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1. Introduction

The theory of complex networks plays an important role in a wide variety of disciplines,

ranging from communications to molecular and population biology. The focus of this article

is on graph theory methods for computational biology. We'll survey methods and
approaches in graph theory, along with current applications in biomedical informatics.

Within the fields of Biology and Medicine, potential applications of network analysis by

using graph theory include identifying drug targets, determining the role of proteins or

genes of unknown function. There are several biological domains where graph theory
techniques are applied for knowledge extraction from data. We have classified these
problems into several different domains, which are described as follows.

1.  Modeling of bio-molecular networks. It presents modeling methods of bio-molecular
networks, such as protein interaction networks, metabolic networks, as well as
transcriptional regulatory networks.

2. Measurement of centrality and importance in bio-molecular networks. To identify the
most important nodes in a large complex network is of fundamental importance in
computational biology. We'll introduce several researches that applied centrality
measures to identify structurally important genes or proteins in interaction networks
and investigated the biological significance of the genes or proteins identified in this
way.

3.  Identifying motifs or functional modules in biological networks. Most important
biological processes such as signal transduction, cell-fate regulation, transcription, and
translation involve more than four but much fewer than hundreds of proteins or genes.
Most relevant processes in biological networks correspond to the motifs or functional
modules. This suggests that certain functional modules occur with very high
frequency in biological networks and be used to categories them.

4. Mining novel pathways from bio-molecular networks. Biological pathways provide
significant insights on the interaction mechanisms of molecules. Experimental
validation of identification of pathways in different organisms in a wet-lab
environment requires monumental amounts of time and effort. Thus, there is a need
for graph theory tools that help scientists predict pathways in bio-molecular networks.

www.intechopen.com



106 Advanced Technologies

Our primary goal in the present article is to provide as broad a survey as possible of the
major advances made in this field. Moreover, we also highlight what has been achieved as
well as some of the most significant open issues that need to be addressed. Finally, we hope
that this chapter will serve as a useful introduction to the field for those unfamiliar with the
literature.

2. Definitions and mathematical preliminaries

2.1 The concept of a graph

The concept of a graph is fundamental to the material to be discussed in this chapter. A
graph G consists of a set of vertices V(G) and a set of edges E(G). In a simple graph, two of
the vertices in G are linked if there exists an edge (v, vj)€ E(G) connecting the vertices v; and
v; in graph G such that v;e V(G) and v;e V(G). The number of vertices will be denoted by
| V(G)|, and the set of vertices adjacent to a vertex v; is referred to as the neighbors of v;, N(v;).
The degree of a vertex v; is the number of edges with which it is incident, symbolized by
d(vi). Two graphs, G; and G, are said to be isomorphic (G; = G;) if a one-to-one
transformation of V; onto V; effects a one-to-one transformation of E; onto E;. A subgraph
G” of a graph G is a graph whose set of vertices and set of edges satisfy the relations:
V(G")cV(G) and E(G") cE(G), and if G” is a subgraph of G, then G is said to be a supergraph
of G”. The line graph L(G) of an undirected graph G is a graph such that each vertex in L(G)
indicates an edge in G and any pairs of vertices of L(G) are adjacent if and only if their
corresponding edges share a common endpoint in G.

2.2 Directed and undirected graphs

A graph may be undirected, meaning that there is no distinction between the two vertices
associated with each edge, or its edges may be directed from one vertex to another. Formally,
a finite directed graph, G, consists of a set of vertices or nodes, V(G) = {vy, . . . ,v.}, together
with an edge set, E(G) < V(G) xV(G). Intuitively, each edge (1, v) € E(G) can be thought of
as connecting the starting node u to the terminal node v. An undirected graph, G, also
consists of a vertex set, V(G), and an edge set E(G). However, there is no direction associated
with the edges in this case. Hence, the elements of E(G) are simply two element subsets of
V(G), rather than ordered pairs as directed graphs. As with directed graphs, we shall use the
notation uv (or vu as direction is unimportant) to denote the edge {u, v} in an undirected
graph. For two vertices, u, v, of an undirected graph, uv is an edge if and only if vu is also an
edge. We are not dealing with multi-graphs, so there can be at most one edge between any
pair of vertices in an undirected graph. That is, we are discussing the simple graph. A
simple graph is an undirected graph that has no loops and no more than one edge between
any two different vertices. In a simple graph the edges of the graph form a set and each edge
is a pair of distinct vertices. The number of vertices n in a directed or undirected graph is the
size or order of the graph.

