
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



24 

An Embedded Evolutionary Controller to 
Navigate a Population of Autonomous Robots 

Eduardo do Valle Simões 
University of São Paulo – Department of Computer Systems 

Brazil 

1. Introduction 

This chapter studies evolutionary computation applied to the development of embedded 
controllers to navigate a team of six mobile robots. It describes a genetic system where the 
population exists in a real environment, where they exchange genetic material and 
reconfigure themselves as new individuals to form the next generations, providing the 
means of running genetic evolutions in a real physical platform. The chapter presents the 
techniques that could be adapted from the literature as well as the novel techniques 
developed to allow the design of the hardware and software necessary to embedding the 
distributed evolutionary system. It also describes the environment where the experiments 
are carried out in real time. These experiments test the influence of different parameters, 
such as different partner selection and reproduction strategies. This chapter proposes and 
implements a fully embedded distributed evolutionary system that is able to achieve 
collision free-navigation in a few hundreds of trials. Evolution can manipulate some 
morphology aspects of the robot: the configuration of the sensors and the motor speed 
levels. It also proposes some new strategies that can improve the performance of 
evolutionary systems in general.  
Ever more frequently, multi-robot systems have been shown in literature as a more efficient 
approach to industrial applications in relation to single robot solutions. They are usually 
more flexible, robust and fault-tolerant solutions (Baldassarre et al., 2003). Nevertheless, 
they still present state-of-the-art challenges to designers that have difficulties to understand 
the complexity of robot-to-robot interaction and task sharing in such parallel systems 
(Barker & Tyrrell, 2005). Often, designers are not able to predict all the situations that the 
robots are going to face and the resulting solutions are not able to adapt to variations in the 
working environment. Therefore, new techniques for the automated synthesis of robotic 
embedded controllers that are able to deal with bottom-up design strategies are being 
investigated. In this context bioinspired strategies such as Evolutionary Computation are 
becoming attractive alternatives to traditional design, since it can naturally deal with 
decentralized distributed solutions, and are more robust to noise and the uncertainty of real 
world applications (Thakoor et al., 2004).  
Evolutionary robotics is a promising methodology to automatically design robot control 
circuits (Nelson et al., 2004a). It is been applied to the design of single robot navigation 
circuits with some success, where it is able to achieve efficient solutions for simple tasks, 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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such as collision avoidance or foraging. Recently, evolutionary computation has being 
employed to look for solutions in multi-robot systems. In such systems, every robot can be 
treated as an individual that competes with the others to become the best solution to a given 
task (Liu et al., 2004). In doing so, the robot will have more chances to be selected to 
combine its parameters to produce new solutions that inherit its characteristics (i.e., 
spreading its genes and producing offspring, in biological terms). 
Multi-robot evolutionary systems present many new challenges to robot designers, but have 
the advantage of a great degree of parallelism (Parker & Touzet, 2000). Therefore, the 
produced solutions that have to be tested one by one in a single robot system can be 
evaluated in parallel by every individual of the multi-robot system (Nelson et al., 2004b). In 
doing so, the addition of new robots to the system usually results in an increase in the 
performance of the evolutionary strategy, for more possibilities in the search space can be 
tested in parallel (Bekey, 2005). 
Even though multi-robot evolutionary systems can test more solutions in the same time, the 
overall performance does not necessarily improve (Baldassarre et al., 2003). This is due to 
new factors intrinsic to multi-robot systems, such as robot-to-robot interaction. This may 
produce so much stochastic noise from the interactions of real physical systems that it may 
be impossible to the evolutionary strategy to distinguish among good solutions, which is the 
best one. In that context, the best solutions can suffer from the interaction with poorly 
trained individuals and receive lower scores, diminishing their chances to be selected to 
mate and spread good genes (Terrile  et al., 2005).  
When evolutionary systems are built in simulation, it is normally possible to exhaustively 
test most of the possible situations that the environment can present to an individual 
solution, resulting in a fitness score that better represents “how good a solution is” (Michel, 
2004). With a real environment, it is very time consuming to evaluate a robot, which has to 
move around and react to different environment configurations. Usually, the faster the 
generation time, the poorest the evaluation will be. And for longer generations in the real 
world, the overall delay of the experiment will become prohibitive.  
Additionally, the implementation of a fully embedded distributed evolutionary system 
often means that evolution is forced to deal with small robot populations, due to the high 
cost of robotic platforms (Parker, 2003). In that case, evolutionary algorithms that where 
designed to work in simulation with hundreds of individuals will eventually have to be 
redesigned to cope with these new challenges. Therefore evolutionary functions like 
crossover, mutation and selection will also have to be reconsidered. In such context, this 
work intends to present a series of experiments that investigates the effects of evolving small 
real robot populations, proposing novel evolutionary strategies that are able to work in such 
noisy environments. 

2. The Implemented Evolutionary System 

This session presents the strategies chosen to implement the individual controller of each 
robot and the evolutionary system that controls the robot team. It also shows an overview of 
the complete system and an introduction to the robot architecture. Although the strategies 
described can be applied, in theory, to control any number of robots, in this work the global 
idea was adapted to control a group of six robots. Even though the suggested system was 
proven to work with such a small population, a larger population of robots would give 
greater diversity to evolution, improving the performance of the system (Ficici. & Pollack, 
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2000). Thus, more individuals provide more genetic combinations and increase the chances 
of finding a good solution to the problem. 
The goal of the implemented evolutionary system is to automatically train a team of six 
autonomous mobile robots to interact with an unforeseen environment in real time. The 
system is also able to continuously refine the generated solution during the whole working 
life of the robots, coping with modifications of the environment or in the robots (Burke et al., 
2004). Although implemented into a specific group of 2-wheel differential-drive robots for a 
specific task, the evolutionary system can be adapted to control other kinds of robots 
performing different tasks. Therefore, this section is intended to be general enough to be 
used as guidelines to help the conversion of the system to other mobile or static platforms. 
To test whether randomly initialised robots could really be trained by evolution to do 
something practical, a very simple task was chosen: exploration with obstacle avoidance. 
Such a simple task, that is also known as collision-free navigation, facilitates the 
implementation of the system and allows its development in relatively low-cost robots. 
Therefore, more robots could be built and evolution can benefit from more diversity in the 
population. The main issue considering functional specification in an evolutionary system is 
to tell evolution what the robots have to do, without telling it how they are going to achieve 
that (Mondada & Nolfi, 2001). In our case, the robots are encouraged to explore the 
environment, going as fast as possible without colliding into the obstacles or each other. 
Because the workspace contains various robots, the environment also includes some robot-
to-robot interference (Seth, 1997) (e.g., collisions between robots and reflection of the 
infrared signals by approaching robots). The experiments will show how, based on a 
reward-punishment scheme, evolution can find unique, unexpected solutions for that 
problem. 

