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1. Introduction

Information security is an important aspect that should be considered during system devel-
opment. Analyzing the specification of a system enables detecting flaws at early stage of a
system development. An agent knowledge of the exchanged information and its nature is
essential for analyzing systems. An agent can enrich its knowledge by receiving informa-
tion as messages and producing new information from the existing one. We classify an agent
knowledge as explicit knowledge and procedural knowledge.
The explicit knowledge of an agent is related to the information that it possesses. For example
in the context of a hospital software, an agent explicit knowledge would contain information
about patients, drugs, and diseases. In the context of a school, the explicit knowledge of
an agent would contain information about students, courses, and instructors. In the area of
cryptographic protocols, the information of an agent can be its own key, the cipher used for
encryption and decryption, and the identity of other agents that are involved in the protocol.
Agents communicate by sending messages which are pieces of information stored in their
explicit knowledge. The information an agent receives from other agents becomes a part of its
explicit knowledge.
The procedural knowledge involves a set of mechanisms/operators that enables an agent to ob-
tain new information from its explicit knowledge. For example, if the explicit knowledge of
an agent contains an encrypted message as well as the key and the cipher used to decrypt
the message, then by using the procedural knowledge, the concealed information can be ob-
tained. The use of the procedural knowledge to analyze cryptographic protocols can be found
in Sabri and Khedri (2006; 2007b).
The explicit knowledge representation is needed to analyze security related policies in multi-
agent systems. We summarize below some uses of the explicit knowledge:

1. Agents communicate by exchanging messages, which are constructed from their ex-
plicit knowledge. Therefore, an agent explicit knowledge is necessary for modeling
agents communications.

2. Explicit knowledge is required to specify agent internal actions such as verifying the
existence of an information in the knowledge. The explicit knowledge representation
becomes more useful in complex systems. For example, in the registration part of the
Equicrypt protocol presented in Leduc and Germeau (2000), a third party can handle

∗This chapter presents a revised and enlarged version of the material presented in Sabri et al. (2008)
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simultaneously several registrations. Therefore, it should maintain an internal “table”
with information on the users that have a registration in progress.

3. Some security properties are based on the explicit knowledge of agents. For example, a
confidentiality security property would require that an agent should not know a specific
kind of information existing in the explicit knowledge of another agent.

4. Even if the specification of a multi-agent system is proved to be secure by satisfying
some security properties, it could contain flaws due to its incorrect implementation. To
reduce the risk of incorrect implementation, one can derive the code automatically from
the mathematical model of the system and prove that the derivation is correct. Hav-
ing an explicit knowledge representation that allows specifying internal actions such
as inserting and extracting information from the knowledge as well as verifying the
existence of an information in the knowledge would be necessary for code generation.

For an efficient analysis of security policies in a multi-agent system, an explicit knowledge
representation would have the following characteristics as giving in Sabri and Khedri (2008):

1. Classifying information so that one can reason on the ability of an agent to obtain an
information that has a specific classification (e.g., private) in another agent’s knowledge.

2. Relating information together such as relating patient to drugs so that one can reason
on the ability of an agent to link pieces of information together.

3. Specifying internal actions such as inserting information into the knowledge and up-
dating information.

4. Flexibility in specification by not having the same classification of information in all
agents knowledge.

5. Specifying the explicit knowledge of systems with the same mathematical theory so that
there is no need to introduce a new theory for a specific case.

In the literature, we find that explicit knowledge specifications satisfy some of the character-
istics but not all of them. In this chapter, we present a mathematical structure to represent the
explicit knowledge of agents that satisfies all the characteristics above. Then, we show that the
structure is an information algebra which is introduced in Kohlas and Stärk (2007). In Section 2,
we summarize information algebra. In Section 3, we present the mathematical structure to
specify agent explicit knowledge. In Section 4, we give two applications of the uses of the
proposed structure. In Section 5, we conclude.

2. Information Algebra

In Kohlas and Stärk (2007), the authors explore connections between different representations
of information. They introduce a mathematical structure called information algebra. This math-
ematical structure involves a set of information Φ and a lattice D. They show that relational
databases, modules, and constraint systems are information algebras. In the rest of this chap-
ter, we denote elements of Φ by small letters of the Greek alphabet such as ϕ,ψ and χ. Each
piece of information is associated with a frame (also called domain in Kohlas and Stärk (2007)),
and the lattice D is the set of all frames. Each frame x contains a unit element ex which repre-
sents the empty information. Information can be combined or restricted to a specific frame.
Combining two pieces of information ϕ and ψ is represented by ϕψ. Information ϕ and ψ can
be associated with different frames, and ϕψ is associated with a more precise frame than ϕ and
ψ. Kohlas and Stärk (2007) assume that the order of combining information does not matter

www.intechopen.com
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and, therefore, the combining operator is both commutative and associative. Restricting an
information ϕ to a frame x is denoted by ϕ↓x which represents only the part of ϕ associated
with x.
In the following definition and beyond, let (D,�,�) be a lattice and x and y be elements of
D called frames. Let � be a binary relation between frames such that x � y = y ↔ x � y. Let
Φ be a set of information and ϕ,ψ, χ be elements of Φ. We denote the frame of information
ϕ ∈ Φ by d(ϕ) . Let ex be the empty information over the frame x ∈ D, the operation ↓ be
a partial mapping Φ × D → Φ, and · be a binary operator on information. For simplicity, to
denote ϕ · ψ, we write ϕψ.

Definition 1 (Information Algebra as in Kohlas and Stärk (2007)). An information algebra is a
system (Φ, D) that satisfies the following axioms:

1. (ϕψ)χ = ϕ(ψχ)

2. ϕψ = ψϕ

3. d(ϕψ) = d(ϕ) � d(ψ)

4. x � y → (ey)↓x = ex

5. d(ϕ) = x → ϕex = ϕ

6. ∀(x | x ∈ D : d(ex) = x )

7. x � d(ϕ) → d(ϕ↓x ) = x

8. x � y � d(ϕ) → (ϕ↓y )↓x = ϕ↓x

9. d(ϕ) = x ∧ d(ψ) = y → (ϕψ)↓x = ϕ(ψ↓x∧y )

10. x � d(ϕ) → ϕϕ↓x = ϕ
�

The first two axioms indicate that the set of pieces of information together with the combin-
ing operator form a semi-group. Axiom 3 states that the frame of two pieces of information
combined is the join of their frames. Axioms (4-6) give properties of the empty information ex.
Axioms (7-8) give the properties of focusing an information to a specific frame. Axioms (9-10)
give properties that involve combining and focusing of information.

3. Specification of Agent Explicit Knowledge

In Sabri et al. (2008), we develop a mathematical structure to specify an agent explicit knowl-
edge and prove that it is an information algebra. The explicit knowledge of an agent is
represented by two elements Φ and D. The set Φ consists of pieces of information (we use
the words information and piece of information interchangeably) available to the considered
agent. There is no restriction on the representation of these pieces of information. They can
be represented as formulae as in artificial intelligence literature, functions, etc. In this chapter,
we represent pieces of information as functions. While D is a lattice of frames such that each
piece of information is associated with a frame.

Definition 2 (Agent Information Frame). Let {Ai | i ∈ I} be a family of sets indexed by the set of
indices I and P(Ai) be the powerset of Ai. An information frame DI is defined as:

DI � ∏
i∈I

P(Ai)

Which can be equivalently written as a set of functions as

DI � { f : I →
⋃

i∈I

P(Ai) | ∀(i | i ∈ I : f (i) ∈ P(Ai) )}

www.intechopen.com
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Let J ⊆ I and IJ ⊆ I × I such that IJ = {(x, x) | x ∈ J} (i.e., IJ is the identity on J). Given
the frame DI , we can define DJ as {g | ∃( f | f ∈ DI : g = IJ ; f )} where ; denotes relational

composition. We call an element ϕ of DJ an information and DJ the frame of ϕ and denote1 it by
d(ϕ). We call “d“ the labelling operator. The information ϕ is a function which can be written
as a set of 2-tuples (i, A) where i is an index and A is a set. Each frame DJ contains a special
element called the empty information eDJ

and defined as {(i,∅) | i ∈ J}. Whenever, it is clear
from the context, we write eJ instead of eDJ

. We denote the set of all frames DJ for J ⊆ I by D
and the set of all pieces of information by Φ.
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D∅

Fig. 1. A lattice constructed from I = {company,country}

As an example of our representation of Φ and D, suppose that an agent can handle only
two kinds of information: company and country. In this case, the set of indices is I =
{company,country} and the lattice D is constructed as in Figure 1. The lattice D consists of four
frames: D∅ is a frame that might involve only the empty information e∅ (absence of informa-
tion), D{company} is the frame of the pieces of information classified as company, D{country}
is the frame of the pieces of information classified as country, and D{company, country} is the

frame of composite information where part of it is classified as company and another part is
classified as country. Our aim from this lattice representation is to represent frames of atomic
information as in D{country} and D{company} and to represent frames of composite information

as in D{country, company}.

To illustrate our representation of information, let the set of information Φ contains two pieces
of information ϕ and ψ such that ϕ = {(company,{AirFrance}), (country,{France})} and ψ =
{(company,{AirCanada})}. The first information associates the company AirFrance with the
country France while the second information contains the AirCanada information.

