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 Evolutionary Distributed Control of a 
Biologically Inspired Modular Robot 

 Sunil Pranit Lal and Koji Yamada 
University of the Ryukyus 

Japan 

1. Introduction    

Arguably the innovative problem solving abilities is one of the cornerstones for ensuring the 
survival of the homo sapien species in the game of evolution.  Throughout history, when 
faced with challenges it was not uncommon for mankind to turn to nature for answers. In 
the modern day, problem solving utilizing techniques harnessed from nature has become a 
niche of the computational intelligence field. There are quite a number of classical 
contributions in this respect, which include artificial neural networks (ANN), genetic 
algorithm (GA), ant colony optimization (ACO), cellular automata (CA) and artificial 
immune system (AIS). 
In the spirit of drawing inspiration from nature, our laboratory developed a modular robot 
modelled after a marine dwelling organism called the brittle star. The robot consists of 
independent modules with each module incorporating an onboard microcontroller for 
governing the behaviour of the module, actuator for inducing motion, and touch sensors for 
feeling the environment. Robot of such nature can be useful in search and rescue operations; 
for instance during earthquake the robot can be deployed to seek for survivors trapped under 
collapsed buildings which would otherwise be hazardous for human rescuers to reach. 
Before novel applications of the robot can be envisioned the fundamental issues of motion 
control needs to be addressed. While the notion of studying the motion characteristics of the 
brittle star and incorporating it into the robot is intuitive and insightful, it is nonetheless 
quite impractical. The reason for this stems from the fact that the range of motion of the 
highly agile arms of brittle star in an aqueous environment overwhelmingly surpasses the 
two-degree of freedom legs of the landlocked robot. Hence we turn to nature once again, 
and attempt to draw from the evolutionary phenomena as a driving force to evolve the 
robot to move in its environment pretty much the same way the biological organisms have 
been shaped over billions of years by adapting to their environments. 
Evolutionary algorithms are computational models, which capture the essence of evolution. 
Developed by John Holland in early 1970s (Holland, 1975), genetic algorithm (GA) is one of the 
widely adopted evolutionary algorithms. Inspired by biological adaptations, genetic algorithm 
is essentially a search technique used extensively to solve optimization related problems 
(Goldberg, 1989). The algorithm involves representation of candidate solutions to a problem 
using chromosomes also known as individuals. The initial randomly generated population of 
individuals is successively transformed based on their fitness by applying genetic operators 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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such as selection, crossover and mutation. The selection process screens the individuals such 
that the fitter individuals have higher probability of making it through to the next generation. 
The crossover operation essentially emulates the intraspecies mating by exchanging and 
combining genes from selected parent chromosomes to produce offsprings, with the hope that 
they may have better fitness than the parents. Mutation is a way to introduce diversity within 
the population, thus enabling better exploration of the search space. Based on the survival of the 
fittest, it is anticipated that with each passing generation the fitness of the individuals improves 
thus providing near optimum solution to the problem at hand.  
In nature, organisms evolve to better adapt to their environment, which also consists of 
organisms from other species. Thus the interaction between the species also plays a role in 
shaping the evolution of organism. Co-evolutionary algorithm (Koza, 1991) is a 
computational model where two or more populations simultaneously evolve in a manner 
such that the fitness of an individual in a population is influenced by individuals from other 
populations. A classical example of this is the interaction between host and parasite species, 
whereby the host develops mechanisms to fend off the parasite, meanwhile the parasite finds 
ways to counter the defence mechanism of the host, thus setting off an arms race. This kind of 
external pressure, forces the populations to adaptively evolve thus avoiding suboptimal 
solutions to a large extent. 
Using evolutional approach to derive motion characteristics of the robot requires a control 
model. In this chapter we will discuss two streams of control model namely cellular 
automata based control and neural network based control model. 
In the cellular automata based control (Lal et al., 2006) the individual modules of the robot 
are modeled as cells in the cellular automata lattice. Based on this we incrementally 
developed control models for the brittle star robot leveraging off genetic algorithm and co-
evolutionary algorithm to evolve suitable rules for each of the models. 
A shortcoming of the cellular automata based approach was that the evolved rules where 
tightly coupled with the initial configuration of the cell lattice. To address this, the neural 
network inspired control model (Lal et al., 2007) was developed. In this framework each leg 
of the robot is modeled as a neural network with the modules representative of neurons 
interconnected via synaptic weights. Motion is achieved by propagating phase information 
from the modules closest to the main body to the remainder of the modules in the leg via the 
synaptic weights. Similar to the cellular automata based model, near optimal control 
parameters were evolved using genetic algorithm. 

