of the PID controlled Goodwin’s model

4. Fuzzy control of dynamic macroeconomic models
4.1 Elementary fuzzy modeling

4.1.1 Fuzzy logic controller

A fuzzy logic controller (FLC) acts as an artificial decision maker that operates in a closed-
loop system in real time [Passino & Yurkovitch, 1998]. Figure 13 shows a simple control
problem, keeping a desired value of a single variable. There are two conditions: the error
and the derivative of the error. This controller has four components: (a) a fuzzification
interface to convert crisp input data into fuzzy values, (b) a static set of "If-Then" control
rules which represents the quantification of the expert’s linguistic evaluation of how to
achieve a good control, (c) a dynamic inference mechanism to evaluate which control rules
are relevant, and (d) the defuzzification interface that converts the fuzzy conclusions into
crisp inputs of the process 10. These are the actions taken by the FLC. The process consists of
three main stages: at the input stage 1 the inputs are mapped to appropriate functions, at the
processing stage 2 appropriate rules are used and the results are combined, and at the
output stage 3 the combined results are converted to a crisp value input for the process.

10 The commonly used centroid method will take the center of mass. It favors the rule with
the output of greatest area. The height method takes the value of the biggest contributor.
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Fuzzy Logic Controller FLC

g Infaranca g

B :-] — Mochanism [ _3.
[] S ol 3 i » Process R
- E ; Input —
Setpoint 3 — ! Cutput

-.‘LI' m‘ 1

Fig. 13. Design of a fuzzy controller

4.1.2 Fuzzyfication and fuzzy rules

Simple control example: Let us consider a simple control example of TISO (Two Inputs Single
Output) Mamdani fuzzy controller. The fuzzy controller uses identical input fuzzy sets,
namely "Negative", "Zero" and "Positive" MFs. The system output is supposed to follow

x(t)=4+e"” (—4 cost+3/6 sinz‘),

as in Figure 14. The error is defined by e(¢) =r(¢)— x(t),where 7(¢) is the reference
de(t)
dt

input, supposed to be constant (a set point) 1. Then we have =e=—X.

4 system output

(everamast
brecaasa) d

Fig. 14. System output, fuzzy rules and phase trajectory

11 Scaling factors may be used to modify easily the universe of discourse of inputs. We then
have the scaled inputs K e(?) and K e.
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Fuzzification: Membership functions. A membership function (MF) assigns to each element
x of the universe of discourse X, a grade of membership £(X) such that

X - [01].

. X—a Cc—X
The triangular MF of Figure 15 is defined by (x ) = max {mln{b R }, 0},

~

where a<b<c. A fuzzy set A is then defined as a set of ordered pairs
Az{x,,u/](x)\xeX}.
According to the Zadeh operators, we have
p(AnB)=min{p(A),u(B)f,u(Av B)=max {u(d), u(B)},
and p(—=A)=1- u(A4).

The overlapping MFs of the two inputs error and change-in-error and the MF of the output
control-action show the most common triangular form in Figure 15. The linguistic label of

these MFs are Negative", "Zero" and "Positive" over the range [—100,100] for the two

inputs and over the range [— 1, 1] for the output.

Postive

Fig. 15. Membership functions of the two inputs and one output

Fuzzy rules: Fuzzy rules are coming from expert knowledge and consist in "If-Then"
statements. An antecedent block is placed between "If" and "Then" and a consequent block is

following "Then" 12. Let the continuous differentiable variables e(#) and é(l‘ ) denote the

error and the derivative of error in the simple stabilization problem of Figure 13. The
conditional recommendations are of the type

12 See [Braee & Rutherford, 1978] for fuzzy relations in a FLC and their influences to select
more appropriate operations.
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If <e,e>1s AxB Thenvis C,
where [4x B](x, ) = min {A(x),B(y), xel[-a,a],ye [—b,b]}.

These FAM (Fuzzy Associative Memory)-rules 13 are those of the Figure 16. These nine rules
will cover all the possible situation. According to rule (PL,NL;ZE), the system output is
below the set point (positive error) and is increasing at this point. The controller output
should then be unchanged. On the contrary, according to rule (NL,NL;NL), the system
output is above the set point (negative error) and is increasing at this point. The controller
output should then decrease the overshoot. The commonly linguistic states of the TISO
model are denoted by the simple linguistic set A={NL,ZE;PL}. The binary input-output

FAM-rules are then triples such as (NL,NL;NL): "If" input € is Negative Large and € is

Negative Large "Then" control action V is Negative Large. The antecedent (input) fuzzy sets
are implicitly combined with conjunction "And".

change in error
] NL | ZE | PL
NL | NL* ?| ZE°®
(ZE| 4 ZE® "

PL | ZE'| & PL’

Fig. 16. Fuzzy rule base 1: NL-Negative Large, ZE-Zero error, PL-Positive Large

error

4.1.3 Fuzzy inference and control action
Fuzzy inference: In Figure 17, the system combines logically input crisp values with
minimum, since the conjunction "And" is used. Figure 18 produces the output set, combining

all the rules of the simple control example, given crisp input values of the pair (e, é) .