2.3 Node-degree and the adjacency matrix

For an undirected graph G, we shall write d(u) for the degree of a node u in V(G). This is
simply the total number of edges at u. For the graphs we shall consider, this is equal to the
number of neighbors of u, d(u) = |N (u)|. In a directed graph G, the in-degree , d*(u) (out-
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degree, d-(u)) of a vertex u is given by the number of edges that terminate (or start) at u.
Suppose that the vertices of a graph (directed or undirected) G are ordered as vy, . . ., vn.
Then the adjacency matrix, A, of G is given by

1 if vy, e E(G)
700 if vy, ¢ E(G)

Thus, the adjacency matrix of an undirected graph is symmetric while this need not be the
case for a directed graph.

2.4 Path, path length and connected graph

Let u, v be two vertices in a graph G. Then a sequence of vertices u = vy, v, . . ., vx = v, such
that fori=1, ..., k-1, is said to be a path of length k-1 from u to v. The geodesic distance, or
simply distance, d(u, v), from u to v is the length of the shortest path from u to v in G. If no
such path exists, then we set d(u, v) = 1. If for every pair of vertices, (1, v), in graph G, there
is some path from u to v, then we say that G is connected.

3. Modeling of bio-molecular networks

3.1 Introduction

Several classes of bio-molecular networks have been studied: Transcriptional regulatory
networks, protein interaction network, and metabolic networks. In Biology, transcriptional
regulatory networks and metabolic networks would usually be modeled as directed graphs.
For instance, in a transcriptional regulatory network, nodes would represent genes with
edges denoting the transcriptional relationships between them. This would be a directed
graph because, if gene A regulates gene B, then there is a natural direction associated with
the edge between the corresponding nodes, starting at A and terminating at B. In recent
years, attentions have been focused on the protein-protein interaction networks of various
simple organisms (Itzkovitz & Alon, 2005). These networks describe the direct physical
interactions between the proteins in an organism's proteome and there is no direction
associated with the interactions in such networks. Hence, PPI networks are typically
modeled as undirected graphs, in which nodes represent proteins and edges represent
interactions. In next sections, we individually introduce these bio-molecular networks.

3.2 Transcriptional regulatory networks

Transcriptional regulatory networks describe the regulatory interactions between genes.
Here, nodes correspond to individual genes and a directed edge is drawn from gene A to
gene B if A positively or negatively regulates gene B. Networks have been constructed for
the transcriptional regulatory networks of E. coli and S. cerevisiae (Salgado et al., 2006; Lee et
al., 2002; Salgado et al., 2006; Keseler et al., 2005) and are maintained in databases such as
RegulonDB (Salgado et al., 2006) and EcoCyc (Keseler et al., 2005). Such networks are
usually constructed through a combination of high-throughput genome location
experiments and literature searches. Many types of gene transcriptional regulatory related
approaches have been reported in the past. Their nature and composition are categorized by
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several factors: considering gene expression values (Keedwell & Narayanan, 2005;
Shmulevich et al., 2002), the causal relationship between genes, e.g. with Bayesian analysis
or Dynamic Bayesian Networks (Zou & Conzen, 2005, Husmeier, 2003), and the time
domain e.g. discrete or continuous time (Li et al., 2006; He & Zeng, 2006; Filkov et al., 2002;
Qian et al, 2001). One of the limitations of graph theory applications in analyzing
biochemical networks is the static quality of graphs. Biochemical networks are dynamical,
and the abstraction to graphs can mask temporal aspects of information flow. The nodes and
links of biochemical networks change with time. Static graph representation of a system is,
however, a prerequisite for building detailed dynamical models (Zou & Conzen, 2005). Most
dynamical modeling approaches can be used to simulate network dynamics while using the
graph representation as the skeleton of the model. Modeling the dynamics of biochemical
networks provides closer to reality recapitulation of the system's behavior in silico, which can
be useful for developing more quantitative hypotheses.