2. The Brittle Star: From Biological to Binary 

Brittle stars [Ophiurida] (Hyman, 1955) are echinoderms found in most of the marine 
ecosystems around the world. The physical structure (Fig. 1) of the brittle star consists of 
five slender and flexible arms in a radial symmetry attached the central disc shaped body, 
which houses all of the internal organs. An internal skeleton of calcium carbonate plates 
referred to as vertebral ossicles supports the arms. These are linked by ball and socket joints, 
and moved by the surrounding muscle.  
The brittle star moves by wriggling its agile arms to produce snake-like or rowing 
movement. Being able to crawling through small cracks, or being able to move even when 
missing an arm or two, lost perhaps when evading a predator, or being able to regenerate 
the lost arm or segments of it, makes the brittle star a true star in the arena of adaptive 
systems. This was indeed the inspiration behind developing the brittle star robot. 
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Figure 1. The brittle star 

2.1 The Brittle Star Robot 

The brittle star robot (Fig. 2a) considered herein has a modular architecture consisting of 
modules as shown in Fig. 2b. Each module incorporates an onboard micro controller (BASIC 
Stamp 2sx), actuator (RC Servo Futaba S5301) and two touch sensors. In its current setup the 
actual robot hardware has five legs with six modules per leg.  
The robot design, inspired by the brittle star has the following characteristics: 

• The robot has capability to move in all directions with a body shape consisting of five 
arms radiating from the centre. 

• Bone tissue of unit structure is built by connecting homogeneous modules. This allows 
redundancy, decentralization of control program and simplification of repair to the robot. 

• Modules of one degree of freedom are connected alternately in horizontal and vertical 
orientation (Fig. 3). In this way, a set of adjacent modules has two degree of freedom joint. 

a)  

b)  

Figure 2. a) The brittle star robot b) Individual module connected to make up the leg 
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Figure 3. Exposed view of adjacent connected modules 

2.2 Motion Control Problem Formulation 

Moving the robot requires coordinated movement of the individual modules. Initially this 
was achieved through trial and error process (Takashi, 2005). Later genetic algorithm was 
used to better the process of finding near optimal motion pattern (Futenma et al., 2005) 
Though the approaches adopted in the past produced desired motion characteristics in the 
robot, the underlying concern was that should there be a failure of some modules the overall 
mobility of the robot would get compromised. To this effect, we have embarked on 
exploring strategies for evolving emergent global behaviour of the robot, such as walking in 
a straight line, from the combined action of all the functioning modules in the a given 
configuration. 
One way to visualize the module is to consider it as a state machine. Since the motion of any 
given module is basically rotation between an allowable range, the state of jth module in the 
ith leg at time, t is given by (1) 

 
Sij
t ∈ {θ :θmin ≤ θ ≤ θmax}  (1) 

This makes the robot a collection of state machines, or to put it differently, a state machine of 
state machines. The state of the robot with n legs and m modules per leg at time, t is thus 
given by (2) 

 
R t = {Sij

t : 0 ≤ i < n,0 ≤ j < m}
 (2) 

Therefore the problem of motion control of the robot becomes the task of finding optimal 
sequence (OT) of state transitions, which would transform the robot producing desired 
locomotion. 

  OT = R0 ,R1,R2 ,  K  ,RT  (3) 

It should not take much imagination to realize the shear magnitude of the search space that 
needs to be explored to find near optimal solution, and thus the need for evolutionary 
computational approach. 

2.3 Robot Simulation 

While it is plausible to evolve motion controller on the physical robot itself, it is nonetheless 
highly impractical as doing so might damage the robot in evaluating the fitness of unknown 
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controllers, not to mention such an approach would be time consuming and unnecessarily 
cause wear and tear to the robot.  
Simulated model (Fig. 4) of the brittle star robot was developed using Open Dynamics 
Engine (ODE version 0.9), which is an open source, high performance library for simulating 
rigid body dynamics (Smith, 2006). In developing the robotic simulation it is important to 
realize that the simulated robot is an approximation of the real robot, and as such choice of 
simulation parameters play a crucial role in determining if and how well the evolved control 
parameters can be implemented on the real robot.  

 

Figure 4. Simulated brittle star robot using Open Dynamics Engine 

In our previous studies (Lal et al., 2006; Lal et al., 2007) we used torque as a parameter to 
control the rotation of the modules, which was simple to implement in ODE simulation. 
Later we realized that torque, as a parameter had no grounding on the physical robot 
because the control of the servomotor through the microcontroller involves varying pulse 
width to control the angle. Thus we have revamped our simulation model to centre on 
phase angle as the primary control parameter for the modules. It is worth mentioning that 
the while the control models presented in the following sections have largely remained 
similar to our previous work, informed choice of parameters have made significant 
difference in the results. 
One of the parameters which influences all the control models presented in the following 
sections deals with the choice of number of states per module. The angular range [-π/3,π/3] 
of the module was discretized into 16 states (0, 1, 2, ..., 15) which provided fairly granular 
control for the control models. 

3. Cellular Automata Based Motion Control 

3.1 Overview 

Historically cellular automata (CA) emerged around 1940’s (Wolfram, 2002) as a quest to 
develop computational mechanisms to resemble information processing systems in nature. 
John von Neumann’s pioneering work in developing models for self-replicating automata 
(Neumann, 1966) set the stage for the future growth of this field. 
Cellular automata consist of a lattice of identical finite state machines (cells) whose state 
changes is governed by some common transition rule. The next state of a cell at time, t+1 is 
determined from the current state of the cell and its neighboring cells at time t. Even the 
simplest rules can result in emergence of interesting patterns over a period of time, as in the 
case of Conway’s game of life which is perhaps the best known two-dimensional cellular 
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S i 0
t S i1

t ... S i( j−1)

t ... S i(m −1)

t

φ (η ij

t )