2.1 The Embedded Evolutionary Controller 

The robot architecture can conceptually be seen as a central control module interfacing all 
other functional modules, which either supply or demand data required for autonomous 
processing (see Figure 1). The modules were implemented using a combination of dedicated 
hardware and software executed by the robot microprocessor. The robot architecture is 
configured by a set of parameters, a certain number of bits stored in RAM memory. In 
evolutionary terms, this set of parameters is called the robot chromosome (Baldassarre et al., 
2003). The Sensor Module is configured by a subset of the chromosome that indicates the 
number of sensors used and their position in the robot periphery. The motor drive module 
is configured by another subset of the chromosome that configures the speed levels of the 
robot.  
The Motor Drive module receives and translates commands from the central control module 
and controls the direction of travel and speed of the two robot motors. The proximity of 
obstacles is obtained by the sensor module that decides which proximity sensors are 
connected to the central control module according to the parameters stored in the robot 
chromosome. 
The Central Control Module (see Figure 1(b)) is divided into three others: the Evolutionary 
Control; the Supervisor Algorithm; and the Navigation Control. Connected together via the 
communication module, the Evolutionary Control circuits of all robots control the complete 
evolutionary process. They process the data stored in the chromosome and send the 
configuration parameters to the Navigation Control and the other modules. The 
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evolutionary control systems of all robots use communication to combine and form a global 
decentralised evolutionary system (Liu et al., 2004). This global system controls the 
evolution of the robot population from generation to generation. It is responsible for 
selecting the fittest robots (the best-adapted to interact with the environment), mating them 
with the others by exchanging and crossing over their chromosomes, and finally 
reconfiguring the robots with the resultant data (the offspring)  (Tomassini, 1995). 
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Figure 1. Architecture of the robot control system (a): the Sensor Module and Motor Drive 
Module are configured by the Central Control Module (b), which processes data from the 
sensors and commands the motor drive module in how to drive the robot 

The robot performance is monitored by the Supervisor Algorithm, which informs the 
evolutionary control how well-adapted it is to the environment. According to events and 
tasks performed by the robot, perceived internally by special sensors, a score or fitness value 
is calculated and used by the global evolutionary system to select the best-adapted 
individuals to breed. The supervisor algorithm is responsible for activating a rescue routine, 
a built-in behaviour that is able to manoeuvre automatically the robot away from a 
dangerous situation once it is detected by the sensors. Contact sensors in the bumpers 
determine the occurrence and position of a collision. When activated, the rescue routine will 
take control of the robot until it is safely recovered. It can communicate directly to the motor 
drive module, by-passing the navigation control. When the rescue manoeuvre is completed, 
the supervisor algorithm allows the motor drive module to accept once more the commands 
of the navigation control circuit and the robot resumes on its way. 
It is the Navigation Control, configured by the evolutionary control, that commands the 
motor drive module according to the information provided by the sensor module. It 
processes the information of the sensors and decides what the robot has to do. Then, it sends 
a command to the motor drive module, which will control the speed of the motors to make 
the robot manoeuvre accordingly. The navigation control is the centre of the autonomous 
navigation of the robot. Configured by the parameters stored in the chromosome, it drives 
the robot independently. Evolution is responsible for adjusting these parameters so that the 
robot performs well in the environment. 
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2.2 The Navigation Control Circuit 

A RAM neural network (Ludermir et al., 1999) was chosen to implement the navigation 
control circuit basically because they have unique features that facilitate their evolution by 
the system, simplify the implementation in the robot hardware, and allow small 
modifications to be carried out with minimum effort. They provide a robust architecture, 
with good stability to mutation and crossover. Most neural networks, like the chosen one, 
present redundancy between the genotype and the phenotype (Shipman et al., 2000). In 
other words, a small change in the bits of the chromosome (the genotype) will not produce a 
radical change in the behaviour of the network (the phenotype). Therefore, the selected 
neural network is stable enough to allow evolution to gradually refine the configuration 
parameters of the navigation control circuit, seeking a better performance. Its good 
neutrality makes it suited to be evolved by the system since a small mutation on a fit 
individual should, on the average, produce an individual of approximately the same fitness.  
The RAM model does not have weighted connections between neuron nodes, and works 
with binary inputs and outputs. The neuron functions are stored in look-up tables that can 
be implemented in software or using Random Access Memories (RAMs). The learning phase 
consists of directly changing the neuron contents in the look-up tables, instead of adjusting 
the weights between nodes.  
In relation to robot implementations, the RAM model, or RAM node is very attractive, since 
it provides great flexibility, modularity, parallel implementation, and high speed of 
learning, what leads to less complex architectures that can easily be implemented with 
simple commercial circuits. The RAM node is a random access memory addressed by its 
inputs. The connectivity of the neuron (N), or the number of inputs, defines the size of the 
memory: 2N. The inputs are binary signals that compose the N-bit vector of the address that 
can access only one of the memory contents. 
The RAM neural network simplicity and its implementation as elementary logic functions 
are responsible for its fast performance. The mapping of the RAM neural network into 
simple ALU logic functions and their direct execution in the microprocessor ALU can 
reduce even more the total memory required by the control algorithm. The faster speed 
provided by these simple implementations allows a faster controller, which can improve the 
decision rate in low-cost microprocessors. 
Figure 2 shows the sensor module processing the information of the sensors and feeding the 
neural network inside the navigation control circuit. The output of the neural network is a 
command that tells the motor drive module how to control the motors. The evolutionary 
control reads the information contained in the chromosome and sends the parameters to 
configure the sensor and motor drive modules. It also reads the contents of the neurons 
from the chromosome and transfers them to the neural network in the navigation control 
circuit (Korenek & Sekanina, 2005). The motor drive module intercepts the command and 
activates the corresponding routine that generates the signals for the motors. 
Figure 3 shows more details on how the navigation control circuit interfaces the sensor and 
motor drive modules. The neurons are connected in groups (discriminators) that correspond 
to one of the possible classes of commands (C1, C2, … Cn) the neural network can choose. 
The groups are connected to an Output Adder (O1, O2, … On) that counts the number of 
active neurons in the group. The Winner-takes-all block receives these counting from the 
output adders, chooses the group with more active neurons, and sends the corresponding 
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Command to the motor drive module. The sensor module converts the analogue readings of 
the infrared proximity sensors into 2-bit signals that can be connected to the neuron inputs. 
In the selected approach, the inputs of the RAM neurons are connected to the sensor outputs 
provided by the sensor module. All neurons of the network have the same number of 
inputs, although that number may vary according to the application (Ludermir et al., 1999). 
In the implemented network, all neurons in the same position in the groups are connected to 
the same inputs (i.e., the first neuron of the first group will have the same inputs as the first 
neuron of the second group and so on…).  