3.3 Protein interaction networks

Understanding protein interactions is one of the important problems of computational
biology. These protein-protein interactions (PPIs) networks are commonly represented by
undirected graph format, with nodes corresponding to proteins and edges corresponding to
protein-protein interactions. The volume of experimental data on protein-protein
interactions is rapidly increasing by high-throughput techniques improvements which are
able to produce large batches of PPIs. For example, yeast contains over 6,000 proteins, and
currently over 78,000 PPIs have been identified between the yeast proteins, with hundreds
of labs around the world adding to this list constantly. Humans are expected to have around
120000 proteins and around 100 PPIs. The relationships between the structure of a PPI
network and a cellular function are waited to be explored. Large-scale PPI networks (Rain et
al., 2001; Giot et al., 2003; Li et al., 2004; Von Mering et al., 2004; Mewes et al., 2002) have
been constructed recently using high-throughput approaches such as yeast-2-hybrid screens
(Ito et al., 2001) or mass spectrometry techniques (Gavin et al., 2002) to identify protein
interactions.

Vast amounts of PPI related data that are constantly being generated around the world are
being deposited in numerous databases. Data on protein interactions are also stored in
databases such as the database of interacting proteins (DIP) (Xenarios et al., 2000). We
briefly mention the main databases, including nucleotide sequence, protein sequence, and
PPI databases. The largest nucleotide sequence databases are EMBL (Stoesser et al., 2002),
DDB]J (Tateno et al., 2002), and GenBank (Benson et al., 2002). They contain sequences from
the literature as well as those submitted directly by individual laboratories. These databases
store information in a general manner for all organisms. Organism specific databases exist
for many organisms. For example, the complete genome of yeast and related yeast strains
can be found in Saccharomyces Genome Database (SGD) (Dwight et al., 2002). FlyBase
(Ashburner, 1993) contains the complete genome of the fruit fly Drosophila melanogaster. It is
one of the earliest model organism databases. Ensembl (Hubbard et al., 2002) contains the
draft human genome sequence along with its gene prediction and large scale annotation.
SwissProt (Bairoch & Apweiler, 2000) and Protein Information Resource (PIR) (McGarvey et
al., 2000) are two major protein sequence databases. SwissProt maintains a high level of
annotations for each protein including its function, domain structure, and post-translational
modification information.
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Understanding interactions between proteins in a cell may benefit from a model of a PPIs
network. A full description of protein interaction networks requires a complex model that
would encompass the undirected physical protein-protein interactions, other types of
interactions, interaction confidence level, or method and multiplicity of an interaction,
directional pathway information, temporal information on the presence or absence of PPIs,
and information on the strength of the interactions. This may be achieved by designing a
scoring function and assigning weights to nodes and edges of a PPIs network.

3.4 Metabolic networks

Metabolic networks describe the bio-chemical interactions within a cell through which
substrates are transformed into products through reactions catalysed by enzymes. Metabolic
networks generally require more complex representations, such as hyper-graphs, as
reactions in metabolic networks generally convert multiple inputs into and multiple outputs
with the help of other components. An alternative is a weighted bipartite graph to reduce
representation for a metabolic network. In such graphs, two types of nodes are used to
represent reactions and compounds, respectively. The edges in a weighted bipartite graph
connect nodes of different types, representing either substrate or product relationships.
These networks can represent the complete set of metabolic and physical processes that
determine the physiological and biochemical properties of a cell. Metabolic networks are
complex. There are many kinds of nodes (proteins, particles, molecules) and many
connections (interactions) in such networks. Even if one can define sub-networks that can be
meaningfully described in relative isolation, there are always connections from it to other
networks. As with protein interaction networks, genome-scale metabolic networks have
been constructed for a variety of simple organisms including S. cerevisiae and E. coli (Jeong et
al., 2000; Overbeek et al., 2000; Karp et al., 2002; Edwards et al., 2000), and are stored in
databases such as the KEGG (Kanehisa & Goto, 2000) or BioCyc (Karp et al., 2005) databases.
A common approach to the construction of such networks is to first use the annotated
genome of an organism to identify the enzymes in the network and then to combine bio-
chemical and genetic information to obtain their associated reactions (Kauffman et al., 2000;
Edwards et al., 2001). While efforts have been made to automate certain aspects of this
process, there is still a need to validate the networks generated automatically manually
against experimental biochemical results (Segre et al.,, 2003). For metabolic networks,
significant advances have also been made in modelling the reactions that take place on such
networks. The overall structure of a network can be described by several different
parameters. For example, the average number of connections a node has in a network, or the
probability that a node has a given number of connections. Theoretical work has shown that
different models for how a network has been created will give different values for these
parameters. The classical random network theory (Erdos & Renyi, 1960) states that given a
set of nodes, the connections are made randomly between the nodes. This gives a network
where most nodes have the same number of connections. Recent research has shown that
this model does not fit the structure found in several important networks. Instead, these
complex networks are better described by a so-called scale-free model where most nodes
have only a few connections, but a few nodes (called hubs) have a very large number of
connections. Recent work indicates that metabolic networks are examples of such scale-free
networks (Jeong et al., 2000). This result is important, and will probably lead to new insights
into the function of metabolic and signaling networks, and into the evolutionary history of
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the networks. Robustness is another important property of metabolic networks. This is the
ability of the network to produce essentially the same behavior even when the various
parameters controlling its components vary within considerable ranges. For example, recent
work indicates the segment polarity network in the Drosophila embryo can function
satisfactorily with a surprisingly large number of randomly chosen parameter sets (von
Dassow et a.l, 2000). The parameters do not have to be carefully tuned or optimized. This
makes biological sense, which means a metabolic network should be tolerant with respect to
mutations or large environmental changes.