S i( j +1)

tS ij
t

S i0
t +1 S i1

t +1 ... S i( j−1)

t +1 ... S i(m −1)

t +1
S i( j +1)

t +1S ij
t +1

neighborhood 

output 

automaton used to model basic process in living systems. Crutchfield et al. (2003) treatment 
of evolving CA using GA makes for interesting reading. 
In the field of robotics cellular automata has been used to control self-reconfigurable robots, 
which can autonomously change their shape to adapt to their environment (Bultler et al., 
2001; Stoy, 2006). Furthermore, Behring et al. (2000)  has demonstrated promising use of 
cellular automata as a means to perform path planning using real robot in an environment 
clustered with obstacles. 
In our approach, we modelled the individual modules of the robot as cells in the cellular 
automata lattice. Based on this we incrementally developed three control models for the 
brittle star robot. Genetic algorithm was used to evolve suitable rules for each of the models.  

3.2 Singular Transition Rule for Disjoint Leg Set 

In our initial attempt, the robot (with n = 5 legs and m = 6 modules per leg) was modelled as 
a set of disconnected one-dimensional CA lattice representing the legs of the robot and with 
each cell representing a module. Furthermore we decided to derive a singular CA transition 
rule for all the modules in the robot irrespective of their connection topology. The rational 
behind this was that since the rule would operate on a small neighborhood of modules, 
should any of the modules or legs fail, the overall mobility of the robot should not get 
compromised to a large extent. Furthermore, a single unifying transition rule would make 
the modules truly modular from both hardware and software point of view thus 
maintenance would be a ease in terms of replacement of modules. 
Each cell in the CA framework is representative of a module and it has k = 16 possible states 
to represent the angle of rotation of the module. The neighborhood, η of a cell can 
encompass any number cells in its vicinity. The smaller the neighborhood, lesser the 
communication overhead per cell update. Moreover this also translates into fewer entries in 
the rule table. For this reason we choose the neighborhood of a cell to include only its 
adjacent cells, that is radius, r = 1 (Fig. 5).  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Lattice configuration showing states of the modules in the ith leg of the robot. 
Radius r =1 groups 2 cells (modules) adjacent to the current cell to form a neighborhood, η 
which is applied as an input to the transition rule, φ(η). The resulting output is used to 
update the state of the current cell at time, t+1 

To apply the same rule consistently on all the cells, we handle the cells on the edge of the 
lattice with the following boundary conditions for all u {1, 2, … r} 
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Si( j−u)

t =
Si( j−u+m)

t if j − u < 0

Si( j−u)

t otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

(4)
 

 

Si( j+u)

t =
Si( j+u−m )

t if j + u ≥ m

Si( j+u)

t otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

(5)
 

As an illustration, for 0th leg with 6 modules and neighborhood radius of 1, the neighbors 
for the cell S00

t  are S05

t  and S01

t . Likewise the neighbors for cell S05

t  are S04

t  and S00

t . 

3.2.1 Genetic Encoding 

There are two key pieces of information, which needs to be encoded in the chromosome; the 
initial states of all the modules and the rule table for working out the state transitions. With 
16 states per cell (4 bits), the first 120 bits of the chromosome is allocated for the initial state 
of the modules. For a neighborhood with a radius r = 1 the number of entries in the rule 

table (Table 1) is 162r+1 = 4096 , thus 16384 bits for encoding the rule table. 
The rule table is encoded in a chromosome as shown in Fig. 6. The output bits are listed in 
lexicographical order of neighborhood. Interestingly, even though the radius is minimum 
possible for cell-cell interaction to take place, the rather large number of states per cell has 

made the search space of possible transition rules phenomenal ( 216504
). For this reason we 

did not consider increasing the radius. 

Index Neighborhood Output 

0 0000 0000 0000 0010 
1 0000 0000 0001 0100 
2 0000 0000 0010 0000 

 …
     

4096 1111 1111 1111 1101 

Table 1. A sample rule table for (k,r) = (16,1) 

 

Figure 6. Representation of initial states and rule table in a chromosome 

3.2.2 Fitness Function 

The fitness of each chromosome is evaluated by first decoding the rule table it represents. 
The rule is then applied to the simulated model of the brittle star robot for successive state 
transitions (MAX_TRANS) thereby transforming it from initial position, (xi,yi) to the final 
position, (xf,yf). Our primary focus is on forward locomotion of the robot, thus the fitness of 
the chromosome is proportional to the Euclidean distance covered by the robot. 
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F = (x f − x i)

2 + (y f − y i)
2

 (6) 

3.2.3 Genetic Operators 

Based on the fitness of the chromosomes in the population, GA operations; namely selection, 
crossover and mutation are applied to whole population. Firstly selection was performed 
using roulette wheel selection method. In addition the best individual in a generation is 
automatically carried over to the next generation as per the elite selection scheme. The 
selected pairs of chromosomes are crossed over using one-point crossover at randomly 
chosen locus with a crossover probability of PC. Finally, mutation operation involving bit 
flips is applied with a probability of PM to individual genes in chromosomes after the 
selection and crossover operations. 