Sensors

Sensor

Module

Neural

Network

Motor Drive

Module

Motors

Neuron Contents

Parameters Parameters

ProximityAnalog Command Signals

Evolutionary

Control

Chromosome

Configuration Data

Navigation Control Circuit

 

Figure 2. The navigation control circuit interfacing the sensor and motor drive modules, and 
the evolutionary control 

The connectivity between the input lines and the sensor outputs is controlled by a 
Connectivity Matrix that defines which sensor outputs are connected to Li, Lj, and Lk. The 
connectivity matrix is randomly initialised at the beginning of a new evolutionary 
experiment. One other advantage of RAM neural networks is their modularity. This 
characteristic simplifies the modification of the architecture. The number of neuron inputs 
can be modified by rearranging the connectivity to the sensors alone. Sensors can also be 
added or removed in this way. New commands are easily included by inserting more 
neuron groups.  
The RAM neural network can be evolved by simply storing sequentially the neuron contents 
into the robot chromosome and allowing the evolutionary algorithm to manipulate these 
bits. Basically, the neural network must have enough inputs to cover all the sensors, 
although some of the sensors may be connected to more than one input line. To avoid 
saturation, enough neurons must be placed in the groups so that the network can learn all 
the different input configurations that correspond to the correct output commands. If the 
network is having difficulty learning a different situation, more neurons should be added. 
Different architectures were implemented and simulated in software until the developed 
solution was obtained. Figure 4 shows an example of neural network that works  with four 
commands to control the motor drive module: Front Fast (FF); Turn Left Short1 (TLS1); Turn 
Right Short1 (TRS1); and Turn Right Short2 (TRS2).  
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Figure 3. The neural network in the navigation control circuit. S1 to Sn are the binary sensor 
readings. The Output Adders (O1 to On) count the number of active neurons in the group. 
C1 to Cn are the classes of commands to the motor drive module 

2.3 The Evolutionary Control System 

It is the evolutionary control system, located inside the central control module of the robots 
(see Figure 1), that performs the evolutionary processes of evaluation, selection, and 
reproduction (Tomassini, 1995). All robots are linked by radio, forming a decentralised 
evolutionary system. The evolutionary algorithm is distributed among and embedded 
within the robot population. Figure 5 exemplifies a cyclic evolutionary process where the 
individuals are evaluated according to their capacity to perform the tasks in the 
environment. If they perform well, it can be said that they are well-adapted to the 
environment. The robots are assigned a score, or fitness value, that tells how fit they are. 
When the evaluation period is over, the individuals select a partner to mate with according 
to their fitness value. The best individuals have more chance of being selected to breed. 
Next, they exchange their chromosomes, crossing over their genes to form the new 
combinations. The resultant chromosomes are then used to reconfigure the old individuals, 
originating new ones, or the offspring. Then, a new evaluation phase starts again. Assuming 
that new robots cannot really be created spontaneously, the offspring must be implemented 
by reconfiguring selected old individuals. 

 

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

446 

 

 

Neuron

Group 1
(Class FF)

S1

S2

S3

S4

S6

S7

S8

Li1

Lj1
N1,1 N2,1 N3,1 N4,1

Li2

Lj2
N1,2 N2,2 N3,2 N4,2

Li3

Lj3
N1,3 N2,3 N3,3 N4,3

Li4

Lj4
N1,4 N2,4 N3,4 N4,4

Li5

Lj5
N1,5 N2,5 N3,5 N4,5

Li6

Lj6
N1,6 N2,6 N3,6 N4,6

Li7

Lj7
N1,7 N2,7 N3,7 N4,7

Neuron

Group 2
(Class TLS1)

Neuron

Group 3
(Class TRS1)

Neuron

Group 4
(Class TRS2)

O1

Adder

/ / / /

O2

Adder

O3

Adder

O4

Adder

7777

Winner Takes All Block

 

 

 

Figure 4.  Configuration of the neural net with four groups of seven neurons 
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Figure 5. An evolutionary process of evaluation, selection, and reproduction (or crossover) 

An evolutionary process, in the context of this work, is the procedure necessary for the 
development of suitable controllers for the population of robots. The process can stop when 
the average fitness value of the population reaches a specified threshold or continue 
indefinitely while the robots execute a certain task. In the developed evolutionary system, 
the robots work in a cyclic procedure, differently from a traditional design technique, where 
the controller is designed or trained at first and then transferred to the robot that is put to 
work. This cyclic procedure is inspired by the natural world where animals, like some birds 
for example, have a working or foraging season and a mating season, where they 
concentrate their attention in finding a mate and reproducing (Tomassini, 1995). 
The cyclic procedure of the robots, a generation in evolutionary computation terms, is 
exemplified in Figure 5. The robots do not pursue reproductive activities concurrently with 
their task behaviour. Instead, they perform a working season, where they execute the 
selected task in the environment (or working domain) and are evaluated according to their 
performance. The internal timer of Robot 1 indicates the beginning of the mating season. It is 
important to observe that the evolutionary scheme is decentralised and distributed amongst 
all six robots. Robot 1 is by no means dominant in this process. The internal timer of Robot 1 
is just used to signal the others, indicating the beginning of the mating season. It was 
necessary to avoid synchronisation problems, since it was impossible to guarantee that all 
robots would begin the mating season at the same time. In the mating season, the robots 
communicate to let the others know their fitness value. They start emitting a “mating call”, 
where they “shout” their identification, their fitness values, and chromosomes. The best 
robots survive to the next generation, breeding to become the “parents” of the new 
individuals. The less well-adapted robots recombine their chromosomes with the better-
adapted ones, reconfiguring their parameters as a new robot before starting a new 
generation. 
The robot recurring procedure for one generation, shown in Figure 5, works according to 
the following algorithm: 
Working Season: 
1. Avoid obstacles; 
2. Count collisions; 
3. Internal timer of Robot 1 indicates the beginning of the mating season; 
Mating Season: 
1. Robot 1 orders all robots to stop; 
2. Robot 1 sends a mating call via the radio (containing its identification, fitness value, and 

chromosome); 
3. Robot 2 then sends its mating call and so do all other robots, one after the other, until 

the last one; 
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4. All robots listen for mating calls, receiving every fitness value, comparing with the 
others, and then selecting the partner to mate with (if own fitness is the highest, the 
robot does not breed); 