Definition 3. An information ϕ is called atomic if ϕ = e∅ or d(ϕ) = D{j} for j ∈ I.

From the definition, we can see that ϕ is a composite information while ψ is an atomic infor-
mation. The set of information Φ can be represented in a tabular format as shown in Table 1.
A piece of information can be seen as a row in a table where the table header represents the
indices of the frame of an information. An empty information can be perceived as a table with
only a header and e∅ can be seen as an empty page that does not contain even the header. An
atomic information can be seen as a cell of the table or as an empty page. The following axiom
and proposition are taken from Sabri et al. (2008) and are needed for the subsequent proofs.

1The notation d(ϕ) to denote the frame of ϕ comes from the usage of the term domain in Kohlas and
Stärk (2007) as a synonym for frame. We prefer to use the term frame to avoid any confusion with the
domain of a relation.

www.intechopen.com



�������	
�������������������	
	�����������	������	�������������� ��%

Table 1. The set Φ in a tabular format

company country

ϕ AirFrance France

ψ AirCanada -

Axioms 1. 1. ϕ ∈ DJ → d(ϕ) = DJ 2. eJ � {(i,∅) | i ∈ J} �

From the definition of DJ , it follows that ϕ ∈ DJ → ∀(i | i ∈ J : ϕ(i) ∈ P(Ai) ). Therefore,
ϕ ∈ DJ can be written as a set of 2-tuples {(i, A) | i ∈ J ∧ A ⊆ Ai}.

Proposition 1. For J, K ⊆ I and ϕ ∈ Φ, we have:

1. ϕ ∈ DK → IJ ;ϕ = {(i, A) | i ∈ (J ∩ K) ∧ A ⊆ Ai}

2. IJ ;IK = IJ∩K

3. ϕ ∈ DK → d(IJ ;ϕ) = DJ∩K

4. IJ∪K = IJ ∪ IK

Proof. 1. The proof invokes the definitions of relation composition, ϕ, and IJ as well as
the trading rule for ∃, set intersection axiom, and the distributivity of ∧ over ∃.

2. The proof invokes the definition of DK , definition of DJ∩K , Proposition 1(2), and Ax-
iom 1(1).

3. One uses the definition of IJ , IK , and IJ∪K as well as applies set union axiom and range
split axiom.

The complete proof is given in Sabri and Khedri (2007a).

We define a binary operator · to combine information (we write ϕψ to denote ϕ · ψ). We can
use this operator to represent composite information made of pieces of information.

Definition 4 (Combining Information). Let Φ be a set of information and ϕ,ψ be its elements. Let
d(ϕ) = DJ and d(ψ) = DK . We define the binary operator · (however, we write ϕψ to denote ϕ · ψ)

on information as: ϕψ � {(i, A) | i ∈ J ∩ K ∧ A = ϕ(i) ∪ ψ(i)} ∪ {(i, A) | i ∈ J − K ∧ A =
ϕ(i)} ∪ {(i, A) | i = K − J ∧ A = ψ(i)} �

We also define two operators on frames as follows:

Definition 5. Let DJ and DK be frames and ϕ ∗ ψ = {(i, A) | i ∈ J ∩ K ∧ A = ϕ(i) ∩ ψ(i)}, we
define the operators � and � on frames as:

1. DJ � DK � {χ | ∃(ϕ,ψ | ϕ ∈ DJ ∧ ψ ∈ DK : χ = ϕψ )}

2. DJ � DK � {χ | ∃(ϕ,ψ | ϕ ∈ DJ ∧ ψ ∈ DK : χ = ϕ ∗ ψ )} �

Proposition 2. DJ � DK = DJ∪K

Proof. The proof calls for the definitions of DJ , DK , and DJ∪K as well as Definition 5(1), dis-
tributivity of ∧ over ∃, trading rule for ∃, nesting axiom, interchange of dummies, Defi-
nition 4, Proposition 1(1), renaming, and range split axiom. The detailed proof is given in
Appendix A.
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Proposition 3. DJ � DK = DJ∩K

Proof. The proof is similar to that of Proposition 2. We use the definitions of DJ , DK , and DJ∩K

and we apply Definition 5(2), distributivity of ∧ over ∃, trading rule for ∃, nesting axiom,
interchange of dummies, Proposition 1(1), renaming, and range split axiom. The complete
proof is given in Sabri and Khedri (2007a).

Proposition 4. Let DJ , DK , and DK be frames, we have

1. DJ � DK = DK � DJ

2. DJ � DK = DK � DJ

3. (DJ � DK) � DL = DJ � (DK � DL)

4. (DJ � DK) � DL = DJ � (DK � DL)

5. DJ � (DJ � DL) = DJ

6. DJ � (DJ � DL) = DJ

Proof. We use Proposition 2, Proposition 3 and the properties of ∩ and ∪. The complete proof
is given in Sabri and Khedri (2007a).

The following proposition is a consequence result of Proposition 4.

Proposition 5 (Lattice of Frames). ({DJ}J⊆I ,�,�) form a lattice.

For simplicity, we use D to denote the lattice ({DJ}J⊆I ,�,�). On the lattice D and for DJ and
DK frames in D, it is known that the following are equivalent (Davey and Priestley, 2002, page
39):

1. DJ � DK 2. DJ � DK = DK 3. DJ � DK = DJ

We define a partial order relation ≤ on information as ϕ ≤ ψ and we say that ψ is more infor-
mative than ϕ.

Definition 6 (More Informative Relation). Let Φ be a set of information and ϕ,ψ be elements of Φ.
Let D be a lattice and DJ and DK be elements of D. Let d(ϕ) = DJ and d(ψ) = DK . We define the
binary relation ≤ on information as: ϕ ≤ ψ ↔ J ⊆ K ∧ ∀(i | i ∈ J : ϕ(i) ⊆ ψ(i) ) �

The relation ≤ indicates whether or not an information is a part of another one. We use it to
verify the existence of an information in the knowledge of an agent. An information can be in
the knowledge of an agent as a part of a composite information. The special element e∅ of D∅

is the least informative information i.e., ∀(ϕ | ϕ ∈ Φ : e∅ ≤ ϕ ).

Proposition 6. The relation ≤ is a partial order.

Proof. The proof is based on the property that ⊆ is a partial order. The proof is given in Sabri
and Khedri (2007a).

www.intechopen.com
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We show in Sabri et al. (2008) that there is a relation between frames and their indices.

Proposition 7.

1. ∀(J, K | J, K ⊆ I : J = K → DJ = DK )

2. ∀(J, K | J, K ⊆ I : DJ = DK → J = K )

3. ∀(J, K | J, K ⊆ I : DJ � DK ↔ J ⊆ K )

Proof. 1. The proof uses trading rule for ∀, Substitution axiom, and properties of proposi-
tional logic.

2. We prove by contrapositive. We assume that J �= K and prove DJ = DK → false. The
proof uses the definition of DJ and DK , definition of ”↔”, Weakening, Proposition 1(4),
the distributivity of relational composition over ∪, Distributivity of ∧ over ∃, ∃-True
body, and properties of propositional logic.

3. The proof uses Proposition 7(2), Proposition 2, Reflexivity of ↔, ∀-True body, and prop-
erties of set theory.

The complete proof is given in Appendix A.

We also define a binary operator to extract a part of an information that belongs to a specific
frame as:

Definition 7 (Marginalizing Information). Let DJ be a frame and ϕ be an information such that

DJ ∈ D and ϕ ∈ Φ, we define a binary operator ↓ : Φ × D → Φ as ϕ
↓DJ � IJ ;ϕ. �

The ↓ operator can be used to extract a specific kind of information. For example, let ϕ =

{(company,{AirFrance}), (country,{France})}, then ϕ
↓D{company} = {(company,{AirFrance)}.

After defining information marginalizing, labelling and combination in our context, we prove
in Sabri et al. (2008) that our structure is an information algebra by proving the following
proposition.

Proposition 8. For J,K ⊆ I, we have

1. (ϕψ)χ = ϕ(ψχ)

2. ϕψ = ψϕ

3. d(ϕψ) = d(ϕ) � d(ψ)

4. d(ϕ) = DJ → ϕeJ = ϕ

5. d(eJ) = DJ

6. DJ � DK → (eK)
↓DJ = eJ

7. d(ϕ) = DJ ∧ d(ψ) = DK → (ϕψ)
↓DJ = ϕ(ψ

↓DJ∧DK )

8. DJ � d(ϕ) → d(ϕ
↓DJ ) = DJ

9. DJ � DK � d(ϕ) → (ϕ↓DK )
↓DJ = ϕ

↓DJ

10. DJ � d(ϕ) → ϕϕ
↓DJ = ϕ

Proof. 1. The proof calls for Definition 4, commutativity and associativity of ∪, and prop-
erties of set difference.

2. We use Definition 4 and commutativity of ∩ and ∪.

3. The proof essentially invokes Axiom 1(1), Propositions 2, the definition of DJ∪K , Propo-
sition 1(1), and Definition 4.