3.2.4 Simulation Results 

The simulation was carried out over numerous trials using parameters shown in Table 2. In 
each trial, initial population of chromosomes of size (POP_SIZE) was randomly generated 
and GA was executed for a number of generations (MAX_GEN). For each generation, the 
fitness of all the chromosomes in the population is evaluated after which genetic operators 
are applied to the population to create the next generation. 
In evaluating the fitness of a chromosome, first the initial state information encoded in the 
chromosome is used to initialize the simulated robot, and then the encoded transition rule is 
applied for a number of successive transitions (MAX_TRANS) thereby transforming the cell 
lattice. In each transition the object model in the ODE environment is updated accordingly. 
The final position of the robot at the end of MAX_TRANS transitions is used in fitness 
calculation above (6).  
The evolution of transition rules across generations is captured in Fig. 7. As can be expected 
the average fitness of the population increased with passing generation. 

 

Parameter Value 

PC 0.85 

PM 0.15 

POP_SIZE 25 

MAX_TRANS 30 

MAX_GEN 750 

Table 2. Summary of simulation parameters 
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Figure 7. Graph of average and maximum fitness of population against generation for the 
disconnected one-dimensional CA model of the robot 

3.3 Singular Transition Rule for Connected Leg Set 

In this section, we extend the one-dimensional disconnected CA model by connecting 
modules closest to the central disc of the robot (Fig. 8) thus forming a two-dimensional 
structure. The notion of single transition rule for all the modules is adopted for reasons 
described in §3.2. Furthermore the radius describing the neighborhood of a cell is set to 1 
(same as § 3.2). 

 

Figure 8. The two-dimensional CA lattice. The arrows represent the interaction between a cell 
(possibly located somewhere in the middle or on the edge of the lattice) and its neighboring 
cells. Essentially the interaction is similar to the model in §3.2 except modules closest to central 
disc interact with modules in similar position located on the neighboring leg 
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The two neighbors (“right”, R and “left”, L) for a cell at position (i,j) in the n x m lattice is 
given as follows: 

 

R =

S( i+1) j

t if j = 0 and i + 1 < n

S( i+1−n ) j

t if j = 0 and i + 1 ≥ n

Si( j+1−m )

t if j > 0 and j + 1 ≥ m

Si( j+1)

t otherwise

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 

(7)

 

 

L =

S( i−1) j

t if j = 0 and i −1 ≥ 0

S( i−1+n ) j

t if j = 0 and i −1 < 0

Si( j−1)

t otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

(8)

 

Using the same procedures and parameters described in §3.2, the simulations were carried 
out using the revised model, the results of which is shown in Fig. 9. Notably the fitness of 
the best chromosome discovered was comparable to that of the previous model. 

 

Figure 9. Graph of average and maximum fitness of population against generation for the 
two-dimensional CA model of the robot 

3.4 Differential Transition Rule for Connected Leg Set 

Building on the earlier models, in this section we present the final CA model, which 
represents the robot using a two-dimensional CA lattice as in the previous section, however 
there are two distinct transition rules for updating the cell states in the lattice. These rules 
are termed as control rule, CR and leg rule, LR. The position of a cell (i,j) in the lattice 
determines which of the two rules would be used to update its state and is given as follows. 

 
Rule =

CR if j = 0

LR otherwise

⎧ 
⎨ 
⎩  

(9)
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Essentially modules closest to the central disc (lead modules) are covered by control rule 
and modules located on other parts of the leg are taken care of by the leg rule. 

3.4.1 Co-evolving the Rules 

Given the differential nature of the rules we decided to employ co-evolutionary algorithm to 
discover the optimal rule set. Co-evolution can be competitive in a nature such as in (Rosin 
& Belew, 1995) where the population includes opponents trying to beat each other in a game 
of Tic-Tac-Toe, or it could be cooperative in nature such as in (Potter & Jong, 2000) where 
populations of match strings collaboratively contribute individual string to form a set of 
binary vectors which is to closely match a target set of binary vectors. 
In our case a population of control rules and another population of leg rules is co-evolved 
cooperatively such that rules from both population need to be combined to control the 
robot. The genotype of individuals in the two population vary slightly in that the 
individuals in the population of control rule encode the initial state of lead modules whereas 
the leg rule individuals encode the initial state of the remaining (non-lead) modules. The 
encoding of state transition rules remain essentially the same as previous CA models. The 
following describes the pseudo code for the co-evolutionary algorithm. 
 
Create random population of control rules PCR and leg rules PLR 
LOOP UNTIL MAX_GEN  

Get best control rule //Rule with the highest fitness; for initial population 
        //best rule is randomly chosen 

LOOP UNTIL MAX_COEVOL_GENERATION 
//Evaluate fitness of individual leg rules  

  LOOP FOR all individuals in PLR 

• Transform lattice model using best control rule and current 
leg rule for MAX_TRANS 

• Get final robot position 

• Calculate fitness, F = (x f − x i)
2 + (y f − y i)

2  

  END LOOP 
  Perform GA operations on PLR  

 END LOOP 
 
Get best leg rule 
LOOP UNTIL MAX_COEVOL_GENERATION 

//Evaluate fitness of individual control rules  
  LOOP FOR all individuals in PCR 

• Transform lattice model using best leg rule and current 
control rule for MAX_TRANS 

• Get final robot position 

• Calculate fitness, F = (x f − x i)
2 + (y f − y i)

2  

  END LOOP 
  Perform GA operations on PCR 

 END LOOP 
END LOOP 
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The simulations were carried out again using the same parameters as in §3.2.4, additionally 
MAX_COEVOL_GENERATION was set to 20. The results of search for best control and leg 
rule pair is presented in Fig. 10 & 11. As can be seen the fitness of the controller improved 
compared to the previous control models. This can be attributed to the fact that the 
interaction between the populations within the scope of the co-evolutionary algorithm 
creates greater diversity thus requiring greater adaptation on the part of the individuals in 
the populations. Consequently the stagnation of the search algorithm at local optima that 
was prevalent in the previous simulations was least encountered. 