5. When all genes are received and partners chosen, start Crossover; 
6.  Begin reconfiguration with the resultant chromosome and wait until… 

7. Robot 1 announces the end of the mating season and orders all robots to start another 
cycle. 

The process begins with the random initialisation of the robot chromosomes. Then, the first 
generation starts with all robots performing their tasks in a working season. For the case of 
obstacle avoidance, they will navigate and have their fitness value calculated according to a 
function similar to the one presented in Figure 6. Robot 1 has control over the duration of 
the working season and uses the radio to stop the other robots when its internal timer 
reaches the end of the working season or the “lifetime” of the robots. That is important to 
synchronise the cycle and make sure that all robots will stop working at the same time. 
Starting with Robot 1, each robot transmits, one by one, a mating call via the radio, 
containing its identification, fitness value, and chromosome. When they are not 
transmitting, the robots listen for other mating calls, receiving the fitness value from the call, 
comparing it with the others, and then selecting the optimal partner with which to mate. If 
own fitness is the highest, the robot does not breed and “survives” to the next generation. 
The cycle will be completed when all robots find a partner to mate with and combine their 
genes in the crossover phase. The mating season lasts until all the six robots signal Robot 1 
that they have found a partner, have mated, and have reconfigured themselves with the 
resultant chromosome. Robot 1 then orders them to restart another cycle (once more Robot 1 
is used only to synchronise the next phase). In other words, the best-adapted robots 
“survive” to the next generation, while the others “die” after mating, to lend their bodies to 
their offspring. 

2.4 Fitness Evaluation 

A simple obstacle avoidance task was chosen. The limited complexity of this task allows a 
good evaluation of the fitness in a short period. A complex task requires more time so that 
the robots can be subjected to more challenges in order to show that they can perform well 
in more than specific situations. A smaller generation time means a faster evolution, because 
more combinations of solutions will be tried  (Pollack et al., 2000). 
A reward-punishment scheme is applied during the fitness evaluation process, executed by 
the supervisor algorithm. Each robot is evaluated during the “working season”, where its 
fitness function is calculated by penalising collisions and lack of movement (reducing the 
fitness value), encouraging the exploration of the environment (rewarding by increasing the 
fitness value for every second of movement). A major issue that must be addressed is how 
to detect a good (fit) robot. This question may be highly complex in nature, but in the 
context of evolutionary systems, it can be simply defined by the programmer, in accordance 
with the particular problem at hand. Furthermore, writing a fitness function depends on the 
targeted behaviour and the characteristics of the robot, and the necessary insights are gained 
through incremental augmentation over many trials in the environment. 
For the obstacle-avoidance problem, a simple rule can be applied: a robot will increase its 
fitness each time it comes across an obstacle and successfully avoids it. Each time it collides, 
the fitness will be decreased. Figure 6 shows an example of a fitness function where the 
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robot fitness is increased by one for every second the robot is in movement, encouraging 
exploration. It is punished by decreasing its fitness by ten when it collides. The fitness is also 
decreased by 100 to punish the robot for turning for more than five seconds. Therefore, this 
sub-function prevents a particular efficient solution that kept the robot spinning in a small 
circle within an obstacle-free area. 

Fitness Function

More Sub-functions... More Conditions...

Fitness = Fitness + 1 For every second the robot is moving;

Fitness = Fitness - 10 If a collision is detected;

Fitness = Fitness - 100 If robot is turning for more than 5 seconds;

 

Figure 6. An example of how a fitness function can be constructed 

In a situation where an obstacle is close to the robot, but the proximity sensor readings are 
not interpreted correctly by the navigation control or are not enabled by the sensor module, 
a collision may occur and the fitness variable will be decreased. The bumper sensors will 
then be analysed by the supervisor algorithm to calculate where the collision took place in a 
total of 12 sectors with 30 degrees each. Once the place of collision is detected, a rescue 
routine will drive the robot away from the obstacle, returning the navigation control to the 
neural network. When the robot is moving forward without colliding with obstacles, its 
fitness will be increased every second. 

2.5 Partner Selection 

The procedure for partner selection is based on the robot fitness value or score. They can be 
very simple, like choosing the best robot to mate with all other ones, or more complex, such 
as the roulette-wheel technique (Tomassini, 1995). In this work, the simple approaches are 
preferred because of the restrictions of an embedded controller (i.e., low processor speed 
and small memory size). As the population is very small, a simple technique can deal with 
the robot selection without problems. Therefore, some simple, but efficient selection 
techniques were developed. These techniques are:  
1. Select the robot with the highest fitness value in the generation to breed with all other 

robots and survive to the next generation. This tries to make sure that in the next 
generation the best fitness will be at least similar to the present one. 

2. An “Inheritance” scheme was developed: the score used to select the robot is the average 
of the robot fitness in the last five generations (i.e., inheriting the scores of its previous 
generations). The robot with the best average survives, but only breeds with the robots 
with the fitness in the present generation lower than its own fitness. This approach 
protects new robots that are actually better than the one with the highest average, but 
need more generations to be selected by their average. 
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3. Another very simple strategy that was effective in the experiments is to select the fittest 
robot, allow it to survive, and reconfigure all the others with a small variation 
(mutation) of its chromosome. This is a form of “asexual reproduction”, where the 
robots do not cross over their chromosomes. All robots in the next generation will be a 
copy of the best one, but will suffer random changes (mutation) in a few genes.  

All techniques suggested above are elitist. Elitism requires that the current fittest member (or 
members) of the population is never deleted and survives to the next generation (Tomassini, 
1995). The developed inheritance scheme prevents a robot from being deleted even if it is 
not the fittest, but has the biggest accumulated average fitness value. It is the only selection 
technique where the fittest member of the population does not have the same number of 
offspring (or the same probability to have offspring) whether it is far better than the rest, or 
only slightly better. In the other ones, it will always have the same probability to have 
offspring; and in most of them, will breed with all other robots. This approach is often too 
severe in restricting exploration by the less fit robots. 
A common problem with these techniques is the possible appearance of a super fit 
individual that can get many copies and rapidly come to dominate the population, causing 
premature convergence to a local optima (Mondada & Nolfi, 2001). This can be avoided by 
suitably scaling the evaluation function, or by choosing a selection method that does not 
allocate trials proportionally to fitness, such as tournament selection. This work, however, 
does not experiment with these methods. 