4. We basically use Definition 4, Axiom 1(2), idempotency of ∩, and empty range axiom.
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5. The proof essentially calls for Axiom 1(1, 2), the definition of DJ , and Proposition 1(1).

6. The proof invokes Definition 7, Axiom 1(2), Proposition 1(1), and Proposition 7(3).

7. The proof invokes Definition 7, Definition 4, Proposition 1(1), and properties of set dif-
ference, ∪ and ∩.

8. The proof invokes Definition 7, Proposition 1(3), Axiom 1(1), and Proposition 7(3).

9. We use Definition 7, Proposition 1(2), and Proposition 7(3).

10. The proof calls for Definition 7, Proposition 1(1), Definition 4, Axiom 1(1), Proposi-
tion 7(3), range split axiom, and properties of set difference, ∪, and ∩.

The full detailed proof can be found in Sabri and Khedri (2007a).

Proposition 9. The structure (Φ, D) is an information algebra.

Proof. (Φ, D) satisfies the ten axioms of information algebra (see Definition 1) as shown in
Proposition 8.

As consequence results of proving that (Φ, D) is an information algebra, the following prop-
erties hold and the proofs can be found in Kohlas and Stärk (2007):

Proposition 10.

1. d(ϕ) = DJ → ϕ
↓DJ = ϕ

2. ϕϕ = ϕ

3. DJ � DK → eJeK = eK

4. d(ϕ) = DJ → (ϕDK)
↓DJ = ϕ

5. DJ � d(ϕ) → (ϕeK)
↓DJ = ϕ

↓DJ

6. eJ�K = eJeK �

The empty information has some interesting properties as shown in the following proposition.

Proposition 11. Let ϕ ∈ DJ and J ⊆ I, we have

1. ϕ↓D∅ = e∅ 2. e
↓DJ

∅
= e∅

3. ϕe∅ = ϕ 4. e∅ = ∅

Proof. The proof uses Definition 7, Definition 4, Proposition 1(1), Axiom 1, and properties of
set theory and propositional logic. The full proof is given in Sabri et al. (2009a).

We also prove some properties related to the marginalzing operator.

Proposition 12. Let ϕ ∈ DL and ψ ∈ DK , we have

1. ϕ
↓DJ · ϕ↓DK = ϕ

↓DJ∪K

2. (ϕψ)↓DL = ϕ↓DL ψ↓DL

3. ϕ↓DK =ϕ
↓DJ∩K

4. (ϕ↓DK )↓DL =ϕ↓DK∩L

Proof. The proof uses the definition of ·, the definition of ↓, Proposition 1(1), and properties of
set theory and propositional logic. The full proof is given in Appendix A.

In addition to the information algebra operators, we define in Sabri et al. (2009b) an operator
to remove a piece of information from another one.

www.intechopen.com
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Definition 8 (Removing Information). Let d(ϕ) = DJ and d(ψ) = DK . We define the binary opera-

tor ”− ” as: ϕ − ψ � {(i, A) | i ∈ J ∩ K ∧ A = ϕ(i)− ψ(i)} ∪ {(i, A) | i ∈ J − K ∧ A = ϕ(i)}
�

Let ϕ = {(company,{AirFrance}), (country,{France})} and ψ = {(company,{AirFrance})}, then
ϕ − ψ = {(company,{}), (country,{France})}. We also prove in Sabri et al. (2009b) the follow-
ing proposition.

Proposition 13. Let ϕ, ψ and χ be pieces of information such that d(ϕ) = DJ , d(ψ) = DK , and
d(χ) = DL. Also, let eK be the empty information on DK

1. d(ϕ − ψ) = d(ϕ)

2. ϕ − eK = ϕ

3. eK − ϕ = eK

4. ϕ ≤ (ψ − χ) → ϕ ≤ ψ

5. ϕ ≤ ψ → ϕ − ψ = ed(ϕ)

6. (ϕψ − ψ)↓d(ϕ) ≤ ϕ

7. ϕ ≤ ψ → (χ − ϕ)ψ = χψ

Proof. 1. The proof uses Axiom 1(1), Definition of DJ , Distributivity of ; over ∪, Propo-
sition 1(1), Empty range axiom, Definition of ϕ − ψ, and properities of set theory and
propositional logic.

2. The proof uses Definition of ϕ − eK , Definition of eK , Distributivity of ∧ over ∨, and
properities of set theory.

3. The proof uses Definition of eK − ϕ, Definition of eK , Distributivity of ∧ over ∨, and
properities of set theory.

4. The proof uses Definition of ≤, Range split for ∀, Empty range axiom, Definition of
ϕ − χ, Distributivity axiom, Weakening, and properties of set theory and propositional
logic.

5. The proof uses Definition of ϕ − ψ, Empty range, Definition of eJ , and properties of set
theory and propositional logic.

6. The proof uses Definition of ϕψ − ψ, Definition of ↓DJ
, Distributivity of ; over ∪, Propo-

sition 1(1), Definition of combining information, Definition of ≤, ∀-True body, and prop-
erties of set theory and propositional logic.

7. The proof uses Definition of ≤, The definition of combining information, Range split,
Definition of set difference, Definition of χ − ϕ, and properties of set theory and propo-
sitional logic.

Full proof is given in Sabri et al. (2009a).

The proposition gives some properties of the remove operator such as Proposition 13(1) which
indicates that removing pieces from an information does not change the frame of that infor-
mation. Proposition 13(2, 3) states that removing an empty piece from an information does
not affect that information, and a removing piece of information from the empty information
does not change the empty information. Also, the proposition relates the more informative
relation with the remove operator as shown in Proposition 13(4,5). Proposition 13(6,7) relates
the remove operator with the combine operator.
We note that agents might have different lattices of frames. The frame of an information at a
sender’s knowledge might be assigned to a different frame after its transmission to a receiver.
In Sabri et al. (2009b), we define a frame substitution function that substitutes a part of a frame
of an information with another as:
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Definition 9 (Frame Substitution). fs(ϕ, DJ , DK) � ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ]) where the sets J and
K are singleton subsets of the set of indices I and d(ϕ) = DL. �

We note that this function is defined using basic information algebra operators. As an example
of the frame substitution function, let ϕ = {(country,{France}),(company,{AirFrance})}. Then,
fs(ϕ, D{company}, D{airline}) = {(country,{France}), (airline,{AirFrance})}.

We prove a proposition related to set theory that we used in Sabri et al. (2009b) to prove
properties related to frame substitution function.

Proposition 14. For J = {j}, we have ¬(J ⊆ K) → J ∩ K = ∅

Proof. The proof uses properties of set theory. The full proof is given in Sabri et al. (2009a).

Proposition 15. Let J = {j} and K = {k} be singleton subsets of the set of indices I and d(ϕ) = DL,
we have

1. DJ � d(ϕ) ∨ ϕ = fs(ϕ, DJ , DK)

2. DK � d(ϕ)) ∨ ϕ = fs(fs(ϕ, DJ , DK), DK , DJ)

Proof. 1. The proof uses Proposition 7(3), Proposition 14, Definition of fs(ϕ, DJ , DK), Propo-
sition 10(1), Definition of ↓DJ

, Proposition 1(1), Proposition 11(4), Proposition 11(3), and
properties of set theory and propositional logic.

2. To prove ϕ = fs(fs(ϕ, DJ , DK), DK , DJ), we have two cases: ¬(DJ � d(ϕ)) and DJ � d(ϕ).
The proof of the first case uses Proposition 7(3), Proposition 14, and Proposition 15(1).
The proof of the second case uses Definition of fs, Proposition 1(2, 9), Proposition 11(1),
Proposition 11(3), Proposition 12(2), Proposition 12(4), Proposition 12(3), and Proposi-
tion 12(1).

The full proof is given in Appendix A.

As discussed in Sabri et al. (2008; 2009b), the knowledge of each agent is modeled as an in-

formation algebra N � (Φ, D). Based on the operators of information algebra, we introduce
in Sabri et al. (2008; 2009b) several functions to specify operations on knowledge.

• isInKnowledge(N , x, ϕ) � ∃(ψ | ψ ∈ Φ : x ∈ D ∧ ϕ ≤ ψ ∧ x � d(ψ) ). This function
verifies the existence of an information in the knowledge N associated with the frame x
and is more informative than ϕ.

• extract(N , x, ϕ) � {ψ↓x | x ∈ D ∧ ψ ∈ Φ ∧ ϕ ≤ ψ ∧ x � d(ψ)}. This function extracts
pieces of information from the knowledge N that contains ϕ and restricts them to the
frame x.

• insert(N , ϕ). This function inserts the information ϕ into Φ.

• update(N , ψ, ϕ) � ({(χ − ψ) · ϕ | χ ∈ Φ ∧ ψ ≤ χ} ∪ {χ | χ ∈ Φ ∧ ¬(ψ ≤ χ)}, D).
This function update the knowledge N by replacing ψ with ϕ.

In the insert and update functions, there is always a condition that d(ϕ) ∈ D. We also define
in Sabri et al. (2009b) the function choose(Φ) to select a piece of information randomly from
Φ. If Φ is empty, it returns the empty information e∅. In Sabri et al. (2009b), we prove the
following proposition which helps in verifying policies.