 

 

 

 

 

  

a) 

 

 

 

b) 
 

Figure 10. Graph of a) maximum fitness, b) average fitness, against generation for the 
control rule 
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a) 

 

b) 
Figure 11. Graph of a) maximum fitness, b) average fitness, against generation for the leg 
rule 

4. Neural network inspired Motion Control 

 While CA-based control architecture produced satisfactory motion some issues remained 
outstanding. In particular due to the inherent nature of cellular automata, the rules obtained 
were tightly coupled with the initial state of the lattice configuration. In other words if the 
initial phase angles of the modules is slightly changed then the resulting motion becomes 

incoherent. Moreover the shear size ( 216504
) of the search space of possible transition rules 

made the task of learning computationally expensive. The model developed in the following 
sections tries to address these issues. 

4.1 Overview 

Inspired by the information processing ability of biological neurons, the modern day field of 
artificial neural networks, simply referred to as neural networks (NN) has its origins in 1943 
with pioneering work by McCulloch and Pitts (1943) who developed computational model 
of a neuron. NN has been applied in multitude of areas namely pattern classification, 
function approximation, forecasting, optimization and control. While there are numerous 
neural network architectures in existence the fundamental computational model of the 
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neuron essentially remains the same. In a typical NN model the neurons are inter connected 
via synaptic weights. The neuron interacts by transmitting signals to other neurons 
connected to its output depending on the weighted sum of input stimulus to the neuron and 
the activation function. Learning takes place by adjusting the weights such that given an 
input, the output of the NN is as close as possible to the desired output. Interested readers 
are directed to (Jain et al., 1996) as good introductory reference material in neural networks. 
In the literature many notable contributions have been made in the field of robotics and 
control leveraging on GA and NN. Reil and Husbands (2002) successfully simulated bipedal 
straight-line walking using recurrent neural network whose parameters were evolved by 
GA. Porting genetically evolved neural network controller for a hexapod robot from 
simulation model to actual hardware was demonstrated by Gallagher et al. (1996). One of 
the conclusions reached by them was that neural network controller performed extremely 
well in real world in spite of the fact that inertia, noise and delays were not taken into 
account in the simulation.  Hickey et al. (2002) developed a system called creeper featuring 
neural network controller for producing realistic animations of walking figures. The weights 
for the neural network were evolved using GA wherein the fitness of a chromosome 
encoding the weights was related to its performance in controlling the simulated walking 
figure. Application of neural network is not confined to controlling just single robotic agents 
as demonstrated by Lee (2003) in controlling behaviour of multiagent system of simulated 
robots in a predator and prey type environment. Similar to other research work described 
above, GA was used to evolve weights for the neural network behaviour controller. 

4.2 The Control Model 

Neural networks are good at dealing with system parameters whose relationships are not 
easily deducible. Inspired by this, we decided to model the interaction between the modules 
using the principles of NN. It is worth mentioning that the functionality of the model we 
developed though similar to conventional NN has subtle differences that are explained 
below.  
Each of the leg is modelled as a fully connected neural network (Fig. 12) with the modules 
represented as neurons. The modules maintain state information about its current phase 
angle. Furthermore the modules are interconnected via binary weights to model inhibitory 
and excitatory stimulus between them. Formally, wab ∈ {0,1}, where wab represents weight 

between the connection from module a to b. 

 

Figure 12. Conceptual framework for the neural inspired motion control architecture 
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Synchronized propagation of phase information through the network is used to update the 
current state of the modules. The modules closest to the central disc are termed as the lead 
modules. Starting from some initial state, the role of the lead module is to generate cyclic 
pattern in accordance with equation (10). Once the state of the lead module has been 
updated, the states of the remaining modules are then updated sequentially such that the 
module directly next to the lead module is updated first followed by the module next to it 
and so on. 

 Si0
t+1 = (Si0

t +1)  mod  k  (10) 

where k is the number of states per module  
The state of any given non-lead module, Sij in the leg is updated as follows. First the input 

stimulus from the modules closest to the central disc before it is summed. 

 

Xij
t+1 = φik

t+1wkj
k=0

j−1

∑
 

(11)

 

where φik
t+1

is the phase angle (in radians) associated with state Sik
t+1

 

Next an activation function fa  is applied to the summed input to yield the phase angle, or 

in other words the equivalent state information of the module in question.  