2.6 Reproduction Strategy 

The crossover is the phase in the evolutionary algorithm where the chromosomes of both 
parents are combined to produce the offspring (Tomassini, 1995). Many techniques are 
proposed in the literature to implement the crossover phase. Nevertheless, this work uses a 
very simple strategy, because of the restricted resources of the embedded controller. 
In the developed evolutionary system, both morphological features and the controller circuit 
are evolved to respond to changes in the environment. The robots constantly adapt to 
changes in the surroundings by modifying their features and the contents of the RAM 
neural controller. The term “morphology” is defined as the physical, embodied 
characteristics of the robot, such as its mechanics and sensor organisation. In the performed 
experiments, the morphological features modified by evolution are the number and position 
of sensors, as well as the speed levels of the drive motors. Therefore, the genetic material 
specifies the configuration of the robot control device and morphological features. Eight 
pairs of genes in the chromosome (B1, B2 to B15, B16) are used to configure the sensor 
module; ten genes (B17 to B26) configure the motor drive module; and the remaining genes 

(B27 to Bn) configure the navigation control module (neuron size × number of neurons for a 
RAM neural network). The control device is implemented within the robot microprocessor 
(a neural network for navigation control) and two programmable modules control the robot 
features, which are the sensor module and the motor drive module (refer to Figure 1). 
For the selection of the robot features controlled by the sensor module, a more complex 
“dominance approach” was implemented to combine the eight pair of genes. Each sensor in 
the sensor module is configured by two genes in the chromosome: i) two genes will 
determine the presence of a feature (“enable the sensor”); ii) one gene comes from each 
parent; and iii) all features are recessive. The two genes are coded using bits in such a way 
that the combinations “1,1”, “0,1”, and “1,0” disable the sensor, and “0,0” enables it. 
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The motor drive module has ten bits associated with it in the chromosome. The features 
selected by the module are the three different speed levels for the motors. Figure 7  shows 
that the three speed levels, Fast, Medium, and Slow are controlled by these ten bits. The 
contents of these ten bits (B17, B18, B19, B20, B21, B22, B23, B24, B25, and B26) are added together to 
form a decimal number that indicates the speed level Fast. The result is a number between 
zero and ten that indicates the level of the Fast speed. The contents of the first six bits (B17, 
B18, B19, B20, B21, and B22) are added together to form a decimal number that indicates the 
speed level Medium. The result is a number between zero and six. In the same way, the 
contents of the first three bits (B17, B18, and B19) are added together to form the decimal 
number that indicates the speed level Slow. The result is a number between zero and three. 
Therefore, as they use the same bits, this guarantees that the level Fast is always greater than 
or equal to Medium, which is always greater than or equal to Slow.  
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Figure 7. The motor drive module. The speed levels Fast, Medium, and Slow are specified by 
the chromosome. The command interpretation block has a set of predefined routines to 
drive both motors. The microprocessor implements most of this module, including the 
pulse-width modulation signals that control the motors 

The resultant speed for the three levels is converted by the motor drive module to a value 
(an internal parameter) between 1 and 32, because the robot motor can have 32 speed levels. 
This conversion is not linear, because of the way the motors are controlled by pulse 
modulation, and the corresponding values are shown in Table 1. This approach permits co-
adaptation where the chromosome integrates specifications for both controller and 
morphological features. Evolution can select not only the number of sensors to use, but, if 
the number of sensors is fixed, it can select which ones to pick (i.e., the sensor position on 
the robot).  
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  Speed Level: 0 1 2 3 4 5 6 7 8 9 10 

  Internal parameter: 1 7 9 11 14 17 20 23 26 29 32 

  Velocity (m/s): 0 0.02 0.05 0.08 0.1 0.13 0.15 0.17 0.2 0.23 0.26 

Table 1. Conversion of the speed levels of the robot 

For the genes that control the neural network and the motor drive module, a random 
exchange of the genes from the parents is used to form the resultant chromosome. This 
strategy is called uniform crossover (Tomassini, 1995), although here only one offspring is 
produced. Therefore, a gene is selected from the father or the mother to occupy the 
corresponding position in the offspring chromosome. Thus, a random exchange of genes 
from both parents occurs after a dominance selection of the 16 bits that enable the sensors. 
After the crossover is completed, a mutation phase starts. Applying mutation to a 
chromosome means that a small number of copying errors may occur when copying the 
genes from the parent chromosomes to the offspring. In this work, a mutation rate of M% 
means that each gene in the chromosome has a probability of M% of being selected and 
binary inverted (e.g., new gene = NOT(gene)). Small mutation rates, usually between 1 and 
3%, are the ones that produced the best results in the experiments. Higher mutation is only 
useful in the beginning of the evolutionary experiment. A high mutation rate does not help 
to evolve faster, and did not prove to be a good strategy.  

3. System Overview 

The mobile autonomous robots form a decentralised embedded evolutionary system where 
no host computer is required. Nevertheless, an IBM PC is used to monitor all data 
exchanged via the radio link, producing a complete record of the chromosomes, parameters, 
and variables for every generation. The robots can communicate with each other and the 
monitor computer via an asynchronous serial data link using their communication module. 
The computer monitors the robot internal variables without interfering in the system, but 
has the capacity to start or stop an evolutionary experiment. 

 

Figure 8. The monitor computer connected to the radio 

A radio board is connected to the monitor computer, which logs data on the evolutionary 
experiment. It is a multi-channel driver/receiver interfacing the IBM PC via its serial port. A 
software interface permits the downloading of software, data, and commands between the 
robots and the computer. Programming and low-level debugging are provided by the 
computer. When programming or debugging, bi-directional data between the robot 
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processor and the computer can operate either via a wired link or via radio. Figure 8 shows 
the monitor computer connected to the radio board that is used to communicate with the 
robots and monitor the evolutionary experiment. 

The experiments were performed within a 2.50m × 2.50m working domain, containing walls 
and obstacles of varied sizes, where the robots can explore the environment, avoiding 
collisions. Many movable obstacles and internal walls of different sizes are available to 
change the scope of the workspace where the robots navigate. The workspace can be 
modified into different configurations by rearranging the obstacles and walls. This flexibility 
is necessary to allow different degrees of complexity of the environment during the 
experiments. Figure 9 shows different configurations of the workspace, representing a 
simple (a) and a complex (b) environment. 