Another important emerging research topic is to understand metabolic networks in term of
their function in the organism and in relation to the data we already have. This requires
combining information from a large number of sources, such as classical biochemistry,
genomics, functional genomics, microarray experiments, network analysis, and simulation.
A theory of the cell must combine the descriptions of the structures in it with a theoretical
and computational description of the dynamics of the life processes. One of the most
important challenges in the future is how to make all this information comprehensible in
biological terms. This is necessary in order facilitate the use of the information for predictive
purposes to predict what will happen after given some specific set of circumstances. This
kind of predictive power will only be reached if the complexity of biological processes can
be handled computationally.

4. Measurement of centrality and importance in bio-molecular networks

Biological function is an extremely complicated consequence of the action of a large number
of different molecules that interact in many different ways. Genomic associations between
genes reflect functional associations between their products (proteins) (Huynen et al., 2000;
Yanai et al., 2001). Furthermore, the strength of the genomic associations correlates with the
strength of the functional associations. Genes that frequently co-occur in the same operon in
a diverse set of species are more likely to physically interact than genes that occur together
in an operon in only two species ((Huynen et al., 2000), and proteins linked by gene fusion
or conservation of gene order are more likely to be subunits of a complex than are proteins
that are merely encoded in the same genomes (Enright et al., 1999). Other types of
associations have been used for network studies, but these focus on certain specific types of
functional interactions, like subsequent enzymatic steps in metabolic pathways, or physical
interactions. Elucidating the contribution of each molecule to a particular function would
seem hopeless, had evolution not shaped the interaction of molecules in such a way that
they participate in functional units, or building blocks, of the organism's function (Callebaut
et al, 2005). These building blocks can be called modules, whose interactions,
interconnections, and fault-tolerance can be investigated from a higher-level point of view,
thus allowing for a synthetic rather than analytic view of biological systems (Sprinzak et al.,
2005). The recognition of modules as discrete entities whose function is separable from those
of other modules (Hartwell et al., 1999) introduces a critical level of biological organization
that enables in silico studies.

Intuitively, modularity must be a consequence of the evolutionary process. Modularity
implies the possibility of change with minimal disruption of function, a feature that is
directly selected for (Wilke et al., 2003). However, if a module is essential, its independence
from other modules is irrelevant unless, when disrupted, its function can be restored either
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by a redundant gene or by an alternative pathway or module. Furthermore, modularity
must affect the evolutionary mechanisms themselves, therefore both robustness and
evolvability can be optimized simultaneously (Lenski et al., 2006). The analysis of these
concepts requires both understanding of what constitutes a module in biological systems
and tools to recognize modules among groups of genes. In particular, a systems view of
biological function requires the development of a vocabulary that not only classifies
modules according to the role they play within a network of modules and motifs, but also
how these modules and their interconnections are changed by evolution, for example, how
they constitute units of evolution targeted directly by the selection process (Schlosser et al.,
2004). The identification of biological modules is usually based either on functional or
topological criteria. For example, genes that are co-expressed or coregulated can be classified
into modules by identifying their common transcription factors (Segal et al., 2004), while
genes that are highly connected by edges in a network form clusters that are only weakly
connected to other clusters (Rives et al., 2003). From viewpoint of evolutionary, genes that
are inherited together but not with others often form modules (Snel et al., 2004; Slonim et al.,
2006). However, the concept of modularity is not at all well defined. For example, the
fraction of proteins that constitutes the core of a module and that is inherited together is
small (Snel et al., 2004), implying that modules are fuzzy but also flexible so that they can be
rewired quickly, allowing an organism to adapt to novel circumstances (Campillos et al.,
2006).