 
Sij
t+1 ⇔φij

t+1 = fa (Xij
t+1)

 (12) 

To put it intuitively, equations (11) and (12) allow a module to undergo valid state transition 
using latest state information of modules which underwent state transition just prior to it. In 
summary the state transition of the modules occurs sequentially within a discrete time step.  
Given the rotational nature of the modules we experimented using sinusoidal activation 
function (13) along with the traditional sigmoid activation function (14). It is worth 
mentioning that the parameters chosen for the activation function were done so as to keep 
the rotation of the modules in the allowable range [-π/3,π/3] as shown in Fig. 13. 

 
fa (x) =

π

3
sin(x)

 
(13)

 

 
fa (x) =

2π

3(1+ e−x )
−

π

3  
(14)
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Figure 13. Graph of sinusoidal and sigmoid activation functions 

4.3 Evolving Suitable Control Parameters 

For the most part, GA framework was reused from §3 in determining near optimal initial 
states of the lead modules and the weight matrix for each of the legs. The only change to the 
GA framework required is encoding of the chromosome (Fig. 14). Notice unlike CA-based 
control model, the neural network control model requires only the initial state of the lead 
modules to function. 
Compared to §3 the length of the chromosome has significantly decreased as it encodes 4 
bits of initial state and 15 bits of weight matrix per leg. While real number could have been 
used for the weight matrix, in the interest of keeping search space manageable we decided 
just to use binary weights. Notably the search space (295) though significant is manageable in 
comparison with the search space for the CA-based model. 
 
 
 
 

 

Figure 14. Genetic encoding of initial state and weight matrix 

Using the similar procedures and parameters described in §3, the simulations were carried 
out using the revised model. The results obtained (Fig. 15, 16) indicated that the neural 
network model with sinusoidal activation function surpassed all the other models in terms 
of maximizing fitness. 

π /3

−π /3
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Figure 15. Graph of average fitness and maximum fitness of population against generation 
using sigmoid activation function 

 

 

Figure 16. Graph of average fitness and maximum fitness of population against generation 
using sinusoidal activation function 
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5. Experimentation 

In section we analyze the quality of the controllers evolved in terms of the motion 
characteristics produced and robustness of the control system in dealing with failure of 
modules. The following abbreviations have been adopted to refer to the controllers:  

CA1d - One dimensional CA controller (§3.2)  
CA2dSing – Two dimensional CA with singular transition rule (§3.3) 
CA2dDiff - Two dimensional CA with differential transition rule (§3.4) 
NNsig – Neural network controller with sigmoid activation function (§4) 
NNsin - Neural network controller with sinusoidal activation function (§4) 

5.1 Fault Tolerance 

Evolving control parameters using GA is no doubt a time consuming process. Thus it would 
be highly desirable to have a robust control architecture, which can deal with module 
failures without having to be retrained. 
In evaluating the robustness of the proposed models, module failure was simulated by 
configuring the module to be unresponsive to input stimulus thereby maintaining a fixed 
state. Simulation of the robot with a set of failed modules was carried out for 30 state 
transitions. The distance is then measured and used to calculate the degree of mobility (MD) 
defined simply as: 
 

 MD =
distance traveled by robot with set of failed modules

distance  traveled  by  robot  without  failed  modules
×100%  (15) 

Failure was induced one by one in all the modules and the corresponding degree of mobility 
of the robot is depicted in Fig. 17. From the results it is apparent that the degree of mobility 
is greatly influenced by the position of the failed module, and the two streams of control 
model seem to handle failure differently. Overall the NN models performed better than CA 
models in the presence of module failure. 
Within the CA models performance degradation was fairly distributed across the spectrum 
of individually failed modules. The two-dimensional models (CA2dSing & CA2dDiff) were 
more affected by the failure of the lead modules as it happens to be the point of connection 
between the legs. Overall CA2dDiff showed greater resilience compared to the other CA 
models. 
Within the NN models the effects of failure of lead modules was noticeable. Needless to say 
the lead module is an important part of the control system as it provides the initial state 
information, and also the state transition of other modules is synchronized with the 
propagation of phase information from the lead module. Thus we can expect the failure of 
lead module would be the major contributor in hindering the overall mobility of the robot.  
Finally, in the single module failure scenario, out of the 30 modules, 15 modules in NNsig 
and 8 modules in NNsin can fail with the robot still retaining 80% of its original mobility. 
Interestingly, for NNsin 6/30 (20%) of the modules can fail without compromising the 
mobility of the robot at all.  
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CA1d 
 
 

 

  CA2dSing CA2dDiff 
 
 

 

 NNsig NNsin 
 
 
Figure 17. Graph of degree of mobility against single module failure for all the models 
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5.2 Motion characteristics 

Each of the controllers with best evolved parameters were run on the simulated robot for 30 
state transitions, which is the same as the number of state transitions used by GA in 
evolving the controllers. The displacement of the central disc body of the robot from start to 
finish is depicted in Fig. 18. As can be seen the disc body of the robot did sway from side to 
side which is to be expected from robot of such nature. NNsig had the least amount of 
deviation on the straight-line path from start to finish. Though NNsig was the slowest of the 
lot, it nonetheless produced the smoothest motion. 
 