  
(a) (b) 

Figure 9. An example on how simple (a) and complex (b) environments can be produced by 
rearranging the obstacles and walls 

 
(a) (b) 

Figure 10. A view of the robot team (a) and top-view of Robot 2 (b), showing the position of 
the infrared sensors and bumpers 

The robot architecture consists of a two-wheel differential-drive platform (20cm diameter), 
containing a Motorola 68HC11 - 2MHz, 64Kb of RAM, bumpers with eight collision sensors, 
and eight peripheral active infrared proximity sensors. It exchanges information with the 
other robots at 1.2Kbps by a 418MHz AM radio. Both robots and workspace were specially 
built for the experiments. All eight proximity sensors are connected to the sensor module, 
which is configured by the chromosome. The module can individually enable or disable the 

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

454 

sensors, changing the number of active sensors and, consequently, their position in each 
generation. Therefore, the physical, embodied characteristics of the robot can be modified. 
The wheels are placed in the middle of the robot, allowing it to turn around its central axis. 
The robot has four round bumpers on its front, back, left, and right, which are attached to 
the base by eight contact sensors that permit the supervisor algorithm to pinpoint the 
location of a collision.  
Figure 10 (a) shows the team of robots parading in their workspace. Figure 10 (b) shows a 
top-view of Robot 2, displaying its infrared proximity sensors and round bumpers. The 
three green keys on the right form a small keyboard used to enter commands to the robots 
manually. 

4. The Experiments 

4.1 Experiment 1: Evolving with a Simple Fitness Function 

In this experiment, the embedded evolutionary system attempts to evolve the control 
circuits of the group of six robots. The eight sensors were permanently enabled and the 
speed of the motors was fixed at maximum speed. Therefore, the navigation control circuit 
was the only one under evolutionary control. All sensors were set to operate at medium 
range, detecting obstacles closer than 15cm. The sensor positions around the robot are 
presented in Figure 11. 
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Figure 11. Position of the sensors on the robot and their angle in relation to the central line of 
the robot 

The neural network can take seven commands to control the motor drive module: Front Fast 
(FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); Turn Right Short2 (TRS2); Turn Left 
Short2 (TLS2); Turns Right Long (TRL); and Turn Left Long (TLL). Front Fast means “move 
forward with maximum speed”. To turn left/right short, the robot moves with reverse 
direction in one of its motors (with both motors at maximum speed), causing a spin around 
its own axis. The difference between TRS1 and TRS2 is that in the later, the robot keeps 
turning for 200ms, while the duration of the other three commands is just one iteration 
(10ms more or less). In TRL and TLL, the robot turns right/left by breaking one wheel and 
turning around it with the other one in maximum speed in a wide arch of one wheel span of 
diameter. The speed of both motors was fixed at the maximum setting, enabling the robots 
the move at 0.26m/s. As the selection of the sensors and the speed levels were fixed, the 
only feature that varied was the controller configuration. 
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Using only seven output commands means that the neural network needs only three bits to 
encode them and seven classes of discriminators to work. The neural network architecture 
shown in Figure 4 is preserved and three new groups of seven neurons where added too 
represent the new commands. Therefore, the architecture has now seven groups of 7 
neurons (m=7 and n=7) with two inputs each (the neuron size is four bits). The 
interconnections between sensors and neurons are randomly chosen. Each neuron has four 
bits of memory to store its contents. The neural network has 49 neurons with a total memory 
size of 196 bits. This would also be the size of the corresponding bit string in the 
chromosome, if the neural network was to be evolved. The winner-takes-all block chooses 
the command that has more active neurons and encodes it with three bits, before sending it 
to the motor drive module. Therefore, if the size of the genotype of the robots is 196 bits, 

then the current search space is considerably large: 2196 = 1.004×1059. 
Aim of the Experiment: 
This experiment aimed to test if the embedded evolutionary controller was able to evolve 
the navigation control circuit until the collision-free navigation behaviour emerges, while 
having the robot morphology (the sensor configuration and motor speeds) fixed. To achieve 
this, the sensor configuration was fixed with all sensors enabled and the velocity of both 
motors was fixed at maximum speed. The navigation control circuit is configured by only 
196 bytes in the robot RAM memory and evolution is allowed to manipulate any bit of these 
bytes. The robots were allowed to reproduce and suffer mutation, but only with the bits in 
the chromosome that correspond to the navigation control circuit.  
Experimental Setting: 
The population of robots with different configurations was evaluated in 60-second 
generations. The robots were allowed to reproduce and mutate with mutation rate equal to 
3%. The chosen selection strategy for this evolutionary experiment was:  

̇ Select the robot with the highest fitness value in the generation to breed with all other 
robots and survive to the next generation. 

This strategy means that the robot with the highest fitness is selected, and will send its 
chromosome to the other five robots. Each one of the remaining five robots then combines 
its own chromosome with the one received from the best robot to produce a resultant 
chromosome. Then, the remaining five robots reconfigure themselves with the mutated 
chromosomes and the robots continue in the next generation. 
In the crossover phase, where the two chromosomes are combined to form a resultant 
offspring, each bit is randomly chosen from the corresponding location in the chromosome 
of the parents. Then, in the mutation phase, a random number r is generated between zero 
and 100 for each bit in the chromosome, and the bit will be flipped each time r is smaller 
than the mutation rate. 
This experiment used a very simple fitness function in an attempt to prevent biasing 
evolution to any preconceived idea of an ideal controller. The selected fitness function for 
this test was:  
1- Start with 4096 points; 
2- Reward: increase fitness by 10 points every 1 second without collision; 
3- Punishment: decrease fitness by 30 points for every time command is not FF for more than 15 
seconds; 
4- Punishment: decrease fitness by 10 points for every collision if command = FF, TLL, or TRL. 
Rule 2 constantly rewards the robot with five points for every second it is moving without 
colliding. Rule 3 was introduced to prevent evolution from producing a solution that keeps 
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turning around itself and never collided. This rule punishes the robots that keep turning for 
more than 15 seconds, encouraging them to move forward. Rule 4 only punishes the robots 
that are not turning around themselves, since a collision in that case can only mean that they 
are being crashed by another robot. If a robot is executing any command but FF, TLL, or TRL 
its centre is not moving, so the collision cannot be its fault. 