A set of data is provided by genetic interactions (Reguly et al., 2006), such as synthetic lethal
pairs of genes or dosage rescue pairs, in which a knockout or mutation of a gene is
suppressed by over-expressing another gene. Such pairs are interesting because they
provide a window on cellular robustness and modularity brought about by the conditional
expression of genes. Indeed, the interaction between genes epistasis (Wolf et al., 2000) has
been used to successfully identify modules in yeast metabolic genes (Segre et al., 2005).
However, often interacting pairs of genes lie in alternate pathways rather than cluster in
functional modules. These genes do not interact directly and thus are expected to straddle
modules more often than lie within one (Jeong et al., 2000).

In silico evolution is a powerful tool, if complex networks can be generated that share the
pervasive characteristics of biological networks, such as error tolerance, small-world
connectivity, and scale-free degree distribution (Jeong et al., 2000). If furthermore each node
in the network represents a simulated chemical or a protein catalyzing reactions involving
these molecules, then it is possible to conduct a detailed functional analysis of the network
by simulating knockdown or over-expression experiments. This functional datum can then
be combined with evolutionary and topological information to arrive at a more sharpened
concept of modularity that can be tested in vitro when more genetic data become available.
Previous work on the in silico evolution of metabolic (Pfeiffer et al., 2005), signaling (Soyer
& Bonhoeffer, 2006; Soyer et al., 2006), biochemical (Francois et al., 2004; Paladugu et al.,
2006), regulatory (Ciliberti et al., 2007), as well as Boolean (Ma'ayan et a., 2006), electronic
(Kashtan et al., 2005), and neural (Hampton et al., 2004) networks has begun to reveal how
network properties such as hubness, scaling, mutational robustness as well as short
pathway length can emerge in a purely Darwinian setting. In particular, in silico experiments
testing the evolution of modularity both in abstract (Lipson et al., 2002) and in simulated
electronic networks suggest that environmental variation is key to a modular organization
of function. These networks are complex, topologically interesting (Adami, 2002), and
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function within simulated environments with different variability that can be arbitrarily
controlled.

5. Identifying motifs or functional modules in biological networks

Biological systems viewed as networks can readily be compared with engineering systems,
which are traditionally described by networks such as flow charts. Remarkably, when such a
comparison is made, biological networks and engineered networks are seen to share
structural principles such as modularity and recurrence of circuit elements (Alon, 2003).
Both biological systems function and engineering are organized with modularity.
Engineering systems can be decomposed into functional modules at different levels (Hansen
et al., 1999), subroutines in software (Myers, 2003) and replaceable parts in machines. In the
case of biological networks, although there is no consensus on the precise groups of genes
and interactions that form modules, it is clear that they possess a modular structure (Babu et
al., 2004). Alon proposed a working definition of a module based on comparison with
engineering. A module in a network is a set of nodes that have strong interactions and a
common function (Alon, 2003). A module has defined input nodes and output nodes that
control the interactions with the rest of the network.

Various basic functional modules are frequently reused in engineering and biological
systems. For example, a digital circuit may include many occurrences of basic functional
modules such as multiplexers and so on (Hansen et al., 1999). Biology displays the same
principle, using key wiring patterns again and again throughout a network. For instance,
metabolic networks use regulatory circuits such as feedback inhibition in many different
pathways (Alon, 2003). Besides basic functional modules, recently a small set of recurring
circuit elements termed motifs have been discovered in a wide range of biological and
engineering networks (Milo et al., 2002). Motifs are small (about 3 or 4 nodes) sub-graphs
that occur significantly more frequently in real networks than expected by chance alone, and
are detected purely by topological analysis. This discover kindled a lot of interest on
organization and function of motifs, and many related papers were published in recent
years. The observed over-representation of motifs has been interpreted as a manifestation of
functional constraints and design principles that have shaped network architecture at the
local level (Milo et al., 2002). Some researchers believe that motifs are basic building blocks
that may have specific functions as elementary computational circuits (Milo et al., 2002).
Although motifs seem closely related to conventional building blocks, their relation lacks
adequate and precise analysis, and their method of integration into full networks has not
been fully examined. Further, it is not clear what determines the particular frequencies of all
possible network motifs in a specific network.