 

Figure 18. Displacement (cm) of the robot using each of the evolved strategies 

An obvious observation is that the different controllers drove the robot in different 
directions, which would lead one to ponder as to how to get the robot to move in a desired 
direction. Well once the initial heading of the robot using a given controller has been 
determined, the robot can rotate about the centre of its disc body to the desired heading. An 
alternative to this can exploit the modular nature of the robot by swapping the control 
parameters between the legs and hence changing direction of motion. 
In evaluating the fitness of a chromosome, the control parameters represented by the 
chromosome was applied to the simulated robot for MAX_TRANS = 30 state transitions. We 
are interested in knowing whether the results obtained can be extrapolated beyond this 
duration. Thus the motion of the robot using best control parameters discovered by GA was 
simulated beyond MAX_TRANS.  
A clear demarcation in the behaviours of the CA based control models and NN based 
control models is captured in Fig. 19. The CA models peaked off around 30 state transitions 
after which their performance gradually degraded. Observations of the simulated robot 
using CA controller generally showed cyclic behaviour after exceeding MAX_TRANS. The 
NN controllers on the other hand made progress even after exceeding MAX_TRANS, 
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though it must be pointed out that this rate became slower in the interval after 
MAX_TRANS.  

 

 

Figure 19. Graph of distance travelled against state transition using the best-evolved control 
parameters for each of the control models 

The manner in which the controllers behave is intricately linked with the nature of 
evolutionary algorithm, which produced them. Genetic algorithm or for that matter any 
other evolutionary algorithm provide solution which is highly suited to a specific problem. 
In our case asking GA to evolve controllers to cover a maximum distance within 30 state 
transitions, will do exactly that. If we had used much larger number of state transitions, the 
evolved controllers except for covering greater distance, would display similar 
characteristics as the current controllers. One way to deal with this limitation is to let the 
robot move up till MAX_TRANS, reinitialize the state of the modules, and restart the state 
transitions from the beginning. 
It is remarkable to see how the choice of activation function has influenced the strategy 
evolved by the neural network controller. Observations of state transition of individual 
module under the control of NNsig showed clustering of states, in other words given the 
current state of a module the probability that the next state will be the current state or the 
neighboring state was high. In contrast no such ascertains could be made about NNsin.  The 
strategy employed by NNsin was quite unique compared to other controllers whose 
strategies resembled crawling motion. It involved coiling the legs, followed by lifting the 
disc body and then edging forward while uncoiling the legs and finally easing the disc body 
on to the ground as shown in Fig. 20. 
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Figure 20. Snapshots of the robot’s motion under the control of NNsin 

6. Conclusion 

 The process of evolution by natural selection enables search for best solutions by adapting 
to the problem domain as time passes by. While we have utilized GA to find suitable 
parameters for our control models it is worth mentioning that from a global viewpoint the 
models in turn have evolved from trial and error means of motion control, to CA-based 
control architecture, to the neural inspired motion control model. 
In light of the results, the CA2dDiff control model, whose parameters were derived using 
co-evolutionary approach, came out on top amongst the CA-based control models. 
However, the neural network based models showed better performance in terms of motion 
characteristics as well as exhibiting greater degree of resilience in overcoming scenarios 
involving failure of modules. The NN model with the sinusoidal activation function 
maximized the fitness function by covering the greatest distance, on the other hand the NN 
model with sigmoid activation function exhibited smoother motion characteristics. 
Though the results are promising, this however does not imply the end of the road in the 
evolution of suitable controllers for the robot. There is still a lot that can be done to improve 
the robustness of the robot. One of the ideas is to leverage off the host-parasite analogy in 
coevolving a population of controllers with a population of test failure scenarios. 
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Evolutionary algorithms are goal driven. This makes them wonderful problem solving tools 
in that one has to describe the general framework of what the solution looks like and it does 
the rest by adaptively piecing the details. Being focused only on the end goal in terms of 
maximizing a fitness function is not always the best approach, as sometimes the route taken 
to achieving the goal matters more the end goal. In our case rather than focusing on 
maximizing the distance covered in a given number of state transitions, it is perhaps 
worthwhile exploring the nature of state transitions and seeking for specific states, which 
have the most influence in reaching the end goal. To this effect, we are considering markov 
model and reinforcement learning as future research options. 

7. References 

 Behring, C.; Bracho, M.; Castro, M. & Moreno, J. A. (2000). An Algorithm for Robot Path 
Planning with Cellular Automata, In : ACRI-2000: Theoretical and Practical Issues on 
Cellular Automata, pp. 11-19, Springer-Verlag, London 

Butler, Z.; Kotay, K.; Rus, D. & Tomita, K. (2001).  Cellular Automata for Decentralized 
Control of Self-Reconfigurable Robots, Proceedings of ICRA Workshop on Modular 
Self-Reconfigurable Robots  

Crutchfield, J. P.; Mitchell, M. & Das, R. (2003). The Evolutionary Design of Collective 
Computation in Cellular Automata, In: Evolutionary Dynamics-Exploring the Interplay 
of Selection, Neutrality, Accident, and Function, Crutchfield J. P. & Schuster P.K. (Ed.), 
pp. 361-411, Oxford University Press, New York 

Futenma, N.; Yamada, K.; Endo, S. & Miyamoto, T. (2005). Acquisition of Forward 
Locomotion in Modular Robot, Proceeding of the Artificial Neural Network in 
Engineering Conference, pp. 91-95, St. Louis, Nov 2005, ASME Press, New York 

Gallagher, J. C.; Beer, R. D.; Espenschied, K. S. & Quinn, R.D. (1996). Application of evolved 
locomotion controllers to a hexapod robot, Robotics and Autonomous Systems, Vol. 
19, pp. 95-103 

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, 
Addison-Wesley, Reading, Massachusetts 