ZERD , & E‘.Hﬁj\

== xf:l

e

Fig. 17. FAM influence procedure with crisp input measurement

13 Choosing an appropriate dimension of the rule is discussed by [Chopra et al., 2005]. Rules
bases of dimension 9 (for 3MFs), 25 (5MFs), 49 (7 MFs), 81 (9 MFs) and 121 (11 MFs) are
compared.
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error=-55 change-in-error=20

i
J

m
|

control-action=-,124

Fig. 18. Output fuzzy set from crisp input measurements

Defuzzyfication: The fuzzy output for all rules are aggregated to a fuzzy set as in Figure 18.
Several methods can be used to convert the output fuzzy set into a crisp value for the
control-action variable v. The centroid method (or center of gravity (COG) method) is the
center of mass of the area under the graph of the MF of the output set in Figure 18. The COG
corresponds to the expected value

jvy(v)dv
v, =
I,u(v)dv

In this example, V, = —. 124 for the pair of crisp inputs (e, é) = (—55, 20) .

4.2 Fuzzy control of the Phillips’ model

The closed-loop block-diagram of the Phillips'model is represented in Figure 19 with
simulation results. It consists of the FLC block and of the TF of the model. The properties of
the FLC controller have been described in Figure 13 (design of the controller), Figure 15
(membership functions), Figure 16 (fuzzy rule base) and Figure 18 (output fuzzy set). Figure
20 shows the efficiency of such a stabilization policy. The range of the fluctuations has been

notably reduced with a fuzzy control. Up to six years, the initial range [—12, 12] goes to
[-3,3].
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Ha tuning —

Furey tondng —s

Fig. 19. Block diagram of the Phillips model with Fuzzy Control

He stabliisation

Fig. 20. Fuzzy stabilization of the Phillips” model

4.3 Fuzzy control of the Goodwin’s model

Figure 21 shows the block-diagram of the controlled system. It consists of a fuzzy controller
and of the subsystem of the Goodwin’s model. The FLC controller is unchanged. The
simulation results show an efficient and fast stabilization. The system is stable within five
time-periods, and then fluctuates in an explosive way but restricted to an extremely close
range.
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Goodwin model

i > _%

Step | grror

Fig. 21. Block-diagram and simulation results of the fuzzy controlled Goodwin’s model

5. Conclusion

Compared to a PID control, the simulation results of a linear and nonlinear multiplier-
accelerator model show a more efficient stabilization of the economy within an acceptable
time-period of few years in a fuzzy environment. Do the economic policies have the ability
to stabilize the economy ? Sgrensen and Whitta-Jacobsen [S@rensen & Whitta-Jacobsen,
2005] identify three major limits: the credibility of the policy authorities’” commitments by
rational private agents, the imperfect information about the state of the economy, and the
time lags occurring in the decision making process. The effects of these limits are studied
using an aggregate supply-aggregate demand (AS-AD) model and a Taylor’s rule.

6. Appendix A: Analytical regulation of the Phillips’ model

6.1 Unregulated model dynamics
The unregulated model (with G =0 and # =1) is governed by a linear second order

ordinary differential equation (ODE) in Y , deduced from the system (5-8). We have

Y+(a(l-c)+ B—afv)Y +af(-c)Y (1) = —ap,
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When ¢ >0 with the initial conditions Y (0)=0, Y (0) =—«. Taking the following

values for the parameters: c=3/4,v=3/5a=4 (T = a'=3 months) and £ =1
(time constant of the lag 1 year), the ODE is

5Y-2Y +5Y(t)=-20, t>0,

with initial conditions ¥ (0) =0, Y (0) = —4.The solution of the unregulated model is

276
5

Y(t)=—4+2e" 2cos¥t—\/gsin t], t>0,

or

Y(f)=—4+6.32¢" cos(.98 t+.68), ¢>0.

The phase diagram in Figure A.1 shows an unstable equilibrium for which stabilization
policies are justified.

Y(t),Y by i

10

m 1 -
o 25 4 5 8 i 1112 ¥it)
v
Y ik

Fig. A.1. Phase diagram of the Phillips” model

6.2 Stabilization policies

The stabilization of the model proposed by [Phillips, 1954] consists in three additive policies:
the proportional P-stabilization policy, the proportional + integral Pl-stabilization policy, the
proportional + integral + derivative PID-stabilization policy. Modifications are introduced
by adding terms to the consumption equation (6).
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P-stabilization policy: For a P-stabilization, the consumption equation is
A
C(t)=cY(t)-u(t)-—Z—K Y (1),
D+A *

where K , denotes the proportional correction factor and A the speed of response of policy

demand to changes in potential policy demand 4. In the numerical applications, we will
retain 4 =2 (a correction lag with time constant of 6 months). The dynamic equation of the
model is a linear third order ODE in ¥

YO +(a(l—c)+ B+ A—-apv)Y
+(Br+a(l=c)B+A)+aiK, —afiv)Y
+apA(l-c+K, )Y () =-apiu(t).