Proposition 16. Let ϕ and ψ be pieces of information and let N be a knowledge.
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1. ϕ ≤ ψ ∧ ϕ ≤ χ → update(update(N , ϕ, ψ), ϕ, χ) = update(N , ϕ, ψ · χ)

2. isInKnowledge(N , d(ϕ), ϕ) ∨ update(N , ϕ, ψ) = N

Proof. 1. The proof uses the definition of the function update, Distributivity axiom, Trading
rule for ∃, Nesting axiom, Distributivity of ∧ over ∨, Proposition 13(7), Substitution
axiom, and properties of set theory and propositional logic.

2. The proof uses Definition of isInKnowledge, De Morgan laws, Proposition 7(1), Defini-
tion of update, Empty range axiom, and properties of set theory and propositional logic.

The full proof is given in Appendix A.

4. Application

The proposed mathematical structure has several applications in the analysis of security prop-
erties. We summarize here its use in the analysis of cryptographic protocols and information
flow. We implement a prototype tool in the functional programming language Haskell. This
prototype tool is used to represent and manipulate explicit knowledge of agents. It allows
initializing the lattice of frames D and the set of information Φ for each agent. It implements
the functions presented earlier so that the user can insert, remove and update the knowledge
of each agent. Also, it allows extracting information from the knowledge and verifying the
existence of an information in the knowledge of an agent.

4.1 Cryptographic Protocols

In Sabri et al. (2008), we show the use of our representation of the explicit knowledge and
its functions to specify protocols, specify properties, reduce the state space, and generate a
specific type of attack with the aid of the developed prototype tool.

• Specify protocol: the tool allows specifying the insertion of information and the update
of the knowledge

-- insertInformation is the implementation of the

-- function insert presented in the previous section.

-- insertInformation function inserts the key "hello"

-- into the frame named "key" at the knowledge of agent "S".

insertInformation "S"

([("key",["hello"])],["key"])

• Specify properties: the tool allows specifying several properties such as an intruder Z
should not get a session key “hello“.

-- isInKnowledge is the implementation of the

-- function isInKnowledge presented in the previous section.

-- isInKnowledge function checks if the intruder knowledge (Z)

-- contains the key "hello" associated with the frame "key"

isInKnowledge "Z" (["key"])

([("key",["k"])],["key"])

• Reduce state space: the tool allows specifying intruder that send useful messages. For
example, all the messages sent to the server should be encrypted with the server public
key if the server should decrypt the message.
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-- extractInformation is the implementation of the

-- function extract presented in the previous section.

-- extractInformation extracts from the knowledge Z the public keys that

-- are associated with the server.

extractInformation "Z" (["publicK"])

([("id",["Server"])],["id"])

• Generate attack: the tool allows mounting a specific kind of attack such as a reflection
attack where the intruder Z sends messages back to the sender.

-- extractInformation extract from the knowledge Z all the messages

-- that are associated with the sender John Do.

extractInformation "Z" (["message"])

([("sender",["John Do"])],["sender"])

In Sabri et al. (2008), we summarize existing techniques used to specify agent knowledge in
cryptographic protocols. For instance, Leduc and Germeau (2000) adopt LOTOS, Fábrega et al.
(1999) propose strand space, Clarke et al. (2000) introduce Brutus, Paulson (1998) adopt an
inductive approach, Ma and Cheng (2005) introduced a knowledge-based logical system, and
finally Cervesato (2000) introduce MSR. We also compare them to our mathematical structure.
We show that our explicit knowledge representation allows specifying knowledges similar to
the existing techniques. However, our mathematical structure allows the specifier to define
only a set of frames of the explicit knowledge which indicates the classification of information.
There is no need to specify the relation between information as in the existing techniques such
as relating public key with a private key. We use a compact number of operators to specify the
agent explicit knowledge of any protocol. For example, the knowledge-based logical approach
as found in Ma and Cheng (2005) uses about six functions to specify the registration phase
of the SET protocol. Four functions are used to map an agent to its public encryption key,
private encryption key, public signature key, and private signature keys. Also, a function
is introduced to associate two agents with a shared key, and another function to verify if a
message is a part of another one. In our structure, only the pre-defined operators within
the framework are required to manipulate the information. There is no need to define new
operators. Having a small number of operators would reduce the complexity of specifying
cryptographic protocols and verifying them.
Also, the proposed framework enables specifying the internal actions of agents. For example,
we can specify the ability of the server to check the freshness of a message while this is not
possible in Brutus as we find in Clarke et al. (2000). The inability of specifying the internal
actions would affect the protocol analysis and implementation.

4.2 Information Flow Analysis

In Sabri et al. (2009b), we apply our explicit knowledge structure in developing a technique
to verify information flow in agent-based systems. The technique is based on information
algebra to represent agent knowledge, global calculus to represent the communication and
an amended version of Hoare logic for verification. We use Hoare triple {P}S{Q} to con-
duct verification where the precondition P represents a condition on the initial knowledge of
agents, S represents the specification of the communication between agents, and the postcon-
dition Q represents the negation of a confidentiality policy on the knowledge of agents. The
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precondition and the postcondition are expressed within the language of information algebra.
To verify a policy, we first calculate the weakest precondition from S and Q and then prove
or disprove that P → wp(S, Q). The inference rules are obtained by amending Hoare’s set of
rules to make them appropriate to protocols specified using global calculus and information
algebra. For more details, we refer the reader to Sabri et al. (2009b). A tool is used in Sabri
et al. (2009b) together with the PVS theorem prover to verify policies.
In Sabri et al. (2009b), we show that the use of information algebra to specify confidential-
ity policies allows specifying policies similar to that of Bell and LaPadula (1976) and Brewer
and Nash (1989) models. Also, it allows analyzing composite information flow, which is not
taken into consideration in the existing techniques such as Alghathbar et al. (2006); Focardi
and Gorrieri (1997); Hristova et al. (2006); Varadharajan (1990). Analyzing composite infor-
mation enables verifying the possibility of an agent to link pieces of information together and
therefore, build up an important composite information.

5. Conclusion

In this chapter, we present a structure to specify agent explicit knowledge based on infor-
mation algebra. We define in the context of agent knowledge the combining, marginalizing,
and labelling operators. Also, we define remove and frame substitution operator. These op-
erators are all what is needed to express operations on agent explicit knowledge. We also
define a set of frames to be associated with information. Then, we prove that our structure is
an information algebra which links our work to a rich heritage of mathematical theories. Our
mathematical structure is expressive as it allows combining information for different purposes
regardless of their frames, extracting a part of information, or associating information with a
frame.
We give two applications of the proposed structure. First, we apply it to the specification and
analysis of agent knowledge in cryptographic protocols. In the literature of cryptographic
protocols, operators are usually defined on information that belongs to a specific type, while
our structure enables a uniform and a general way to handle information. Also, defining
a relation between frames and linking them to the operators applied on information is not
addressed in the literature. Furthermore, different protocol-dependent structures should be
defined to relate different kinds of information which are not needed in our representation.
Second, we show its use in the analysis of information flow between agents in multi-agent
systems. Our structure provides a comprehensive language to specify agents knowledge and
confidentiality policies. For example, it allows specifying and reasoning on composite infor-
mation flow. Also, it allows specifying policies similar those articulated within Bell-LaPadula
and Chinese Wall models.

A. Detailed Proofs

A.1 Proposition 2

DJ � DK = DJ∪K

Proof.

DJ � DK

= 〈 Definition 5(1) 〉

{χ | ∃(ϕ,ψ | ϕ ∈ DJ ∧ ψ ∈ DK : χ = ϕψ )}
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= 〈 y ∈ {x | r} ↔ r[x := y] & Definition of DJ 〉

{χ | ∃(ϕ,ψ | ∃( f | f ∈ DI : ϕ = IJ ; f ) ∧ ψ ∈ DK : χ = ϕψ )}

= 〈 y ∈ {x | r} ↔ r[x := y] & Definition of DK 〉

{χ | ∃(ϕ,ψ | ∃( f | f ∈ DI : ϕ = IJ ; f )

∧ ∃(g | g ∈ DI : ψ = IK ;g ) : χ = ϕψ )}

= 〈 Distributivity of ∧ over ∃ 〉

{χ | ∃(ϕ,ψ | ∃( f | f ∈ DI : ϕ = IJ ; f

∧ ∃(g | g ∈ DI : ψ = IK ;g ) ) : χ = ϕψ )}

= 〈 Trading rule for ∃ 〉

{χ | ∃(ϕ,ψ | ∃( f | f ∈ DI ∧ ϕ = IJ ; f :

∃(g | g ∈ DI : ψ = IK ;g ) ) : χ = ϕψ )}

= 〈 Nesting axiom 〉

{χ | ∃(ϕ,ψ |

∃( f , g | f ∈ DI ∧ ϕ = IJ ; f ∧ g ∈ DI : ψ = IK ;g ) : χ = ϕψ )}

= 〈 Trading rule for ∃ & Symmetry of ∧ 〉

{χ | ∃(ϕ,ψ |

∃( f , g | f ∈ DI ∧ g ∈ DI : ϕ = IJ ; f ∧ ψ = IK ;g ) : χ = ϕψ )}

= 〈 Trading rule for ∃ 〉

{χ | ∃(ϕ,ψ |:

∃( f , g | f ∈ DI ∧ g ∈ DI : ϕ = IJ ; f ∧ ψ = IK ;g ) ∧ χ = ϕψ )}

= 〈 Distributivity of ∧ over ∃ 〉

{χ | ∃(ϕ,ψ |:

∃( f , g | f ∈ DI ∧ g ∈ DI : ϕ = IJ ; f ∧ ψ = IK ;g ∧ χ = ϕψ ) )}

= 〈 Substitution axiom 〉

{χ | ∃(ϕ,ψ |:

∃( f , g | f ∈ DI ∧ g ∈ DI : ϕ = IJ ; f ∧ ψ = IK ;g ∧ χ = (IJ ; f )ψ ) )}

= 〈 Substitution axiom 〉

{χ | ∃(ϕ,ψ |:

∃( f , g | f ∈ DI ∧ g ∈ DI : ϕ = IJ ; f ∧ ψ = IK ;g ∧ χ = (IJ ; f )(IK ;g) ) )}

= 〈 Trading rule for ∃ & Symmetry of ∧ 〉

{χ | ∃(ϕ,ψ |:

∃( f , g | f ∈ DI ∧ g ∈ DI ∧ χ = (IJ ; f )(IK ;g) : ϕ = IJ ; f ∧ ψ = IK ;g ) )}

= 〈 Interchange of dummies 〉

{χ | ∃( f , g | f ∈ DI ∧ g ∈ DI ∧ χ = (IJ ; f )(IK ;g) :

∃(ϕ,ψ |: ϕ = IJ ; f ∧ ψ = IK ;g ) )}

= 〈 Ix and the functions f and g are always defined, and there composition is
defined as well 〉

{χ | ∃( f , g | f ∈ DI ∧ g ∈ DI ∧ χ = (IJ ; f )(IK ;g) : true )}

= 〈 Trading rule for ∃ & Identity of ∧ 〉

{χ | ∃( f , g | f ∈ DI ∧ g ∈ DI : χ = (IJ ; f )(IK ;g) )}

www.intechopen.com



�������	
�������������������	
	�����������	������	�������������� �&%

= 〈 Definition 4 and Proposition 1(1) 〉

{χ | ∃( f , g | f , g ∈ DI : χ = {(i, A) | i ∈ J ∩ K ∧ A = f (i) ∪ g(i)}

∪{(i, A) | i ∈ J − K ∧ A = f (i)}

∪{(i, A) | i ∈ K − J ∧ A = g(i)} )}

= 〈 Let

h(i) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (i) ∪ g(i) if i ∈ (J ∩ K),
f (i) if i ∈ (J − K),
g(i) if i ∈ (K − J).
∅ if i ∈ I − (J ∪ K)

〉
{χ | ∃(h | h ∈ DI : χ = {(i, A) | i ∈ J ∩ K ∧ A = h(i)}

∪{(i, A) | i ∈ J − K ∧ A = h(i)}

∪{(i, A) | i ∈ K − J ∧ A = h(i)} )}

= 〈 Range split axiom 〉

{χ | ∃(h | h ∈ DI : χ = {(i, A) | i ∈ (J ∩ K) ∪ (J − K) ∪ (K − J) ∧ A = h(i)} )}

= 〈 Set theory 〉

{χ | ∃(h | h ∈ DI : χ = {(i, A) | i ∈ J ∪ K ∧ A = h(i)} )}

= 〈 Proposition 1(1) 〉

{χ | ∃(h | h ∈ DI : χ = IJ∪K ; h )}

= 〈 Definition of DJ∪K 〉

DJ∪K

A.2 Proposition 7

1. ∀(J, K | J, K ⊆ I : J = K → DJ = DK )

2. ∀(J, K | J, K ⊆ I : DJ = DK → J = K )

3. ∀(J, K | J, K ⊆ I : DJ � DK ↔ J ⊆ K )

Proof. 1.

∀(J, K | J, K ⊆ I : J = K → DJ = DK )
← 〈 Trading rule for ∀ 〉

∀(J, K | J, K ⊆ I ∧ J = K : DJ = DK )
← 〈 Trading rule for ∀ & p ∧ q → p 〉

∀(J, K | J, K ⊆ I : (J = K ∧ DJ = DK) ↔ J = K )
← 〈 Substitution axiom 〉

∀(J, K | J, K ⊆ I : (J = K ∧ DK = DK) ↔ J = K )
← 〈 A = A ↔ true 〉

∀(J, K | J, K ⊆ I : (J = K ∧ true) ↔ J = K )
← 〈 (p ∧ true) ↔ p 〉

∀(J, K | J, K ⊆ I : J = K ↔ J = K )
← 〈 (p ↔ p) ↔ true 〉

∀(J, K | J, K ⊆ I : true )
← 〈 ∀-True body 〉
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true

2.

∀(J, K | J, K ⊆ I : DJ = DK → J = K )
↔ 〈 Contrapositive 〉

∀(J, K | J, K ⊆ I : J �= K → DJ �= DK )

To prove the proposition we assume that J �= K and prove DJ = DK → false (which is
equivalent to ¬(DJ = DK)).

DJ = DK

↔ 〈 y ∈ {x | r} ↔ r[x := y] & Definition of DJ and DK 〉
{g | ∃( f | f ∈ DI : g = IJ ; f )} = {g | ∃( f | f ∈ DI : g = IK ; f )}

↔ 〈 {x | Q} = {x | R} ↔ ∀(x |: Q ↔ R ) 〉
∀(g |: ∃( f | f ∈ DI : g = IJ ; f ) ↔ ∃( f | f ∈ DI : g = IK ; f ) )

→ 〈 Definition of ”↔” & Weakening 〉
∀(g |: ∃( f | f ∈ DI : g = IJ ; f ) → ∃( f | f ∈ DI : g = IK ; f ) )

→ 〈 J �= K & Assume K = J ∩ {k} 〉
∀(g |: ∃( f | f ∈ DI : g = IJ ; f ) → ∃( f | f ∈ DI : g = IJ∪{k}; f ) )

→ 〈 Proposition 1(4) & Relational composition distributes over ∪ 〉
∀(g |: ∃( f | f ∈ DI : g = IJ ; f ) → ∃( f | f ∈ DI : g = IJ ; f ∪ I{k}; f ) )

→ 〈 J ⊆ dom ( f ) 〉
∀(g |: ∃( f | f ∈ DI : |g| = |J| ) → ∃( f | f ∈ DI : |g| = |J| + 1 ) )

→ 〈 Distributivity of ∧ over ∃ 〉
∀(g |: ∃( f | f ∈ DI : true ) ∧ |g| = |J| → ∃( f | f ∈ DI : true ) ∧ |g| = |J| + 1 )

→ 〈 ∃-True body & Identity of ∧ 〉
∀(g |: |g| = |J| → |g| = |J| + 1 )

→ 〈 Implication (i.e., (p → q) ↔ (¬p ∨ q)) 〉
∀(g |: |g| �= |J| ∨ |g| = |J| + 1 )

→ 〈 Let g = eJ & |g| = |J| & false ∨ false → false 〉
false

3. ∀(J, K | J,K ⊆ I : DJ � DK ↔ J ⊆ K )
← 〈 J ∪ K = K ↔ J ⊆ K 〉
∀(J, K | J, K ⊆ I : DJ � DK ↔ J ∪ K = K )
← 〈 Proposition 7(2) 〉
∀(J, K | J, K ⊆ I : DJ � DK ↔ DJ∪K = DK )
← 〈 Proposition 2 〉
∀(J,K | J, K ⊆ I : DJ � DK ↔ DJ � DK = DK )
← 〈 DJ � DK ↔ DJ � DK = DK 〉
∀(J,K | J, K ⊆ I : DJ � DK = DK ↔ DJ � DK = DK )
← 〈 Reflexivity of ↔ 〉
∀(J,K | J, K ⊆ I : true )
← 〈 ∀-True body 〉
true

www.intechopen.com



�������	
�������������������	
	�����������	������	�������������� �)(

A.3 Proposition 12

1. ϕ
↓DJ · ϕ↓DK = ϕ

↓DJ∪K

2. (ϕψ)↓DL = ϕ↓DL ψ↓DL

3. ϕ↓DK =ϕ
↓DJ∩K

4. (ϕ↓DK )↓DL =ϕ↓DK∩L

Proof. 1.