Hickey, C.; Jacob, C. & Wyvill, B. (2002). Evolution of a Neural Network for Gait Animation. 
Proceedings of Artificial Intelligence and Soft Computing, Leung, H. (Ed.), ACTA Press, 
Calgary 

Holland, J. H. (1975). Adaptation in natural and artificial systems, University of Michigan Press, 
Ann Arbor 

Hyman, L. H. (1955). The Invertebrates Volume IV: Echinodermata, McGraw-Hill, New York 
Jain, A. K.; Mao, J. & Mohiuddin, K. (1996). Artificial Neural Networks: A Tutorial, IEEE 

Computer, Vol. 29, No. 3, pp. 31-44 
Koza, J. R. (1991). Genetic Evolution and Co-evolution of Computer Programs. In: Artificial 

Life II, SFI Studies in the Science of Complexity Vol. X, Langton, C. G.; Taylor, C.; 
Farmer, J. D. & Rasmussen, S. (Ed.), pp. 603-629, Addison-Wesley, Redwood City, 
CA 

Lal, S. P.; Yamada, K. & Endo S. (2006). Studies on motion control of a modular robot using 
cellular automata, In: AI 2006: Advances in Artificial Intelligence - LNAI 4304, Sattar, 
A. & Kang, B. H. (Ed.),  pp. 689-698, Springer-Verlag, Berlin Heidelberg 

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

566 

Lal, S. P.; Yamada, K. & Endo S. (2007). Evolving Motion Control for a Modular Robot, In : 
Applications and Innovations in Intelligent Systems XV, Ellis,  R.; Allen, T. & Petridis, 
M. (Ed.), pp. 245-258, Springer-Verlag, London 

Lee, M. (2003). Evolution of behaviors in autonomous robot using artificial neural network 
and genetic algorithm, Information Sciences, Vol. 155, pp. 43-60 

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of ideas immanent in nervous 
activity, Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133 

Neumann, J. (1966). Theory of Self-Reproducing Automata, Burks, A. W. (Ed.),  University of 
Illinois Press, Urbana, IL 

Potter, M. A. & Jong, K. A. D. (2000). Cooperative Coevolution: An Architecture for 
Evolving Coadapted Subcomponents, Evolutionary Computation, Vol. 8, No. 1, pp. 1-
29, MIT Press 

Reil, T. & Husbands, P. (2002). Evolution of central pattern generators for bipedal walking in 
a real-time physics environment, IEEE Transactions on Evolutionary Computation, 
Vol. 6, No. 2, pp. 159-168 

Rosin, C. D. & Belew, R. K. (1995). Methods for Competitive Co-evolution: Finding 
Opponents Worth Beating, Proceedings of 6th International conference on Genetic 
Algorithms, San Francisco, pp. 373-380 

Smith, R. (2006). Open Dynamics Engine User Guide. [Online]. http://www.ode.org/ 
Stoy, K. (2006). Using Cellular Automata and Gradients to Control Self-reconfiguration, 

Robotics and Autonomous Systems, Vol. 54, pp. 135-141 
Takashi, M. (2005). Studies on Forward Motion of Modular Robot. MSc Dissertation, University 

of Ryukyus, Japan 
Wolfram, S. (2002). A New Kind of Science, Wolfram Media, Champaign, IL 
 

www.intechopen.com



Frontiers in Evolutionary Robotics

Edited by Hitoshi Iba

ISBN 978-3-902613-19-6

Hard cover, 596 pages

Publisher I-Tech Education and Publishing

Published online 01, April, 2008

Published in print edition April, 2008

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book presented techniques and experimental results which have been pursued for the purpose of

evolutionary robotics. Evolutionary robotics is a new method for the automatic creation of autonomous robots.

When executing tasks by autonomous robots, we can make the robot learn what to do so as to complete the

task from interactions with its environment, but not manually pre-program for all situations. Many researchers

have been studying the techniques for evolutionary robotics by using Evolutionary Computation (EC), such as

Genetic Algorithms (GA) or Genetic Programming (GP). Their goal is to clarify the applicability of the

evolutionary approach to the real-robot learning, especially, in view of the adaptive robot behavior as well as

the robustness to noisy and dynamic environments. For this purpose, authors in this book explain a variety of

real robots in different fields. For instance, in a multi-robot system, several robots simultaneously work to

achieve a common goal via interaction; their behaviors can only emerge as a result of evolution and

interaction. How to learn such behaviors is a central issue of Distributed Artificial Intelligence (DAI), which has

recently attracted much attention. This book addresses the issue in the context of a multi-robot system, in

which multiple robots are evolved using EC to solve a cooperative task. Since directly using EC to generate a

program of complex behaviors is often very difficult, a number of extensions to basic EC are proposed in this

book so as to solve these control problems of the robot.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Sunil Pranit Lal and Koji Yamada (2008). Evolutionary Distributed Control of a Biologically Inspired Modular

Robot, Frontiers in Evolutionary Robotics, Hitoshi Iba (Ed.), ISBN: 978-3-902613-19-6, InTech, Available from:

http://www.intechopen.com/books/frontiers_in_evolutionary_robotics/evolutionary_distributed_control_of_a_bio

logically_inspired_modular_robot

www.intechopen.com



www.intechopen.com



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