Taking c=3/4,v=3/5,a:4,,8=1,/1=2,Kp =2,u =1, the ODE is

5Y® +8Y +81Y +90Y(7) =40, ¢ >0,

with the initial conditions Y (0)=0, Y (0)=-4, Y (0)=-5.6. The solution (for
t>0)is

Y(1)=—44—.03¢ % —1.1 & sin(=3.96 1 +.44).

The graph of the P-controlled is plotted in Figure A.2(b). The system is stable according to

the Routh-Hurwitz stability conditions!5. Moreover, the stability conditions for K , are

KPS—.ZS and Kp2.35.

14 The time constant of the correction lagis A~ years.
15 Let be the polynomial equation with real coefficients
a,A"+al"" +..+a, A+a, =0, a, >0
The Routh-Hurwitz theorem states that necessary and sufficient conditions to have negative

real part are given by the conditions that all the leading principal minors of a matrix must be
positive. In this case, the 3 3 matrix is

We have all the positive leading principal minors: A =1A =79 and A, =1425.
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Pl-stabilization policy: For a PI-stabilization policy, the consumption equation is
A
C(t) = c.Y () -u(t) ——{KpY(t) +K, | Y(t)dt},
D+A4
where K, denotes the integral correction factor. The dynamic equation of the model is a

linear fourth order ODE in Y is deduced
Y9+ (a(l-c)+ B+ A-apv)Y?
+(BA+a(—c)(B+A)+aliK, —apiv)¥
+(apil-c)+afAK, +aiK,)Y +afAK, Y(1)=0.

Taking ¢ =3/4,v=3/5,a=4,f=1,A=2,K =K, =2,u =1, the ODE is
5Y@ +8Y® +81Y +170Y +80Y(7) =0, >0,

with the initial conditions ¥ (0)=0,Y(0)=-4,Y(0)=-5.6,Y?(0)=96 . The

solution (for # > 0) is
Y(1)=—07¢"* —.13¢~ +1.08¢™ sin(—4.037+.19).

The graph of the PI-controlled Y (7) is plotted in Figure A.2(c). The system is unstable since

the Routh-Hurwitz stability conditions are not all satisfied 16. Given K b= 2, the stability

conditions on Kl. are Kl. € [0,.8987].

PID-stabilization policy: For a PID-stabilization policy, the consumption equation is

C(t)=cY(t)—u(t)- ﬁ{KpY(Z) +K, [Y(t)dr+ KdDY(t)} ,

where K, denotes the derivative correction factor. The dynamic equation of the model is a

linear fourth order ODE in Y
YW +(a(1—c)+,6’+/1+a/1Kd —aﬂv)Y“)
+(BA+(—c+AK, - v)aB+(1-c+K )ad)Y
+(apAl-c+K,)+alK,)Y +aPAK, Y (i) =0.

16 The leading principal minors are: A =LA =-8,A =-2747, A, =-5050.8.
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Taking ¢=3/4,v=3/5,a=4,=1,A=2,K, =K, =2,K,=.55u=1, the
fourth order ODEn Y is

YP 467 +20.6Y +34Y +16Y(1)=0, ¢ >0,
with the initial conditions Y (0)=0,Y(0)=-4,Y(0)=12,Y?(0)=2.4. The

solution (for > 0) is

Y(t)=—-.07e>"" - 12¢7 +1.40e" cos(2.76 t+1.54).

The graph of the PID-controlled Y (¢) is plotted in Figure A.2(d). The system is stable since
the Routh-Hurwitz stability conditions are all satisfied 17. Given K b= K. =2, the stability

conditions on K 4 are K a < -3.92 and K g2 .07 . The curve Figure A.2(a) without

stabilization policy shows the response of the activity Y to the unit initial decrease of

demand. The acceleration coefficient (V =.8) generates explosive fluctuations 18 .The
proportional tuning corrects the level of production but not the oscillations. The oscillations
grow worse by the integral tuning. The combined PlI-stabilization!® renders the system
unstable. The additional derivative stabilization is then introduced and the combined PID-
policy stabilizes the system.

first 3 years first 6 years

Fig. A.2. Stabilization policies over a 3-6 years period: (a) no stabilization policy, (b) P-
stabilization policy, (c) Pl-stabilization policy, (d) PID-stabilization policy

17 The leading principal minors are: A =1, A =89.6, A =3046.4, A =39526.4
18 Damped oscillations are obtained when the acceleration coefficient lies in the closed
interval [o, 5].

19 The integral correction is rarely used alone.
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