 

Figure 12. Evolution of the neural network controller using mutation rate of 3%, and 
generation time of 60s. The population was randomly initialised. Robotn is the fitness of 
Robot n and PopAv is the average fitness of all robots in the generation 

The experiment in Figure 13 was performed to investigate if the robot population, once 
initialised with a well-trained controller, could hold this configuration or would degenerate. 
The robots were initialised with a previously trained neural network, which was hand-
designed to avoid obstacles in every situation the robots can face. The population was then 
allowed to mate and mutate with the same parameters of the previous evolutionary 
experiment to determine if it would ever get to such a good solution if the experiment was 
allowed to continue for more generations. The results presented in this figure can be compared 
to the ones obtained from the evolution of a randomly initialised population in Figure 12. 
Discussion: 
Figure 12 showed that the evolutionary system succeeded in evolving the population 
towards the expected behaviour, producing solutions that practically did not collide after 35 
generations. It was observed in this experiment that one could not rely only on the fitness of 
a robot to know how well-adapted it is. A simple solution can be lucky enough to start its 
lifetime in a safe part of the environment, away from obstacles and other robots, which 
would produce a very high performance. This was observed in some robots during the 
evolutionary experiment (e.g., Robot 2 that scored 4644 in generation 10, or Robot 1 that 
scored 4621 in generation 8). Therefore, human judgement was the best way to evaluate the 
abilities of the robots and the performance of the evolutionary system. 
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In the experiment shown in Figure 12, all sensors were enabled from the beginning of the 
evolutionary experiment. The controller had information from all the sensors and needed to 
learn what to do with it. Based on observation, some robots learned how to use the frontal 
sensor, S1, which gave them an advantage early on in the process. This was the case for Robot 
2 that could avoid obstacles detected by S1 from generation 8. Robot 2 quickly became the best 
robot and throughout the crossover operation transferred to Robot 5 the ability of using S1. 
Robots 2 and 5 dominated the population until generation 23, where they were overtaken by 
Robot 3 and Robot 4. Robot 3 learned how to use S1, S4, and S7 from generation 29, and was 
able to avoid most of the obstacles very well thereafter. From generation 47 on, all robots 
acquired the necessary skills to employ at least three sensors and the average performance was 
much better. From generation 50, Robot 2 was well-adapted to the environment, and could use 
S1, S2, S4, S6, and S7 to avoid collisions with most of the obstacles and other robots. 
The major observed problem was the instability of the system, where there was no 
guarantee that a good solution, such as Robot 2 in generation 50, would be selected as the 
best robot until it is outperformed by better robots. The population performance dropped 
when a robot with a poorly-adapted controller (Robot 1) was lucky enough to be selected as 
the best robot and spread its bad genes through the population. Robot 1 had a poorly-
adapted controller that made it move forward each time S6 detected an obstacle, 
independently of having something in its way. The average performance dropped, but after 
a few generations, the fitness of the population recovered.  

 

Figure 13. Evolution of the neural network controller using mutation rate of 3%, and 
generation time of 60s. The population was initialised as a hand-designed controller. Robotn 
is the fitness of Robot n and PopAv is the average fitness of all robots in the generation 

The average of the population fitness is a good parameter to determine if the system is 
converging to the desired behaviour. The population performance oscillated, but kept 
improving through the evolutionary experiment. With such a large search space 

(1.004×1059), a perfect robot that can deal with all sensors should take a very long time to 
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obtain with this evolutionary approach. Nevertheless, the system succeeded in producing an 
even population of robots that can successfully avoid the obstacles in some of the situations 
faced and produce a fitness near to the maximum performance (4696). 
Figure 13 shows how the system behaves after the population has been initialised with a 
hand-designed controller. The aim of this test was to show that if such a good solution 
happen to be produced by evolution, it would be preserved in the process. If the 
evolutionary experiment cannot keep such a solution, it is unlikely that it will ever be 
produced by evolution under these circumstances. Unfortunately, the figure showed that 
the evolutionary system, as set in this experiment, could not keep a good solution for more 
than ten generations and the performance of the system degenerated. Although it was 
possible to recover and continue to improve performance after the loss of the hand-designed 
controller genes, this test indicated that it is unlikely that such a good solution will be 
produced by the process as it was configured for this experiment. Maybe a more biasing 
fitness function can produce a better result. 

4.2 Experiment 2: Evolving with Inheritance 

This experiment developed a different selection strategy for evolutionary systems that was 
defined as Inheritance Strategy. From now on, the robots will be selected to breed based on 
not only their performance in the current generation, but also on their fitness in the previous 
generations. Therefore, the robots inherit part of the points scored by their predecessors. By 
considering the average fitness scored by the robot in the previous generations, this strategy 
attempts to reduce the effect of chance, which can produce bad performances if the robot is 
“unlucky”. This experiment tested this new approach, and evaluated if it could solve the 
instability problem pointed out by Experiment 1.  
Aim of the Experiment: 
The aim of this experiment is to develop and test a novel selection strategy involving 
inherited scores. It evaluated whether this new strategy could solve the problems with 
instability presented by the previous selection strategy, where a lucky unfit robot can be 
selected as the best robot instead of better ones that by chance started in a more crowded 
area of the environment.  
Experimental Setting: 
Apart from a different selection strategy, this experiment was set exactly as Experiment 1. 
The chosen selection strategy for this evolutionary experiment was:  

• The score used to select the robot is the average of the robot fitness in the last three generations 
(i.e., inheriting the scores of its previous two generations). The robot with the best average 
survives, but only breeds with the robots with the fitness in the present generation lower than its 
own fitness.  