6. Mining novel pathways from bio-molecular networks

In the studying organisms at a systems level, biologists recently mentioned (Kelley et al.
2003) the following questions: (1) Is there a minimal set of pathways that are required by all
organisms? (2) To what extent are the genomic pathways conserved among different
species? (3) How are organisms related in terms of the distance between pathways rather
than at the level of DNA sequence similarity? At the core of such questions lies the
identification of pathways in different organisms. However, experimental validation of an
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enormous number of possible candidates in a wet-lab environment requires monumental
amounts of time and effort. Thus, there is a need for comparative genomics tools that help
scientists predict pathways in an organism’s biological network. Due to the complex and
incomplete nature of biological data, at the present time, fully automated computational
pathway prediction is excessively ambitious. A metabolic pathway is a set of biological
reactions where each reaction consumes a set of metabolites, called substrates, and produces
another set of metabolites, called products. A reaction is catalyzed by an enzyme (or a
protein) or a set of enzymes. There are many web resources that provide access to curated as
well as predicted collections of pathways, e.g., KEGG (Kanehisa et al. 2004), EcoCyc (Keseler
et al. 2005), Reactome (Joshi-Tope et al. 2005), and PathCase (Ozsoyoglu et al 2006). Work to
date on discovering biological networks can be organized under two main titles: (i) Pathway
Inference (Yamanishi et al., 2007; Shlomi et al., 2006), and (ii) Whole-Network Detection (Tu
et al., 2006; Yamanishi et al. 2005). Even with the availability genomic blueprint for a living
system and functional annotations for its putative genes, the experimental elucidation of its
biochemical processes is still a daunting task. Though it is possible to organize genes by
broad functional roles, piecing them together manually into consistent biochemical
pathways quickly becomes intractable. A number of metabolic pathway reconstruction tools
have been developed since the availability of the first microbial genome, Haemophilus
influenza (Fleischmann et al.,, 1995). These include PathoLogic (Karp & Riley, 1994),
MAGTPIE (Gaasterland & Sensen, 1996) and WIT (Overbeek et al., 2000) and PathFinder
(Goesmann et al., 2002). The goal of most pathway inference methods has generally been to
match putatively identified enzymes with known or reference pathways. Although
reconstruction is an important starting point for elucidating the metabolic capabilities of an
organism based upon prior pathway knowledge, reconstructed pathways often have many
missing enzymes, even in essential pathways. The issue of redefining microbial biochemical
pathways based on missing proteins is important since there are many examples of
alternatives to standard pathways in a variety of organisms (Cordwell, 1999). Moreover,
engineering a new pathway into an organism through heterologous enzymes also requires
the ability to infer new biochemical routes. With more genomic sequencing projects
underway and confident functional characterizations absent for many of the genes,
automated strategies for predicting biochemical pathways can aid biologists inunraveling
the complex processes in living systems. At the same time, pathway inference approaches
can also help in designing synthetic processes using the repertoire biocatalysts available in
nature.

7. Conclusion

The large-scale data on bio-molecular interactions that is becoming available at an increasing
rate enables a glimpse into complex cellular networks. Mathematical graph theory is a
straightforward way to represent this information, and graph-based models can exploit
global and local characteristics of these networks relevant to cell biology. Moreover, the
need for a more systematic approach to the analysis of living organisms, alongside the
availability of unprecedented amounts of data, has led to a considerable growth of activity
in the theory and analysis of complex biological networks in recent years. Networks are
ubiquitous in Biology, occurring at all levels from biochemical reactions within the cell up to
the complex webs of social and sexual interactions that govern the dynamics of disease
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spread through human populations. Network graphs have the advantage that they are very
simple to reason about, and correspond by and large to the information that is globally
available today on the network level. However, while binary relation information does
represent a critical aspect of interaction networks, many biological processes appear to
require more detailed models. A comprehensive understanding of these networks is needed
to develop more sophisticated and effective treatment strategies for diseases such as Cancer.
This may eventually prove mathematical models of large-scale data sets valuable in medical
problems, such as identifying the key players and their relationships responsible for multi-
factorial behavior in human disease networks. In conclusion, it can be said of biological
network analysis is needed in Bioinformatics research field, and the challenges are exciting.
It is hoped that this chapter will be of assistance to researchers by highlighting recent
advances in this field.
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