ϕ
↓DJ · ϕ↓DK

= 〈 Definition of ↓DJ
and ↓DK

〉
IJ ;ϕ · IK ;ϕ

= 〈 ϕ ∈ DL 〉
IJ ;{(i, A) | i ∈ L ∧ A = ϕ(i)} · IK ;{(i, A) | i ∈ L ∧ A = ϕ(i)}

= 〈 Proposition 1(1) 〉
{(i, A) | i ∈ L ∩ J ∧ A = ϕ(i)} · {(i, A) | i ∈ L ∩ K ∧ A = ϕ(i)}

= 〈 Definition of · 〉
{(i, A) | i ∈ (L ∩ J) ∩ (L ∩ K) ∧ A = ϕ(i) ∪ ϕ(i)}

∪ {(i, A) | i ∈ (L ∩ J) − (L ∩ K) ∧ A = ϕ(i)}
∪ {(i, A) | i ∈ (L ∩ K) − (L ∩ J) ∧ A = ϕ(i)}

= 〈 ∪ is idempotent 〉
{(i, A) | i ∈ (L ∩ J) ∩ (L ∩ K) ∧ A = ϕ(i)}

∪ {(i, A) | i ∈ (L ∩ J) − (L ∩ K) ∧ A = ϕ(i)}
∪ {(i, A) | i ∈ (L ∩ K) − (L ∩ J) ∧ A = ϕ(i)}

= 〈 Range split (i.e., {x | r} ∪ {x | p} = {x | r ∨ p}) 〉
{(i, A) | i ∈ (L ∩ J) ∩ (L ∩ K) ∧ A = ϕ(i)
∨ i ∈ (L ∩ J) − (L ∩ K) ∧ A = ϕ(i)
∨ i ∈ (L ∩ K) − (L ∩ J) ∧ A = ϕ(i)}

= 〈 Distributivity of ∧ over ∨ 〉
{(i, A) | (i ∈ (L ∩ J) ∩ (L ∩ K) ∨ i ∈ (L ∩ J) − (L ∩ K) ∨ i ∈ (L ∩ K) − (L ∩ J))
∧ A = ϕ(i)}

= 〈 Set union axiom (i.e., i ∈ A ∨ i ∈ B ↔ i ∈ A ∪ B) 〉
{(i, A) | i ∈ ((L ∩ J) ∩ (L ∩ K)) ∪ ((L ∩ J) − (L ∩ K)) ∪ ((L ∩ K) − (L ∩ J))
∧ A = ϕ(i)}

= 〈 Set theory 〉
{(i, A) | i ∈ (L ∩ (K ∪ J)) ∧ A = ϕ(i)}

= 〈 Proposition 1(1) 〉
IJ∪K ;{(i, A) | i ∈ L ∧ A = ϕ(i)}

= 〈 ϕ ∈ DL 〉
IJ∪K ;ϕ

= 〈 Definition of ↓DJ∪K
〉

ϕDJ∪K

2. (ϕψ)↓DL

= 〈 Definition of · 〉
({(i, A) | i ∈ J ∩ K ∧ A = ϕ(i) ∪ ψ(i)}

∪ {(i, A) | i ∈ J − K ∧ A = ϕ(i)}

∪ {(i, A) | i ∈ K − J ∧ A = ψ(i)})↓DL

= 〈 Definition of ↓DL
〉
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IL;{(i, A) | i ∈ J ∩ K ∧ A = ϕ(i) ∪ ψ(i)}
∪ IL;{(i, A) | i ∈ J − K ∧ A = ϕ(i)}
∪ IL;{(i, A) | i ∈ K − J ∧ A = ψ(i)}

= 〈 Proposition 1(1) 〉
{(i, A) | i ∈ J ∩ K ∩ L ∧ A = ϕ(i) ∪ ψ(i)}

∪ {(i, A) | i ∈ (J − K) ∩ L ∧ A = ϕ(i)}
∪ {(i, A) | i ∈ (K − J) ∩ L ∧ A = ψ(i)}

= 〈 Set theory 〉
{(i, A) | i ∈ (J ∩ L) ∩ (K ∩ L) ∧ A = ϕ(i) ∪ ψ(i)}

∪ {(i, A) | i ∈ (J ∩ L) − (K ∩ L) ∧ A = ϕ(i)}
∪ {(i, A) | i ∈ (K ∩ L) − (J ∩ L) ∧ A = ψ(i)}

= 〈 Definition of · and ↓DL
〉

ϕ↓DL ψ↓DL

3. ϕ↓DK

= 〈 ϕ ∈ DJ 〉

{(i, A) | i ∈ J ∧ A = ϕ(i)}↓DK

= 〈 Definition of ↓DK
〉

IK ;{(i, A) | i ∈ J ∧ A = ϕ(i)}
= 〈 Proposition 1(1) 〉

{(i, A) | i ∈ J ∩ K ∧ A = ϕ(i)}
= 〈 Set theory 〉

{(i, A) | i ∈ J ∩ (J ∩ K) ∧ A = ϕ(i)}
= 〈 Definition of ↓DK

〉

ϕ
↓DJ∩K

4. (ϕ↓DK )↓DL

= 〈 Definition of ↓DL
〉

IL;(ϕ↓DK )
= 〈 Definition of ↓DK

〉
IK ;IL;ϕ

= 〈 Proposition 1(2) 〉
IK∩L;ϕ

= 〈 Definition of ↓DK∩L
〉

ϕ↓DK∩L

A.4 Proposition 15

1. DJ � d(ϕ) ∨ ϕ = fs(ϕ, DJ , DK)

2. DK � d(ϕ)) ∨ ϕ = fs(fs(ϕ, DJ , DK), DK , DJ)

Proof. 1.

DJ � d(ϕ) ∨ ϕ = fs(ϕ, DJ , DK)
↔ 〈 p ∨ q ↔¬p → q 〉

¬(DJ � d(ϕ)) → ϕ = fs(ϕ, DJ , DK)
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Our proof strategy for p → q is to assume p and then prove q. We assume

¬(DJ � d(ϕ))
↔ 〈 d(ϕ) = DL 〉

¬(DJ � DL)
→ 〈 Proposition 7(3) 〉

¬(J ⊆ L)
→ 〈 Proposition 14 〉

J ∩ L = ∅

Then we prove fs(ϕ, DJ , DK) = ϕ

fs(ϕ, DJ , DK)
= 〈 Definition of fs(ϕ, DJ , DK) 〉

ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ])
= 〈 (J ∩ L = ∅) → L − J = L 〉

ϕ↓DL · (ϕ
↓DJ [DK/DJ ])

= 〈 Proposition 10(1) 〉

ϕ · (ϕ
↓DJ [DK/DJ ])

= 〈 ϕ ∈ DL 〉

ϕ · ({(i, A) | i ∈ L ∧ A = ϕ(i)}↓DJ [DK/DJ ])
= 〈 Definition of ↓DJ

〉
ϕ · (IJ ;{(i, A) | i ∈ L ∧ A = ϕ(i)}[DK/DJ ])

= 〈 Proposition 1(1) 〉
ϕ · ({(i, A) | i ∈ L ∩ J ∧ A = ϕ(i)}[DK/DJ ])

= 〈 J ∩ L = ∅ 〉
ϕ · ({(i, A) | i ∈ ∅ ∧ A = ϕ(i)}[DK/DJ ])

= 〈 i ∈ ∅ ↔ false 〉
ϕ · ({(i, A) | false ∧ A = ϕ(i)}[DK/DJ ])

= 〈 p ∧ false ↔ false 〉
ϕ · ({(i, A) | false}[DK/DJ ])

= 〈 Empty range 〉
ϕ · (∅[DK/DJ ])

= 〈 Frame substitution of an empty set 〉
ϕ · ∅

= 〈 Proposition 11(4) 〉
ϕ · e∅

= 〈 Proposition 11(3) 〉
ϕ

2. DK � d(ϕ) ∨ ϕ = fs(fs(ϕ, DJ , DK), DK , DJ)
↔ 〈 p ∨ q ↔¬p → q 〉

¬(DK � d(ϕ)) → ϕ = fs(fs(ϕ, DJ , DK), DK , DJ)

Our proof strategy for p → q is to assume p and then prove q. We assume

¬(DK � d(ϕ))

www.intechopen.com



�����
��� �
!���	���))

↔ 〈 d(ϕ) = DL 〉
¬(DK � DL)

→ 〈 Proposition 7(3) 〉
¬(K ⊆ L)

→ 〈 Proposition 14 〉
K ∩ L = ∅

To prove ϕ = fs(fs(ϕ, DJ , DK), DK , DJ), we have two cases:

(a) ¬(DJ � d(ϕ))

(b) DJ � d(ϕ)

(a) Assume ¬(DJ � d(ϕ))

fs(fs(ϕ, DJ , DK), DK , DJ)
= 〈 Proposition 15(1) & ¬DJ � d(ϕ) 〉

fs(ϕ, DK , DJ)
= 〈 Proposition 15(1) & ¬DK � d(ϕ) 〉

ϕ

(b) Assume DJ � d(ϕ) → J ⊆ L → J ∩ L = J

fs(fs(ϕ, DJ , DK), DK , DJ)
= 〈 Definition of f s 〉

fs(ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ]), DK , DJ)
= 〈 Definition of f s 〉

(ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ]))
↓D(L−K) · ((ϕ

↓D(L−J) · (ϕ
↓DJ [DK/DJ ]))

↓DK [DJ/DK ])
= 〈 (K ∩ L = ∅) → L − K = L 〉

(ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ]))
↓DL · ((ϕ

↓D(L−J) · (ϕ
↓DJ [DK/DJ ]))

↓DK [DJ/DK ])

= 〈 Proposition 1(2, 9) & d(ϕ
↓DJ [DK/DJ ]) = DK 〉

(ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ]))
↓DL · ((ϕ

↓D(L−J)∩K · (ϕ
↓DJ [DK/DJ ]))[DJ/DK ])