This approach favours the robots with the highest average, which are the ones that have 
performed well for the last three generations. If in the current generation one lucky unfit 
robot happens to achieve the highest score, it is still unlikely that it will have the best 
average score and will not be selected to mate. This was an attempt to improve the stability 
of the system and reduce the effect of noise and interactions among robots and obstacles.  
The charts display the fitness of the six robots in the current generation as well as the 
average fitness value (AvRn) scored by each robot in the current and the previous two 
generations. For each robot: 

AvRn = (FitnessRnG0 + FitnessRnG-1 + FitnessRnG-2)/3 
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In the equation above, n is the number of the robot; FitnessRnG0 is the fitness of the Robot n 
in the current generation; FitnessRnG-1 is the fitness scored by Robot n in the previous 
generation; and FitnessRnG-2 is the fitness scored by Robot n two generations before. 
Results: 
This is a strategy that protects a fit robot in the current generation that scored more than the 
best robot (the one with the highest average) by not allowing it to mate. If the robot with the 
best average is allowed to breed with robots with fitness in the present generation lower 
than its own fitness, novel better solutions will not be selected because their average will be 
smaller than the one of the robot that won for the last three rounds. This can destroy the 
precious good genes of this robot and evolution will lose this better performance.  
This approach protects new robots that are actually better than the one with the highest 
average, but need to be evaluated for more generations to be selected by their average. If 
one of these protected robots has a better configuration, it will probably repeat its good 
performance, and within one or two generations its average fitness may be the highest and 
the robot will be chosen to reproduce. If the protected robot is in fact a lucky unfit one, it 
may not repeat its good performance and, if so, will be allowed to breed in the next 
generation. Figure 14 shows a test with the updated selection strategy. 

 

Figure 14. Evolution of the neural network controller using inheritance selection, mutation rate 
of 3%, and generation time of 60s. The population was initialised as a hand-designed 
controller. Robotn is the fitness of Robot n and PopAv is the average fitness of all robots in the 
generation 

Discussion: 
The new selection strategy presented in Figure 14 succeeded in improving system stability. 
The fitness of the population dispersed mostly because of mutation, but the performance of 
the best robot did not degrade as much as in the previous attempts. It now protects the 
potentially better configurations, as happened with some of the robots that outperformed 
the robot with the best average and were given the chance to repeat their better 
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performance. When they managed to win again, their average became finally higher and 
they were selected as the best robot of the generation, breeding with all other robots. In the 
next experiment, presented in Figure 15, this new selection strategy is applied to evolve a 
randomly initialised population.  
Figure 15 shows that even now the evolutionary system could not prevent the population 
performance from degrading due to mutation. This figure showed that in 50 generations, the 
population performance degraded to a level similar to the one where the experiment of 
Figure 14 stopped, showing that it is unlikely that it will improve the population much more 
than this level. 
This experiment showed that the new inheritance selection helped to improve system 
performance, but did not completely solve the instability problem. The system does not 
seem to be able to produce an optimal solution to the collision-free navigation task. The 
experiments demonstrated that evolution still can take a considerable amount of time to 
achieve a solution as good as the hand-designed controller and may not even be able to get 
there. 

 

Figure 15. Evolution of the neural network controller using inheritance selection, mutation rate 
of 3%, and generation time of 60s. The population was randomly initialised. Average  is the 
average fitness of all robots and BestRob is the fitness of the best robot in the generation 

4.3 Experiment 3: Disabling Back Mutation 

In the previous experiments, mutation was randomly choosing which bits in the 
chromosome to change. This meant that any bit in the chromosome could mutate to a 
different value and later mutate back to its original value. In the scope of this work, these 
events were called back mutations (Tomassini, 1995). This fact was causing evolution to waste 
time trying to find a good solution by testing some configurations that have been tested 
before. Consider a chromosome that has 99% of its bits set to the correct ones. If any bit can 
be changed by mutation, the chance of changing the bad ones is only 1%. This means that 
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99% of the time, this strategy produces configurations that are potentially worse than the 
current chromosome, and many generations are wasted in evaluating them.  
To prevent evolution from wasting time in evaluating configurations that have been tested 
before, a new strategy that prevents back mutations is developed in this experiment. It consists 
of marking each bit in the chromosome that suffered mutation and only allowing the bits that 
are not marked to mutate. To achieve this, a binary array was created in memory with the 
same size of the chromosome. It is initialised with zeros and when one bit in the chromosome 
is mutated, “1” is written to the corresponding position in the array. Only the bits in the 
chromosome that have zeros in the corresponding position in the array are allowed to mutate. 
Once all bits have mutated, the array will be full of “1s”. Then, the evolutionary system resets 
the array to “0s” and every bit in the chromosome will be allowed to mutate again. This 
strategy was called back-mutation prevention. By preventing back mutations, this strategy forces 
evolution to evaluate the effect produced by each bit in the chromosome.  
Aim of the Experiment: 
The aim of this experiment is to apply a new strategy that prevents back mutation of the bits in 
the chromosome. It tested whether this strategy could be applied in sexual reproduction and 
provided data to analyse which is the best solution for evolving the robots in the long term. 
Experimental Setting: 
This experiment used the same settings of Experiment 2 where the evolutionary system is 
working with inheritance. It examined the new strategy of back-mutation prevention in the 
robot population. 
Results: 

 

Figure 16. Evolution of the neural network controller using back mutation prevention, 
inheritance selection, mutation rate of 3%, and generation time of 60s. The population was 
randomly initialised. BestRob  is the fitness of the best robot of the current generation and 
Average  is the average fitness of all robots in the generation 
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Figure 16 shows a small increase in performance in comparison to experiment 2. The 
techniques developed so far succeeded in allowing the employment of the evolutionary 
system to control such a small population of robots. 
Preventing back mutation was efficient in speeding up the process of finding a solution. 
Evolution was able to get close to maximum performance in less than 120 generations and 
was able to maintain a good result in the population thereafter. These results allow the 
evolution of a real system in 2 hours. The combined strategies of preventing back mutations 
and inheritance made viable the use of evolution to autonomously design robot controllers. 

5. Conclusion 

This work intended to provide understanding on the implementation of real evolutionary 
systems and inspiring insights that have potential of application in real time robotic control. 
When implementing an evolutionary system with real robots, the stochastic noise arising 
from the interactions of real physical systems makes very difficult to distinguish between 
global and local optima. The same robot can get different fitness values if evaluated again, 
even with the same configuration, due to noise on infrared signals, dust on the environment 
floor, etc. But the most important factor was the interaction between the robots. In this 
contest, good robots can get low fitness values if they are unlucky enough to spend most of 
the generation time navigating amongst poorly trained robots. 
The suggested inheritance selection is a powerful strategy to prevent much of the chance 
factor from affecting the system. It succeeded in preventing most of the unfit individuals 
being mistaken as the best robot and protected the better robots from being erased by 
reproduction, giving them a chance to survive and repeat their better performance, until 
their average performance overcame the one of the current best robot. 
The strategy of back-mutation prevention tested in the experiments was very efficient in 
looking for a solution in a considerably large search space. It demonstrated the power of the 
developed evolutionary system for many other applications of genetic algorithms, not only 
in robotics. The performance of the system was improved since the search space was 
reduced by using a neural network to implement a structured evolving controller. 
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