= 〈 K ∩ L = ∅ 〉

(ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ]))
↓DL · ((ϕ↓D∅ · (ϕ

↓DJ [DK/DJ ]))[DJ/DK ])
= 〈 Proposition 11(1) 〉

(ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ]))
↓DL · ((e∅ · (ϕ

↓DJ [DK/DJ ]))[DJ/DK ])
= 〈 Proposition 11(3) 〉

(ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ]))
↓DL · ((ϕ

↓DJ [DK/DJ ])[DJ/DK ])
= 〈 Replace J by K and then K by J is equivalent to replace J by J 〉

(ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ]))
↓DL · (ϕ

↓DJ [DJ/DJ ])
= 〈 Replacing J by J does not affect the information 〉

(ϕ
↓D(L−J) · (ϕ

↓DJ [DK/DJ ]))
↓DL · ϕ

↓DJ

= 〈 Proposition 12(2) 〉

(ϕ
↓D(L−J) )↓DL · (ϕ

↓DJ [DK/DJ ])
↓DL · ϕ

↓DJ

= 〈 Proposition 12(4) 〉

(ϕ
↓D(L−J)∩L ) · (ϕ

↓DJ [DK/DJ ])
↓DL · ϕ

↓DJ
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= 〈 (L − J) ∩ L = L ∩ J ∩ L = L ∩ J = L − J 〉

(ϕ
↓D(L−J) ) · (ϕ

↓DJ [DK/DJ ])
↓DL · ϕ

↓DJ

= 〈 Proposition 12(3) & d(ϕ
↓DJ [DK/DJ ]) = DK 〉

(ϕ
↓D(L−J) ) · (ϕ

↓DJ [DK/DJ ])
↓DL∩K · ϕ

↓DJ

= 〈 K ∩ L = ∅ 〉

(ϕ
↓D(L−J) ) · (ϕ

↓DJ [DK/DJ ])
↓D∅ · ϕ

↓DJ

= 〈 Proposition 11(1) 〉

(ϕ
↓D(L−J) ) · e∅ · ϕ

↓DJ

= 〈 Proposition 11(3) 〉

(ϕ
↓D(L−J) ) · ϕ

↓DJ

= 〈 Proposition 12(1) 〉

ϕ
↓D(L−J)∪J

= 〈 DJ � d(ϕ) → J ⊆ L & (L − J) ∪ J = L 〉

ϕ↓DL

= 〈 Proposition 12(1) 〉
ϕ

A.5 Proposition 16

1. ϕ ≤ ψ ∧ ϕ ≤ χ → update(update(N , ϕ, ψ), ϕ, χ) = update(N , ϕ, ψ · χ)

2. isInKnowledge(N , d(ϕ), ϕ) ∨ update(N , ϕ, ψ) = N

Proof. 1.

Ψ

〈 Definition of the function update 〉
= {τ | ∃(χ1 | χ1 ∈ Ω : ϕ ≤ χ1 ∧ τ = (χ1 − ϕ) · χ )}

∪ {τ | ∃(χ1 | χ1 ∈ Ω : ¬(ϕ ≤ χ1) ∧ τ = χ1 )}
〈 Definition of the function update 〉

= {τ | ∃(χ1 | χ1 ∈
{τ1 | ∃(χ2 | χ2 ∈ Φ : ϕ ≤ χ2 ∧ τ1 = (χ2 − ϕ) · ψ )}

∪ {τ1 | ∃(χ2 | χ2 ∈ Φ : ¬(ϕ ≤ χ2) ∧ τ1 = χ2 )} :
ϕ ≤ χ1 ∧ τ = (χ1 − ϕ) · χ )}

∪ {τ | ∃(χ1 | χ1 ∈
{τ1 | ∃(χ2 | χ2 ∈ Φ : ϕ ≤ χ2 ∧ τ1 = (χ2 − ϕ) · ψ )}

∪ {τ1 | ∃(χ2 | χ2 ∈ Φ : ¬(ϕ ≤ χ2) ∧ τ1 = χ2 )} :
¬(ϕ ≤ χ1) ∧ τ = χ1 )}

= 〈 Set union axiom (i.e., i ∈ A ∨ i ∈ B ↔ i ∈ A ∪ B) 〉
{τ | ∃(χ1 |

χ1 ∈ {τ1 | ∃(χ2 | χ2 ∈ Φ : ϕ ≤ χ2 ∧ τ1 = (χ2 − ϕ) · ψ )}
∨ χ1 ∈ {τ1 | ∃(χ2 | χ2 ∈ Φ : ¬(ϕ ≤ χ2) ∧ τ1 = χ2 )} :
ϕ ≤ χ1 ∧ τ = (χ1 − ϕ) · χ )}

∪ {τ | ∃(χ1 |
χ1 ∈ {τ1 | ∃(χ2 | χ2 ∈ Φ : ϕ ≤ χ2 ∧ τ1 = (χ2 − ϕ) · ψ )}

∨ χ1 ∈ {τ1 | ∃(χ2 | χ2 ∈ Φ : ¬(ϕ ≤ χ2) ∧ τ1 = χ2 )} :
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¬(ϕ ≤ χ1) ∧ τ = χ1 )}
= 〈 y ∈ {x | r} ↔ r[x := y] 〉

{τ | ∃(χ1 |
∃(χ2 | χ2 ∈ Φ : ϕ ≤ χ2 ∧ χ1 = (χ2 − ϕ) · ψ )

∨ ∃(χ2 | χ2 ∈ Φ : ¬(ϕ ≤ χ2) ∧ χ1 = χ2 ) :
ϕ ≤ χ1 ∧ τ = (χ1 − ϕ) · χ )}

∪ {τ | ∃(χ1 |
∃(χ2 | χ2 ∈ Φ : ϕ ≤ χ2 ∧ χ1 = (χ2 − ϕ) · ψ )

∨ ∃(χ2 | χ2 ∈ Φ : ¬(ϕ ≤ χ2) ∧ χ1 = χ2 ) :
¬(ϕ ≤ χ1) ∧ τ = χ1 )}

= 〈 Distributivity axiom 〉
{τ | ∃(χ1 | ∃(χ2 | χ2 ∈ Φ :

(ϕ ≤ χ2 ∧ χ1 = (χ2 − ϕ) · ψ) ∨ (¬(ϕ ≤ χ2) ∧ χ1 = χ2) ) :
ϕ ≤ χ1 ∧ τ = (χ1 − ϕ) · χ )}

∪ {τ | ∃(χ1 | ∃(χ2 | χ2 ∈ Φ :
(ϕ ≤ χ2 ∧ χ1 = (χ2 − ϕ) · ψ) ∨ (¬(ϕ ≤ χ2) ∧ χ1 = χ2) ) :

¬(ϕ ≤ χ1) ∧ τ = χ1 )}
= 〈 Trading rule for ∃ 〉

{τ | ∃(χ1 |: ∃(χ2 | χ2 ∈ Φ :
(ϕ ≤ χ2 ∧ χ1 = (χ2 − ϕ) · ψ) ∨ (¬(ϕ ≤ χ2) ∧ χ1 = χ2) )

∧ ϕ ≤ χ1 ∧ τ = (χ1 − ϕ) · χ )}
∪ {τ | ∃(χ1 |: ∃(χ2 | χ2 ∈ Φ :

(ϕ ≤ χ2 ∧ χ1 = (χ2 − ϕ) · ψ) ∨ (¬(ϕ ≤ χ2) ∧ χ1 = χ2) )
∧ ¬(ϕ ≤ χ1) ∧ τ = χ1 )}

= 〈 Nesting axiom 〉
{τ | ∃(χ1,χ2 | χ2 ∈ Φ :

(

(ϕ ≤ χ2 ∧ χ1 = (χ2 − ϕ) · ψ) ∨ (¬(ϕ ≤ χ2) ∧ χ1 = χ2)
)

∧ (ϕ ≤ χ1 ∧ τ = (χ1 − ϕ) · χ) )}
∪ {τ | ∃(χ1,χ2 | χ2 ∈ Φ :

(

(ϕ ≤ χ2 ∧ χ1 = (χ2 − ϕ) · ψ) ∨ (¬(ϕ ≤ χ2) ∧ χ1 = χ2)
)

∧ (¬(ϕ ≤ χ1) ∧ τ = χ1) )}
= 〈 Distributivity of ∧ over ∨ 〉

{τ | ∃(χ1,χ2 | χ2 ∈ Φ :
(

ϕ ≤ χ2 ∧ χ1 = (χ2 − ϕ) · ψ ∧ ϕ ≤ χ1 ∧ τ = (χ1 − ϕ) · χ
)

∨
(

¬(ϕ ≤ χ2) ∧ χ1 = χ2 ∧ ϕ ≤ χ1 ∧ τ = (χ1 − ϕ) · χ
)

)}

∪ {τ | ∃(χ1,χ2 | χ2 ∈ Φ :
(

ϕ ≤ χ2 ∧ χ1 = (χ2 − ϕ) · ψ) ∧ ¬(ϕ ≤ χ1) ∧ τ = χ1

)

∨
(

¬(ϕ ≤ χ2) ∧ χ1 = χ2 ∧ ¬(ϕ ≤ χ1) ∧ τ = χ1

)

)}

= 〈 Proposition 13(7) 〉
{τ | ∃(χ1,χ2 | χ2 ∈ Φ :

(

ϕ ≤ χ2 ∧ χ1 = χ2 · ψ ∧ ϕ ≤ χ1 ∧ τ = χ1 · χ
)

∨
(

¬(ϕ ≤ χ2) ∧ χ1 = χ2 ∧ ϕ ≤ χ1 ∧ τ = χ1 · χ
)

)}

∪ {τ | ∃(χ1,χ2 | χ2 ∈ Φ :
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(

ϕ ≤ χ2 ∧ χ1 = χ2 · ψ ∧ ¬(ϕ ≤ χ1) ∧ τ = χ1

)

∨
(

¬(ϕ ≤ χ2) ∧ χ1 = χ2 ∧ ¬(ϕ ≤ χ1) ∧ τ = χ1

)

)}

= 〈 Substitution axiom 〉
{τ | ∃(χ1,χ2 | χ2 ∈ Φ :

(

ϕ ≤ χ2 ∧ χ1 = χ2 · ψ ∧ ϕ ≤ χ2 · ψ ∧ τ = χ2 · ψ · χ
)

∨
(

¬(ϕ ≤ χ2) ∧ χ1 = χ2 ∧ ϕ ≤ χ2 ∧ τ = χ2 · χ
)

)}

∪ {τ | ∃(χ1,χ2 | χ2 ∈ Φ :
(

ϕ ≤ χ2 ∧ χ1 = χ2 · ψ ∧ ¬(ϕ ≤ χ2 · ψ) ∧ τ = χ2 · ψ
)

∨
(

¬(ϕ ≤ χ2) ∧ χ1 = χ2 ∧ ¬(ϕ ≤ χ2) ∧ τ = χ2

)

)}

= 〈 Contradiction 〉
{τ | ∃(χ1,χ2 | χ2 ∈ Φ :

(

ϕ ≤ χ2 ∧ χ1 = χ2 · ψ ∧ ϕ ≤ χ2 · ψ ∧ τ = χ2 · ψ · χ
)

∨ false )}
∪ {τ | ∃(χ1,χ2 | χ2 ∈ Φ :

false

∨
(

¬(ϕ ≤ χ2) ∧ χ1 = χ2 ∧ ¬(ϕ ≤ χ2) ∧ τ = χ2

)

)}

= 〈 Zero for ∨ 〉
{τ | ∃(χ1,χ2 | χ2 ∈ Φ :

(ϕ ≤ χ2 ∧ χ1 = χ2 · ψ ∧ ϕ ≤ χ2 · ψ ∧ τ = χ2 · ψ · χ) )}
∪ {τ | ∃(χ1,χ2 | χ2 ∈ Φ :

(¬(ϕ ≤ χ2) ∧ χ1 = χ2 ∧ ¬(ϕ ≤ χ2) ∧ τ = χ2) )}
= 〈 ϕ ≤ χ2 → ϕ ≤ χ2 · ψ 〉

{τ | ∃(χ1,χ2 | χ2 ∈ Φ :
(ϕ ≤ χ2 ∧ χ1 = χ2 · ψ ∧ τ = χ2 · ψ · χ) )}

∪ {τ | ∃(χ1,χ2 | χ2 ∈ Φ :
(¬(ϕ ≤ χ2) ∧ χ1 = χ2 ∧ ¬(ϕ ≤ χ2) ∧ τ = χ2) )}

= 〈 Idempotency of ∧ 〉
{τ | ∃(χ1,χ2 | χ2 ∈ Φ :

(ϕ ≤ χ2 ∧ χ1 = χ2 · ψ ∧ τ = χ2 · ψ · χ) )}
∪ {τ | ∃(χ1,χ2 | χ2 ∈ Φ :

(¬(ϕ ≤ χ2) ∧ χ1 = χ2 ∧ τ = χ2) )}, D)
= 〈 Trading rule for ∃ & Symmetry of ∧ 〉

({τ | ∃(χ1,χ2 | χ2 ∈ Φ ∧ ϕ ≤ χ2 ∧ τ = χ2 · ψ · χ) :
(χ1 = χ2 · ψ )}

∪ {τ | ∃(χ1,χ2 | χ2 ∈ Φ ∧ ¬(ϕ ≤ χ2) ∧ τ = χ2) :
(χ1 = χ2 )}

= 〈 Nesting axiom 〉
{τ | ∃(χ2 | χ2 ∈ Φ ∧ ϕ ≤ χ2 ∧ τ = χ2 · ψ · χ) :

∃(χ1 |: (χ1 = χ2 · ψ ) )}
∪ {τ | ∃(χ2 | χ2 ∈ Φ ∧ ¬(ϕ ≤ χ2) ∧ τ = χ2) :

∃(χ1 |: (χ1 = χ2 ) )}
= 〈 The information χ1 and combining information is always defined 〉

{τ | ∃(χ2 | χ2 ∈ Φ ∧ ϕ ≤ χ2 ∧ τ = χ2 · ψ · χ) :
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true )}
∪ {τ | ∃(χ2 | χ2 ∈ Φ ∧ ¬(ϕ ≤ χ2) ∧ τ = χ2) :

true )}
= 〈 Trading rule for ∃ 〉

{τ | ∃(χ2 | χ2 ∈ Φ : ϕ ≤ χ2 ∧ τ = χ2 · ψ · χ )}
∪ {τ | ∃(χ2 | χ2 ∈ Φ : ¬(ϕ ≤ χ2) ∧ τ = χ2) )}

= 〈 Proposition 13(7) 〉
{τ | ∃(χ2 | χ2 ∈ Φ : ϕ ≤ χ2 ∧ τ = (χ2 − ϕ) · ψ · χ )}

∪ {τ | ∃(χ2 | χ2 ∈ Φ : ¬(ϕ ≤ χ2) ∧ τ = χ2) )}
= 〈 The definition of Ω 〉

Ω[ψ · χ/ψ]

2. isInKnowledge(N , d(ϕ), ϕ) ∨ update(N , ϕ, ψ) = N
↔ 〈 p → q ↔¬p ∨ q 〉

¬isInKnowledge(N , d(ϕ), ϕ) → update(N , ϕ, ψ) = N

First, we assume that

¬isInKnowledge(N , d(ϕ), ϕ)
↔ 〈 Definition of isInKnowledge 〉

¬ ∃(χ | χ ∈ Φ : d(ϕ) ∈ D ∧ ϕ ≤ χ ∧ d(ϕ) � d(χ) )
↔ 〈 De Morgan 〉

∀(χ | χ ∈ Φ : ¬(d(ϕ) ∈ D ∧ ϕ ≤ ψ ∧ d(ϕ) � d(χ)) )
↔ 〈 De Morgan 〉

∀(χ | χ ∈ Φ : ¬(d(ϕ) ∈ D) ∨ ¬(ϕ ≤ χ) ∨ (¬d(ϕ) � d(χ)) )

Based on the assumption, we prove that for d(ϕ) = DJ and d(ψ) = DK , we have ∃(χ |
χ ∈ Φ : ϕ ≤ χ ) → false

∃(χ | χ ∈ Φ : ϕ ≤ χ )
→ 〈 ϕ ≤ χ → J ⊆ K from the definition of ≤ 〉

∃(χ | χ ∈ Φ : ϕ ≤ χ ∧ J ⊆ K )
→ 〈 Proposition 7(1) 〉

∃(χ | χ ∈ Φ : ϕ ≤ χ ∧ DJ � DK )
→ 〈 d(ϕ) = DJ and d(ψ) = DK 〉

∃(χ | χ ∈ Φ : ϕ ≤ χ ∧ d(ϕ) � d(χ) )
→ 〈 d(χ) ∈ D ∧ J ⊆ K → d(ϕ) ∈ D 〉

∃(χ | χ ∈ Φ : ϕ ≤ χ ∧ d(ϕ) � d(χ) ∧ d(ϕ) ∈ D )
→ 〈 The assumption 〉

false

Therefore, we have ¬ ∃(χ | χ ∈ Φ : ϕ ≤ χ ) ↔ ∀(χ | χ ∈ Φ : ¬(ϕ ≤ χ) ) ↔ true. Then
we prove that update(N , ϕ, ψ) = N

update(N , ϕ, ψ)
= 〈 Definition of update 〉

({(χ − ϕ) · ψ | χ ∈ Φ ∧ ϕ ≤ χ} ∪ {χ | χ ∈ Φ ∧ ¬(ϕ ≤ χ)}, D)
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= 〈 From (1) 〉
({(χ − ϕ) · ψ | χ ∈ Φ ∧ false} ∪ {χ | χ ∈ Φ ∧ true}, D)

= 〈 Zero of ∧ and ∨ 〉
({(χ − ϕ) · ψ | false} ∪ {χ | χ ∈ Φ}, D)

= 〈 Empty range 〉
∅ ∪ {χ | χ ∈ Φ}, D)

= 〈 Identity of ∪ 〉
{χ | χ ∈ Φ}, D)

= 〈 Definition of N 〉
N
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